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ABSTRACT A cancer grows from a single cell, thereby constituting a large cell population. In this work, we are interested
in how mutations accumulate in a cancer cell population. We provided a theoretical framework of the stochastic process
in a cancer cell population and obtained near exact expressions of allele frequency spectrum or AFS (only continuous
approximation is involved) from both forward and backward treatments under a simple setting; all cells undergo cell
division and die at constant rates, b and d, respectively, such that the entire population grows exponentially. This setting
means that once a parental cancer cell is established, in the following growth phase, all mutations are assumed to have no
effect on b or d (i.e., neutral or passengers). Our theoretical results show that the difference from organismal population
genetics is mainly in the coalescent time scale, and the mutation rate is defined per cell division, not per time unit (e.g.,
generation). Except for these two factors, the basic logic are very similar between organismal and cancer population
genetics, indicating that a number of well established theories of organismal population genetics could be translated to
cancer population genetics with simple modifications.
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A tumor grows from a single cell, as has been well recognized for several decades (Muller 1950; 8

Nowell 1976; Fidler 1978; Dexter et al. 1978; Merlo et al. 2006). Through the growth process, 9

cells accumulate various kinds of mutations, from simple point mutations to more drastic changes 10

at the chromosomal level, such as deletions and amplifications (Sjöblom et al. 2006; Wood et al. 11

2007; Network 2008; Network et al. 2012, 2014; Garraway and Lander 2013; Vogelstein et al. 2013). 12

There are two major categories of mutations in cancer cells, driver and passenger mutations. The 13

former are generally cell autonomous, that is, they increase the reproductive ability of the carrier 14

cell (i.e., adaptive), while the latter have no effect on the reproductive ability (i.e., neutral). A new 15

technology for genome sequencing from a single cell opened a new window in cancer genetics, 16

because sequencing a number of cells from a single tumor makes it possible to identify heterogeneity 17

in the catalog of driver and passenger mutations between cells, from which we are able to infer when 18

and how the tumor has grown (Navin 2015). 19

Population genetics provides a solid theoretical framework for a wide variety of such inference 20

methods (e.g., Nielsen and Slatkin 2013; Wakeley 2009). The coalescent (Kingman 1982; Hudson 21

1983; Tajima 1983) plays the central role to make the theoretical predictions of the pattern of genetic 22

variation, which can be used to compute the likelihood of the observed variation data (Donnelly 23

1996; Tavaré et al. 1997). It concerns the history of the sampled individuals, by tracing their ancestral 24

lineages up to the MRCA, most recent common ancestor (e.g., Nielsen and Slatkin 2013; Wakeley 25

2009). 26

One might think that the coalescent theory can be directly applied to cancer cells due to the obvious 27

analogy; all cancer cells should follow a simple genealogy up to their MRCA. However, the direct 28
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application of the standard population genetics (i.e., organismal population genetics) to a cancer cell1

population may not be exactly correct because of some fundamental differences in the propagation2

system, as we explain below (see also Sidow and Spies 2015).3

In organismal population genetics, the process can be specified by the expected number of off-4

springs for each individual, namely, the fitness (e.g., Crow and Kimura 1970; Ewens 1979). In the5

Wright-Fisher model with N haploids (Fisher 1930; Wright 1931), all individuals are randomly re-6

placed every generation, and individuals with higher fitness likely produce more offsprings. In7

the Moran model (Moran 1962), individuals are replaced one by one, that is, one step consists of a8

coupling event of birth and death; one dead individual is replaced by the offspring of one randomly9

chosen individual from the population allowing self-replacement. Consequently, all individuals are10

on average replaced in N steps, which roughly correspond to one generation in the Wright-Fisher11

model. It has been well known that theoretical results under the two models are nearly identical12

in various cases (e.g., Crow and Kimura 1970; Ewens 1979; Wakeley 2009; Bhaskar and Song 2009).13

Through this random mating process either in the Wright-Fisher or Moran model, mutations that14

arise in the population will fix or get extinct by the joint action of random genetic drift and selection.15

A mutation is defined as adaptive when it increases the fitness of the carrier individual.16

