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Abstract

Existing goodness-of-fit tests for survival data are either exclusively graph-
ical in nature or only test specific model assumptions, such as the propor-
tional hazards assumption. We describe a flexible, parameter-free goodness-
of-fit test that provides a simple numerical assessment of a model’s suitability
regardless of the structure of the underlying model. Intuitively, the goodness-
of-fit test utilizes the fact that for a good model early event occurrence is pre-
dicted to be just as likely as late event occurrence, whereas a bad model has
a bias towards early or late events. Formally, the goodness-of-fit test is based
on a novel generalized Martingale residual which we call the martingale sur-
vival residual. The martingale survival residual has a uniform probability
density function defined on the interval −0.5 to +0.5 if censoring is either
absent or accounted for as one outcome in a competing hazards framework.
For a good model, the set of calculated residuals is statistically indistinguish-
able from the uniform distribution, which is tested using the Kolmogorov-
Smirnov statistic.

1 Introduction

Assessing the goodness-of-fit of survival models presents challenges not encoun-
tered with conventional regression models. In a conventional statistical analysis,
the dependent variable or variables being modeled are typically also directly ob-
served. For example, the heights of a sample of individuals are both directly mea-
sured and predicted with a model that can account for covariates such as age and
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gender. In contrast, in survival analysis the timing of event is observed (e.g., age at
death) but hazard is predicted. This complicates the definition and use of common
tools for assessing goodness-of-fit, such as data residuals. An additional complica-
tion is censoring, which is common in survival data and, e.g., skews the distribution
of martingale residuals. Due to these complications, no goodness-of-fit test exists
that is simultaneously general, robust, and straightforward to use. In this article,
we describe a simple, flexible, and parameter-free goodness-of-fit test based on a
novel data residual, the martingale survival residual.

The martingale survival residual belongs to a class of generalized martingale
residuals that includes the conventional martingale residual (Barlow & Prentice
1988). The conventional martingale residual equals the difference between the
number of occurrences of an event at some stopping time and the estimated cu-
mulative hazard of that event up to the stopping time (Equation 11). The value of
the residual depends on whether the observation is censored. For events that occur
only once for each subject (e.g., death in demographic models), it equals 1 minus
the estimated cumulative hazard for non-censored observations and 0 minus the
estimated cumulative hazard for censored observations. Because the cumulative
hazard takes on values between 0 and∞, the martingale residual takes on values
between −∞ and 1.

We define a new generalized martingale residual, the martingale survival resid-
ual, which is based on the estimated survival and takes on values on a finite range,
−0.5 to +0.5 (Equation 12). The theoretical probability density function of the
martingale survival residual is the uniform distribution defined on the interval−0.5
to +0.5, so long as censoring is absent or is accounted for as one event in a com-
peting hazards framework. Negative values of the martingale survival residual cor-
respond to “early” events and positive values to “late” events. The uniform nature
of the martingale survival residual’s probability density function makes it easier to
interpret than the martingale residual and is the basis for the goodness-of-fit test
described in this article.

Since the theoretical probability density function of the martingale survival
residual is a uniform distribution, a good survival model will yield a set of martin-
gale survival residuals that are statistically indistinguishable from the uniform dis-
tribution. In contrast, a bad model will be statistically distinguishable, which can
be tested using well established techniques such as the Kolmogorov-Smirnov test
or the Anderson-Darling test. In this article, we utilize the Kolmogorov-Smirnov
test to implement a goodness-of-fit test, but suggest that future work should con-
sider other tests.

The remainder of this article is structured thus: (1) Sections 2 and 3 present
the theoretical material for the goodness-of-fit test; (2) Section 4 illustrates the
effectiveness of our goodness-of-fit test using simulated data; and (3) Sections 5
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and 6 provide a discussion and concluding remarks, including avenues for future
work, such as how to accommodate data sets with terminal censoring – i.e., studies
with a terminal end date when censoring is guaranteed to occur, which creates a
discontinuity in the censoring hazard.