The evolutionary process of a cancer cell population does not follow such a simple replacement17

system. Figure 1 illustrates the process from cancer initiation, progression to the following rapid18

growth, which may be roughly divided into two major phases, and the applicability of organismal19

population genetics may differ depending on the phase. The first phase (Phase I) from cancer20

initiation to initial progression could be well handled under the organismal population genetic21

framework (Komarova et al. 2003; Iwasa et al. 2004; Michor et al. 2004). This phase is commonly22

modeled in a constant-size population of cells. Most theoretical models for cancer initiation suppose23

that a tissue consists of a number of small compartments of cells and that cancer initiation can occur24

in a compartment. The system starts with a normal compartment with a certain number of asexually25

reproducing normal cells, which is denoted by N0. N0 is usually assumed to be constant because26

the number of cells in a healthy tissue is maintained roughly constant by homeostatic systems, that27

is, cell division occurs when needed. The Moran model is more suitable to apply to this process28

than the Wright-Fisher model because it can be modeled such that one cell death asks for one cell29

division. Indeed, the Moran model has been frequently used to explore a number of problems30

on cancer initiation (reviewed in Michor et al. 2004). One of the major problems is how a cancer31

initiates. A compartment of a normal tissue could become a cancer when oncogenes are activated32

and/or tumor-suppressor genes (TSGs) are inactivated. It is believed that at least several mutational33

alternations in cancer genes (oncogenes and TSGs) are required for the formation of a parental cancer34

cell. Such accumulation of mutations in cancer genes could allow a cell to acquire typical behaviors35

of cancer cells, for example, avoiding apoptosis (programmed cell death) that makes it difficult to36

maintain the equilibrium between birth and death in the compartment, thereby shifting towards37

uncontrolled proliferation (neoplasia). There are a large body of theory only for the fixation process38

of mutations in cancer genes, especially for the inactivation of TSGs, perhaps because the problem39

is mathematically too simple for the activation of oncogenes (Michor et al. 2004). Inactivation of40

a TSG involves the fixation of a double-mutant, that is, both alleles have to be silenced according41

to Knudson’s two-hit model (Knudson 1971). This situation is very similar to the fixation process42

of a pair of compensatory mutations in organismal population genetics (Innan and Stephan 2001),43

and the results are indeed in good agreement (Iwasa et al. 2004). Thus, it can be considered that the44

applicability of organismal population genetics is quite good in Phase I because the assumption of a45

constant-size population roughly holds so that the stochastic process through random genetic drift46

works as organismal population genetics predicts.47
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By contrast, in the second phase (Phase II) where cells have acquired extraordinary high prolif- 1

erative ability, the population grows very rapidly, and the stochastic process is less important for 2

changing allele frequencies because most cells have very low death rates by avoiding apoptosis 3

and their cell divisions occur independently of each other. As a consequence, a fixation of adaptive 4

mutation hardly occurs in a cancer cell population because the spread of an adaptive mutation does 5

not necessarily kill other cells with lower reproductive rates, as has been pointed out by Sidow and 6

Spies (2015). This reproducing system is quite different from that organismal population genetics 7

supposes. 8

We here ask how the well established theory of organismal population genetics can be applied to 9

Phase II that presumably involves an exponential growth. In particular, we are interested in the allele 10

frequency spectrum (AFS, or SFS: site frequency spectrum) of passenger mutations in a cancer cell 11

population. AFS is summarized information of genotype data that are frequently used in organismal 12

population genetics. Under the basic neutral theory of the coalescent for a constant size population 13

(Kingman 1982; Hudson 1983; Tajima 1983) with the assumption of infinitely many sites (Kimura 14

1969), the expected AFS can be described in a simple form (Fu 1995), but for a non-constant size 15

population, it is not very straightforward to obtain the expected AFS in a simple closed form. Even 16

with any complicated demographic setting, the expected AFS can be written as a function of the 17

expectations of coalescent times (Griffiths and Tavaré 1994, 1998), but these expectations are not easy 18

to derive in a simple form in many cases although possible computationally (Williamson et al. 2005; 19

Polanski and Kimmel 2003; Polanski et al. 2003). AFS provides substantial information on the past 20

demography, making it possible to infer various demographic parameters including population size 21

changes and migration rates (Adams and Hudson 2004; Williamson et al. 2005; Gutenkunst et al. 2009; 22

Bhaskar et al. 2015; Gao and Keinan 2016). 23

In this article, we consider a model of a rapidly growing cancer cell population for exploring 24

how mutations accumulate within the cancer cell population. We present some derivations for the 25

expected AFS of derived mutations in the final tumor (at t1 in Figure 1), which could be useful to infer 26

when the exponential growth started and how fast the tumor has grown. There has been extensive 27

works on a cancer cell population by Durrett (Durrett 2013, 2015), who provided approximate 28

formulas to the sample-based AFS. We have here obtained analytical expressions of the expected 29