2 Residuals for event history analysis

2.1 Preliminaries

Let Ni(t), Yi(t), and Zi(t) represent, respectively, the counting, risk, and covari-
ate processes for observation i, so that Fi,t = {Ni(u), Yi(u), Zi(u); 0 ≤ u <
t} completely specifies the realized history (σ-algebra) of observation i up to
time t (Barlow & Prentice 1988). Similarly, let NC

i (t), Y C
i (t), and ZCi (t) rep-

resent the counting, risk, and covariate processes for the generally hypothetical
situation in which all outcomes are observed without censoring, so that FCi,t =

{NC
i (u), Y C

i (u), ZCi (u); 0 ≤ u < t} completely specifies the hypothetically real-
ized history (σ-algebra) of observation i up to time t. This notation and terminol-
ogy follow Aalen et al. (2008). Yi(t) and Y C

i (t) are linked through the equation

Yi(t) = Y C
i (t)Y O

i (t), (1)

where Y O
i (t) is a left continuous binary censoring process which equals 1 if an

individual is under observation immediately prior to time t and 0 otherwise. The
intensity process (or hazard) of NC

i (t) relative to the history FCi,t takes the form

λF
C

i (t) = Y C
i (t)θi(t), (2)

where the functions θi(t) are assumed to be Fi,t-predictable. Assuming indepen-
dent censoring, the intensity of Ni(t) relative to the history Ft takes the form

λi(t) = Yi(t)θi(t). (3)

The assumption of independent censoring will be relaxed for the treatment of the
comprehensive hazard function. Hence, it is not crucial to the goodness-of-fit test.
However, if independent censoring is rejected, a suitable model for joint event and
censoring hazards must be defined.

2.2 Generalized martingale residuals

Invoking the Doob-Meyer theorem, any counting processN(t) can be decomposed
into a unique, predictable cumulative intensity process Λ(t) =

∫ t
0 λ(t) du, assumed
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to be absolutely continuous, and a zero mean martingale M(t),

N(t) = Λ(t) +M(t). (4)

Because the transformation of a predictable process with respect to a zero mean
martingale is also a zero mean martingale, Equation 4 can be recast to yield the
generalized martingale residual corresponding to the predictable process H(t),

D(H, t) =

∫ t

0
H(u) dM(u) =

∫ t

0
H(u) dN(u)−

∫ t

0
H(u)λ(u) du, (5)

where λ(t) = Λ′(t) and D(H, t) is a zero mean martingale by construction. The
first integral on the right hand side of Equation 5 is a stochastic integral, which is
equal to the sum of the values of H at all jump times of N up to t,∫ t

0
H(u) dN(u) =

∑
τk≤t

H(τk), (6)

where τk are the jump times of the counting process N . The second integral in
Equation 5 is a conventional Riemann integral. In the general framework described
by Barlow & Prentice (1988), for each predictable process Hi associated with ob-
servation i there is both a corresponding actual data residual

Di(Hi) =

∫ ti

0
Hi(u) dNi(u)−

∫ ti

0
Hi(u)λi(u) du (7)

and a corresponding predicted data residual

D̂i(Ĥi) =

∫ ti

0
Ĥi(u) dNi(u)−

∫ ti

0
Ĥi(u) λ̂i(u) du, (8)

where ti is the stopping time of observation i and the hats distinguish predicted
variables, functions, or functionals from actual ones. D̂i(Ĥi) is what a researcher
calculates and analyzes after modeling a data set of interest. In addition, actual
and predicted data residuals can be defined for the generally hypothetical complete
counting process NC

i (t),

DC
i (HC

i ) =

∫ ti

0
HC
i (u) dNC

i (u)−
∫ ti

0
HC
i (u)λi(u) du (9)

and

D̂C
i (ĤC

i ) =

∫ ti

0
ĤC
i (u) dNC

i (u)−
∫ ti

0
ĤC
i (u) λ̂Ci (u) du. (10)

Censoring causes the expected probability density functions associated withDC
i (HC

i )
and D̂C

i (ĤC
i ) to differ from those associated with Di(Hi) and D̂i(Ĥi).
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2.3 The conventional martingale residual and martingale survival resid-
ual

The choice Ĥi = 1 yields the conventional martingale residual, whereas the choice
Ĥi = −1

2e
−Λ̂i(t) yields the martingale survival residual, which is a linear trans-

formation of the predicted survival function, ˆSi(t) = e−Λ̂i(t). The negative sign
on the martingale survival residual makes it so that earlier exit times correspond
to smaller residuals, which is more intuitive to interpret than the reverse. For the
same reason, we will use the negative martingale residual with Ĥi = −1 in this
article rather than the conventional martingale residual.

We assume that the counting process Ni(t) is capped at 1 since this is true
for many applications of event history analysis and the assumption simplifies the
explication. Generalizations that relax this assumption are straightforward. The
formulas for the negative martingale residual and martingale survival residual are
then, respectively,

D̂i(−1) = Λ̂i(t)− δi, (11)

and
D̂i(−

1

2
Ŝi) =

1

2
[1− (1 + δi)Ŝi(t)], (12)

where δi is 1 for observed events and 0 for censored outcomes. In the Appendix,
we derive theoretical probability density functions for the actual data residuals cor-
responding to the predicted data residuals given by Equations 11 and 12 (i.e., dis-
pensing with the hats). The probability density functions of the negative martingale
residual and martingale survival residual with no censoring are

gCi (−1, D) =

{
(D + 1)e−(D+1) if − 1 ≤ D <∞
0 otherwise

. (13)

and

gCi (−1

2
Si, D) =

{
1 if − 1

2 ≤ D ≤
1
2

0 otherwise
. (14)

If censoring is present, the probability density functions depend on the functional
form of the event and censoring intensities. For the special case of constant tran-
sition intensities for both event occurrence and censoring, the probability density
functions of the negative martingale residual and martingale survival residual are

gi(−1, D) =


0 if −∞ < D < −1

e
−D+1

1−ρi if − 1 ≤ D < 0

e
−D+1

1−ρi + ρi
1−ρi e

− D
1−ρi if 0 ≤ D <∞

(15)
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and

gi(−
1

2
Si, D) =


0 if −∞ < D < −1

2

(1
2 −D)

ρi
1−ρi if − 1

2 ≤ D < 0

(1
2 −D)

ρi
1−ρi + 2ρi

1−ρi (1− 2D)
ρi

1−ρi if 0 ≤ D ≤ 1
2

0 if 1
2 ≤ D ≤ ∞

,

(16)
where ρi = ci/(λi + ci) is the censoring ratio – that is, the probability that subject
i is censored. Figures 1 and 2 plot the probability density functions for the nega-
tive martingale residual and martingale survival residual given the assumption of
constant transition intensities (Equations 15 and 16, both with no censoring (which
recovers the probability density functions in Equations 14 and 14) and with 25%
censoring. The plots have a discontinuity at D = 0 due to censoring.

In the absence of censoring – or if censoring is accounted for as one event in
a competing events framework – the probability density function for the martin-
gale survival residual is particularly simple: it is a uniform distribution defined on
the interval −0.5 to +0.5. This has substantial intuitive appeal, we suggest, since
a good model of event occurrence (i.e, a good model of the transition intensity
λ̂

(C)
i (t)) is equally likely to lead to early exits as late exits. Hence, the predicted

survival at the transition time, Ŝi, should be drawn from a uniform distribution.
Extending this observation to a set of observations, a good model of transition
intensities should yield a set of martingale survival residual residuals that is sta-
tistically indistinguishable from the uniform distribution. This is the basis for the
goodness-of-fit test described in the next section.

3 A goodness-of-fit test based on the Kolmogorov-Smirnov
statistic

Let Ft completely completely specify the realized history (σ-algebra) up to time
t of a set of n observations indexed by i = 0, 1, . . . , n − 1 as specified in Sec-
tion 2.1. Given this history, a researcher creates an event history model of both
the event and censoring intensities for all observations i. Censoring will be in-
terpreted as one event in a competing events framework. Let φi(t) represent the
comprehensive instantaneous intensity of competing events, Φi(t) the associated
cumulative intensity, and Ri(t) = e−Φi(t) the associated survival. We relax the as-
sumption of independent censoring, requiring only that Ri(t) be suitably modeled.
The predicted martingale survival residual in terms of the comprehensive survival
is

D̂i(−
1

2
R̂i) =

1

2
− R̂i(t). (17)
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The probability density function and cumulative density function of the actual data
residual for the comprehensive survival are

gi(−
1

2
Ri, D) = g(D) =

{
1 if − 1

2 ≤ D ≤
1
2

0 otherwise
(18)

and

Gi(−
1

2
Ri, D) = G(D) =


0 if D < −1

2
D + 1

2 if − 1
2 ≤ D ≤

1
2

1 if 1
2 < D

, (19)

where g(D) and G(D) are the theoretical reference probability density function
and cumulative density function, which are independent of the observation. This
independence relies on the absolute continuity of Ri(t). For a good model of the
comprehensive transition intensities, the set of residuals {D̂i(−1

2R̂i); i = 0, 1, . . . , n−
1} will be indistinguishable from a sample drawn from the reference uniform dis-
tribution, g(D), defined by Equation 18.

3.1 The Kolmogorov-Smirnov Statistic

To test whether the residuals are drawn from the uniform distribution, we use
the Kolmogorov-Smirnov statistic. The Kolmogorov-Smirnov statistic is a sen-
sible choice for the test because it is non-parametric, widely used, and has well-
established statistical properties. The Kolmogorov-Smirnov test is distribution free
if both the model and reference distributions are absolutely continuous. Future
work could explore the use of other tests, such as the Anderson-Darling statistics.
The Kolmogorov-Smirnov statistic is

Kn = max |Ĝn(D)−Gi(−
1

2
Ri, D)|, (20)

where

Ĝn(D) =
1

n

n−1∑
i=0

I(D̂i(−
1

2
R̂i) ≤ D) (21)

is the empirical cumulative distribution of the data residuals and I(D̂i ≤ D) is the
indicator function, equal to 1 if D̂i ≤ D and 0 otherwise.

Well established procedures exist for calculating the statistical significance of
the Kolmogorov-Smirnov statistic (i.e., the probability that a value larger than Kn

would be measured if the empirical distribution is in fact drawn from the reference
distribution) under the aforementioned assumption of absolute continuity.
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4 Illustrations

In this section, we utilize simulated data to demonstrate the utility of the theoret-
ical material described in the preceding sections. For each example, we specify a
model for the actual event and censoring intensities, generate observations using
the actual model, specify a candidate maximum-likelihood model with which to fit
the simulated data, solve for the parameters of the candiate model, calculate and
plot the candidate residuals, and apply the goodness-of-fit test to assess whether the
candidate model is acceptable. Table 1 summarizes the results for all examples.

4.1 Example 1: Constant transition intensities for the simulated data
and model

This example uses simulated data for n = 1000 observations for which the actual
transition intensities for both events and censoring are constant. The transition in-
tensity for events is λ = 1/20 = 0.05 and that for censoring is c = 1/80 = 0.0125.
The censoring probability is ρ = c/(λ + c) = 0.2 and the actual comprehensive
transition intensity is φ = λ+ c = 0.0625.

The estimated maximum likelihood comprehensive transition intensity is φ̂ =
0.0607, with an associated comprehensive survival of R̂(t) = e−0.0607t. A his-
togram of the martingale survival residuals calculated using R̂(t) is plotted in
Figure 4. The solid bar in the figure provides the theoretical probability density
function as a reference. The Kolmogorov-Smirnov statistic for the data residuals
is 0.0182 with a statistical significance of 0.8956. Since the empirical distribu-
tion of the data residuals cannot be distinguished from the theoretical reference
distribution, we accept the model.

4.2 Example 2: A mis-specified model

In this example, we deliberately mis-specify the model to establish that our goodness-
of-fit test correctly rejects the mis-specified model. The transition intensity for
events is λi = .05 + .005t (linear in time) and that for censoring is c = 1/80 =
0.0125 (constant; unchanged from the previous example). However, we incor-
rectly fit the data with the constant intensity model used in the previous example
even though the intensity for event occurrence is linear in time.

A histogram of the martingale survival residuals calculated using R̂(t) is plot-
ted in Figure 5. The solid bar in the figure provides the theoretical probability
density function as a reference. The mismatch between the data residuals and
the reference distribution is visually clear in Figure 5, which is confirmed by the
Kolmogorov-Smirnov test. The value of the statistic is 0.0921 with a statistical sig-
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nificance of 8.592 · 10−8. Since the empirical distribution of the data residuals can
be distinguished from the theoretical reference distribution, we reject the model.

4.3 Example 3: A power calculation

In this example, we extend the previous example by conducting a power calcula-
tion using identical parameters, except that the number of observations is varied.
The statistical power of a given test is the probability that the null hypothesis will
be rejected when it is indeed false (Cohen 1992). Three factors determine the sta-
tistical power: (1) the significance criterion (α, usually 0.05); (2) the sample size
(n); and (3) the effect size (ES). α is the criterion for Type 1 errors (mistakenly
rejecting the null when it is true). The criterion for Type 2 errors is β (mistakenly
accepting the null when it is false). The power is 1− β.

We assume that α = 0.05 and that the effect size isES = b1 = 0.005. The null
hypothesis is that b1 is zero. Given these values, we calculate the power (1− β) as
a function of the sample size using 50, 000 repetitions of the simulation. For each
repetition, the test is successful if the p-value of the Kolmogorov-Smirnov test is
less than α. Figure 6 plots the power as a function of the sample size. The dashed
lines show the x- and y-values of the curve for power levels of 0.8 (β = 0.2) and
0.9 (β = 0.1), two common cut-offs used in experiment design. The number of
samples needed to achieve these power levels are 223 and 271, respectively. If the
experimental sample size is lower than these values, the candidate model may be
accepted even though it is incorrect. It is simply not possible to reject the model
given the sample size.

4.4 Example 4: Another mis-specified model (proportional hazards)

A common assumption when modeling survival data is the proportional hazards
assumption for the influence of covariates on the hazard (Cox 1972). In particular,
the hazard is modeled as

λi(t) = λ0(t)eZ
T
i γ , (22)

where λ0(t) is some baseline hazard, Zi is the vector of covariates for individual
i (assumed here to be time-invariant), and γ is the vector of model coefficients
that account for the magnitude of the influence of each covariate. However, in
practice the proportional hazards is assumption is rarely tested. In this example,
we simulate the situation in which the proportional hazards assumption is incorrect
to demonstrate that our goodness-of-fit test can correctly reject the incorrect model.
We model the true hazard as

λi = siler(t;b) + ∆α2 (1− δ(F )
i ), (23)
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where
siler(t;b) = α1e

β1t + α2 + α3e
−β3t (24)

is the Siler hazard parametrized by the vector b = [α1;β1;α2;α3;β3], δ(F )
i is

a covariate that is 1 if individual i is female and 0 if individual i is male, and
∆α2 is an additive boost to male mortality. Individuals are equally likely to be
female and male. The values used to parametrize the Siler hazard are from a fit to
demographic data from a cohort of women in Utah in the mid-1800s, b = [1.58 ·
10−1; 1.53; 3.92 · 10−3; 4.83 · 10−5; 9.55 · 10−2]. The additional male mortality is
∆α2 = 5α2 = 0.020.

We utilized these parameters to simulate age at death for 2500 individuals
(1259 female and 1241 male). We then fit the sample of ages at death with three
models: (1) the correct model (Additive, fully parametric), (2) Cox proportional
hazards (Cox, semi-parametric), and (3) the following, incorrect multiplicative
model (Multiplicative, fully parametric):

λi = siler(t;b) · (δ(F )
i + (1− δ(F )

i ) γ(M)). (25)

That is, the hazard for females is siler(t;b) and the hazard for males is propor-
tional to this hazard, γ(M) siler(t;b), where γ(M) is the constant of proportional-
ity. Figures 7, 8, and 9 plot the martingale survival residuals for the three model
fits. The values of the test statistic and statistical significance (in parentheses) are,
respectively, 0.014 (0.71; additive), 0.0337 (7e-3; Cox), and 0.0485 (1.5e-5; mul-
tiplicative). Hence, the correct additive model is accepted, but both the Cox and
multiplicative models are rejected per the test statistic.

5 Discussion

The four examples described in the preceding sections demonstrate conclusively
that our proposed goodness-of-fit test successfully rejects incorrect models. This is
the main contribution of this article, but it is not the only one. Another fundamental
insight is that modeling the censoring process is essential to applying the goodness-
of-fit test. We suggest that this is not a unique aspect of our approach, but rather
is an aspect of survival data that must be accounted for by any goodness-of-fit test
since the censoring process is an inherent component of the realized distribution
of event times. Given this, additional consideration is needed of the assumption
we made that the reference distribution’s cumulative density function is absolutely
continuous, which is not true of an important class of studies.

It is common for studies to have a termination date when the study ends or
when the data is “frozen” for analysis. For such studies, the modeled intensities
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for all observations are continuous up to the termination date, at which point there
is a discontinuity in the censoring intensity since censoring instantly occurs at the
termination date. For each modeled observation, the termination date corresponds
to a unique termination value of the predicted data residual, so that the reference
distribution is no longer a uniform distribution. Fortunately, such studies can be ac-
commodated via an extension of the theory. This is a topic of ongoing investigation
for us, but we will briefly summarize how this can be done.

We choose to call cumulative density functions that are absolutely continuous
up to some pre-determined x-value where the transition is guaranteed to occur ter-
minating distributions. It is possible to generalize the formula for the empirical
cumulative density function in the same manner that the Kaplan-Meier estimate is
used to account for the number of individuals at risk of an event. Observations
that reach the terminating point (i.e., the value of the martingale survival resid-
ual at the termination date) are only informative up to that point, just as conven-
tionally censored observations are only informative up to the censoring date. The
Kolmogorov-Smirnov statistic is defined with respect to this generalization of the
empirical cumulative distribution function.

One complication with this approach is that the theoretical distribution of the
Kolmogorov-Smirnov measure derived from consideration of Brownian bridges is
no longer valid. In fact, is not clear that an analytic result for the distribution of
the measure can even be derived even for special cases of ensembles of terminat-
ing distributions. However, it is straightforward to numerically calculate the dis-
tribution in order to estimate the statistical significance of Kolmogorov-Smirnov
test derived from the generalization of the empirical cumulative density function,
which is the line of research we are investigating. For real data, this requires sim-
ulating the study repeatedly which, in turn, requires that a survival model be fit
given the observed data. For observations that did not reach the terminating date in
the observed data set but might reach it if the study is re-simulated, it is necessary
to specify the values of any time-varying covariates beyond the actual event time.

A related issue is the impact of using the same underlying data to both fit the
survival model and calculate the martingale survival residuals. This is directly
analogous to the complication first discussed by Lilliefors (1967) caused by first
estimating the mean and variance of a sample and then using the Kolmogorov-
Smirnov test to determine if the sample is drawn from a normal distribution. The
process of fitting data reduces the degrees of freedom in the data, which effec-
tively regularizes it and, on the whole, reduces the expected distance between the
empirical cumulative distribution function and the reference distribution. If this
effect is ignored, the test is not stringent enough; samples drawn from an incorrect
distribution are not rejected often enough.

In terms of our examples, correctly accounting for this fitting effect would

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2017. ; https://doi.org/10.1101/104406doi: bioRxiv preprint 

https://doi.org/10.1101/104406
http://creativecommons.org/licenses/by-nc-nd/4.0/


reduce the number of samples needed to reject an incorrect model. Fortunately,
ignoring the effect does not invalidate the conclusion to reject the models. The
effect should be especially prominent for models with a large number of degrees of
freedom, such as the semi-parametric Cox proportional hazard model in Example
4, for which the baseline hazard is estimated at large number of points. As with
terminating distributions, this requires numerical simulations to account for the re-
duction in degrees of freedom caused by fitting the data and is a topic of active
research for us. To characterize the fitting effect, we suggest that maximum like-
lihood estimate of the model parameters be used to re-simulate the experiment, a
new model be fit to the re-simulated data, and the resulting Kolmogorov-Smirnov
measure be calculated for repeated re-simulations. This provides an estimate of
the distribution of the measure under the assumption that the actual model equals
the fitted model. One can also assess the accuracy of this approach when an incor-
rect model is both used to fit the data and re-simulate the experiment, although of
course one cannot know a priori with real data that the model is incorrect.

6 Conclusion

We have described a novel data residual for survival analysis called the martingale
survival residual as well as a flexible, parameter-free goodness-of-fit test based on
the martingale survival residual. We demonstrated the efficacy of the goodness-of-
fit test using simulated data. The test provides an effective way to assess the ac-
curacy of critical assumptions often made in survival analysis, such as the propor-
tional hazards assumption, and is therefore a valuable contribution to researchers
in a range of fields, including the natural, social, and medical sciences.
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A Derivation of probability density functions for residu-
als

In this appendix, we provide a formula for calculating the probability density func-
tions of generalized martingale residuals (Equation 7), and derive probability den-
sity functions for the negative martingale residual (Equation 11) and martingale
survival residual (Equation 12). Equations 11 and 12 demonstrate that censor-
ing influences the value of generalized martingale residuals. Consequently, the
censoring process must be explicitly accounted for in deriving probability density
functions of generalized martingale residuals. Let ci(t) represent the instantaneous
intensity of censoring events, Ci(t) =

∫ t
0 ci(z) dz the associated cumulative in-

tensity, and σi(t) = e−Ci(t) the associated survival.1 Let φi(t) = λi(t) + ci(t)
represent the comprehensive instantaneous intensity, Φi(t) = Λi(t) + Ci(t) the
associated cumulative intensity, and Ri(t) = e−Φi(t) = Si(t)σi(t) the associated
survival. The multiplicative separability of Ri(t) relies on the independence of
events and censoring. Censoring can be interpreted as a competing event contribut-
ing to the comprehensive survival Ri(t). The comprehensive cumulative density
function as a function of time is

Fi(t) = 1−Ri(t). (26)

The corresponding probability density function is

fi(t) = F ′i (t) = −R′i(t) = [λi(t) + ci(t)]Ri(t). (27)

Re-integrating Equation 27, the cumulative density function can be split into a
component due to event occurrence and a component due to censoring,

Fi(t) =

∫ t

0
λi(z)Ri(z) dz +

∫ t

0
ci(z)Ri(z) dz. (28)

Equation 28 provides the cumulative density function as a function time, whereas
what is desired is the cumulative density function as a function of the residual
value. To calculate the latter cumulative density function, a change of variable
from t to D can be applied to Equation 28. In general, separate mappings between
t andD exist for non-censored and censored outcomes, which is why it is necessary
to represent the cumulative density function in terms of the contribution of each.
Let the functionals ui(Hi, D) = t and vi(Hi, D) = t represent the mappings for
non-censored and censored outcomes, respectively, for the predictable process Hi.

1There is an associated counting process for censoring, but we will not assign it a symbol since it
is not explicitly used.
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Utilizing Equation 28 and these mappings, the cumulative density function as a
function of the observed residual Di(Hi, ti) is

Gi(Hi, D) = Ge,i(Hi, D) +Gc,i(Hi, D), (29)

with

Ge,i(Hi, D) =

{ ∫ ui(Hi,D)
0 λi(t)Ri(t) dt if ui(Hi, D) ≥ 0

0 otherwise
(30)

and

Gc,i(Hi, D) =

{ ∫ vi(Hi,D)
0 ci(t)Ri(t) dt if vi(Hi, D) ≥ 0

0 otherwise
. (31)

Recall that DC
i (HC

i ) is the residual assuming no censoring (Ci(t) = 0). The
corresponding cumulative density function is

GCi (Hi, D) = Ge,i(Hi, D) = 1− Si(ui(Hi, D)) = 1− e−Λi(ui(Hi,D)), (32)

which relies on the fact that Ri(t) = Si(t).

A.1 Probability density functions of the negative martingale residual
and martingale survival residual with no censoring

For the negative martingale residual (Hi = −1), ui(−1, D) and vi(−1, D) can
be found by solving Equation 11 for t with δi equal to 1 for ui(−1, D) and 0 for
vi(−1, D):

ui(−1, D) = Λ−1
i (D + 1); − 1 ≤ D <∞ (33)

and
vi(−1, D) = Λ−1

i (D); 0 ≤ D <∞, (34)

where the −1 in the exponent denotes an inverse.2 The cumulative density func-
tion and probability density function of the negative martingale residual with no
censoring are

GCi (−1, D) =

{
1− e−(D+1) if − 1 ≤ D <∞
0 otherwise

(35)

and

gCi (−1, D) =

{
(D + 1)e−(D+1) if − 1 ≤ D <∞
0 otherwise

. (36)

2Since these derivations are for the probability density functions of the actual data residuals, no
hats are needed.
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For the martingale survival residual (Hi = −1
2Si), ui(−

1
2Si, D) and vi(−1

2Si, D)
can be found by solving Equation 12 for t with δi equal to 1 for ui(−1

2Si, D) and
0 for vi(−1

2Si, D):

ui(−
1

2
Si, D) = Λ−1

i (− log(
1

2
−D)); − 1

2
≤ D ≤ 1

2
(37)

and
vi(−

1

2
Si, D) = Λ−1

i (− log(1− 2D)); 0 ≤ D ≤ 1

2
. (38)

The cumulative density function and probability density function of the martingale
survival residual with no censoring are

GCi (−1

2
Si, D) =


0 if −∞ < D < −1

2
D + 1

2 if − 1
2 ≤ D ≤

1
2

1 if 1
2 ≤ D ≤ ∞

(39)

and

gCi (−1

2
Si, D) =

{
1 if − 1

2 ≤ D ≤
1
2

0 otherwise
. (40)

A.2 Probability density functions of the negative martingale residual
and martingale survival residual with constant transition intensi-
ties for event occurrence and censoring

If the transition intensities for event occurrence and censoring are both constant,
Equations 30 and 31 simplify to

Ge,i(Hi, D) =

{
(1− ρi)[1− e

− λi
1−ρi

ui(Hi,D)
] if ui(Hi, D) ≥ 0

0 otherwise
(41)

and

Gc,i(Hi, D) =

{
ρi[1− e

− λi
1−ρi

vi(Hi,D)
] if vi(Hi, D) ≥ 0

0 otherwise
(42)

where ρi = ci/(λi+ci) is the censoring ratio – that is, the probability that subject i
is censored. The probability density functions for the negative martingale residual
and martingale survival residual for constant transition intensities are, respectively,

gi(−1, D) =


0 if −∞ < D < −1

e
−D+1

1−ρi if − 1 ≤ D < 0

e
−D+1

1−ρi + ρi
1−ρi e

− D
1−ρi if 0 ≤ D <∞

(43)
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and

gi(−
1

2
Si, D) =


0 if −∞ < D < −1

2

(1
2 −D)

ρi
1−ρi if − 1

2 ≤ D < 0

(1
2 −D)

ρi
1−ρi + 2ρi

1−ρi (1− 2D)
ρi

1−ρi if 0 ≤ D ≤ 1
2

0 if 1
2 ≤ D ≤ ∞

.

(44)
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Figure 1: Expected probability density function for the negative martingale residual
assuming constant event occurrence and censoring transition intensities for censor-
ing percentages of 0% and 25%. Censoring only contributes for D ≥ 0. The
dashed line shows the contribution of non-censored outcomes to the probability
density function for the 25% censoring case. The difference between the solid and
dashed lines is the contribution of censored outcomes.
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Figure 2: Expected probability density function for the martingale survival residual
assuming constant event occurrence and censoring transition intensities for censor-
ing percentages of 0% and 25%. Censoring only contributes for D ≥ 0. The
dashed line shows the contribution of non-censored outcomes to the probability
density function for the 25% censoring case. The difference between the solid and
dashed lines is the contribution of censored outcomes.
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Figure 3: An empirical cumulative density function with four observations. The
Kolmogorov-Smirnov statistics, Kn, is the maximum distance between the empiri-
cal cumulative density function and the reference distribution (the non-dashed gray
line).
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Figure 4: Example 1. Histogram of martingale survival residuals for a simula-
tion with constant intensities of event occurrence and censoring (λi = .05 and
ci = .0125). The percentage of censored observations given these parameters is
20%. 1000 simulated observations were created, a maximum likelihood estimate
done assuming constant event and censoring rates (a correct model), and the data
residuals calculated for each observation and displayed as a histogram. The the-
oretical residual distribution, which is a uniform distribution on the interval −0.5
to +0.5, is also shown. A Kolmogorov-Smirnov test indicates that the residuals
do not differ from the uniform distribution (Table 1), so the proposed model is
accepted.
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Figure 5: Example 2. Histogram of martingale survival residuals for a simulation
with a linear, time dependent intensity for event occurrence (λi = .05 + .005t)
and constant censoring (ci = .0125). 1000 simulated observations were created,
a maximum likelihood estimate done assuming constant event and censoring rates
(an incorrect model), and the data residuals calculated for each observation and
displayed as a histogram. The theoretical residual distribution, which is a uniform
distribution on the interval −0.5 to +0.5, is also shown. A Kolmogorov-Smirnov
test indicates that the residuals do differ from the uniform distribution (Table 1), so
the proposed model is rejected. 22
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Figure 6: Example 3. Statistical power (y-axis) as a function of sample
size (x-axis). The statistical power was calculated for sample sizes of n =
0, 25, 50, 75, · · · , 500. For each sample size n, 50, 000 repetitions of the simu-
lation described in Example 2 were performed. The power is the number of simu-
lations for each n for which the null hypothesis that b1 = 0 is correctly rejected at
the α = 0.05 level. The effect size is the actual value of b1 used for the simulations,
b1 = 0.005. The dashed gray lines show the samples sizes needed to achieve sta-
tistical powers of 0.8 (β = 0.2) and 0.9 (β = 0.1). The dashed gray lines intersect
the x-axis at 222.2 and 270.9 so (rounding up) the sample sizes needed to achieve
statistical powers of 0.8 and 0.9 are, respectively, 223 and 271.
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Figure 7: Example 4. Histogram of the martingale survivals residuals for the fully
parametric additive fit (correct model) in the proportional hazards example. The
Kolmogorov-Smirnov test accepts that the residuals are drawn from the uniform
distribution (Table 1).
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Figure 8: Example 4. Histogram of the martingale survivals residuals for the semi-
parametric proportional hazards fit (incorrect model) in the proportional hazards
example. The Kolmogorov-Smirnov test rejects that the residuals are drawn from
the uniform distribution (Table 1).
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Figure 9: Example 4. Histogram of the martingale survivals residuals for the fully
parametric multiplicative fit (incorrect model) in the proportional hazards example.
The Kolmogorov-Smirnov test rejects that the residuals are drawn from the uniform
distribution (Table 1).
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C Tables

Example
Sample
Size

Actual Model
Candidate
Model

KS Stat.
KS
Signif.

Reject
Model

1.
Constant

1000 λi = .05 λ̂i = λ̂ 0.0182 0.90 No

intensities ci = .0125 ĉi = ĉ

2. Linear 1000 λi = .05 + .005t λ̂i = λ̂ 0.0921 8.6e-8 Yes
intensities ci = .0125 ĉi = ĉ

3. Power multiple λi = .05 + .005t λ̂i = λ̂ multiple multiple N/A
calculation ci = .0125 ĉi = ĉ

4. Additive 2500 Additive Additive 0.014 0.71 No
Covariate [details in text] Cox 0.0337 7e-3 Yes

Multip. 0.0485 1.5e-5 Yes

Table 1: Summary of results for Illustrations.
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