AFS in a near exact form (only continuous approximation is involved) by both forward (branching 30

theory) and backward (coalescent theory) treatments. The former is in a simpler form that is useful 31

for intuitive understanding of the process, while the latter provides a solid theoretical framework for 32

coalescent (backward) simulations of a cancer cell population. Our near exact result is compared 33

with Durrett’s approximate formulas, together with some simulation results. 34

It should be noted that our interest is in passenger mutations in the second phase with the 35

assumption of no driver mutations so that the increase of the cancer cell population size can be 36

approximated by an exponential function. There is no doubt that a number of driver mutations are 37

involved in the first phase (e.g., Knudson 1971; Michor et al. 2004; Sjöblom et al. 2006; Network et al. 38

2014), but there are extensive debates on the potential role of driver mutations in the second phase. 39

Some authors suggest that the role of driver mutations may be quite limited after the original cancer 40

cell is stablished and most mutations occurs in the following growth phase may be passengers (Uchi 41

et al. 2016; Sottoriva et al. 2015), whereas some point out the importance of driver mutations (Williams 42

et al. 2016; Waclaw et al. 2015; Marusyk et al. 2014). Because our model assumes no driver mutations 43

in the second growth phase, the theoretical result could be used as a null model for testing the role of 44

driver mutations in the second phase. 45
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Figure 1 Illustrating the model of the growth of a cancer cell population.

MODEL1

Our model (Figure 1) considers an exponentially growing population starting with N0 asexually2

reproductive cells. The reproductive ability of a cell is specified by the cell division rate (birth rate)3

and death rate per time unit, denoted by b and d, respectively, which are assumed to be constant4

over time. The tumor starts growing at time t = 0, and let N(t) be the number of cells at time t.5

For convenience, we define t1 such that N(t1) = N1 is satisfied for the first time. Under this setting,6

because it is obvious that the Moran model does not work, we use the branching process.7

We assume b� d so that the tumor grows approximately exponentially at rate r = b− d and the8

number of cells at t is approximately given by9

N(t) = N0 exp[(b− d)t] (1)

This equation is a very good approximation unless N0 is very small. Note that in reality N(t) follows10

some distribution, but our deterministic treatment on N(t) does not affect the following results much.11

The rate of passenger mutation is given such that at each cell division one of the daughter cells12

receives a novel mutation at rate µ. We assume a very small rate per site so that the assumption of13

the infinite-site model (Kimura 1969) holds.14

Forward Treatment by Branching Process: We aim to obtain the expected derived allele frequency15

spectrum (AFS) when the total number of cells is N1 (i.e., t = t1), where we assume that N1 � N0.16

The expected number of passenger mutations that are shared by i cells at time t = t1 is denoted by17

S(i, µ, t1). Because of our deterministic assumption (i.e, Equation (1)), t1 is given such that it satisfies18

N1/N0 = exp[(b− d)t1].19

We first consider how many cells at t = t1 share a particular mutation that occurred at t = t1 − t′.20

We here use the well-known formula under the branching process: the probability density function21
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(pdf) of the number of daughter cells (i) of a particular single individual after t′ time units is given 1

by: 2

P(i, b, d, t′) =

{
x(t′) if i = 0
{1− x(t′)}{1− y(t′)}y(t′)i−1 if i ≥ 1

(2)

(Bailey 1964), where 3

x(t′) =
de(b−d)t′ − d
be(b−d)t′ − d

,

y(t′) =
be(b−d)t′ − b
be(b−d)t′ − d

.

(3)

This formula provides an unconditional distribution of the number of individuals having a specific 4

origin, which is independent of the total population size. Nevertheless, we use this formula by 5

ignoring the effect of the total population size. This simplification is reasonable and the effect on 6

the theoretical treatments is negligible even though it is technically possible that i exceeds the total 7

population size. This is because i is usually not a large number unless N(t1 − t′) is unrealistically 8

small. 9

We then obtain S(i, µ, t1), the expected number of mutations with frequency i in the final tumor by 10

considering all potential mutations that occur 0 < t < t1. Because the population mutation rate at 11

time t is N(t)bµ, we obtain S(i, µ, t1) for i ≥ 1: 12

S(i, µ, t1) =
∫ t1

0
P(i, b, d, t1 − t) · N(t)bµdt

=
∫ 0

y(t1)

(
1− d

b
w
)
(1− w)wi−1︸ ︷︷ ︸

=P(i,b,d,t1−t)

·N0e(b−d)t1
b(1− w)

b− dw
bµ︸ ︷︷ ︸

=N(t)bµ

(
− 1
(b− dw)(1− w)

)
dw︸ ︷︷ ︸

=dt

= N1µ
∫ y(t1)

0

1− w
1− d

b w
wi−1dw

≈ N1µ
∫ 1

0

1− w
1− d

b w
wi−1dw

= N1µ
∞

∑
k=0

1
(i + k)(i + k + 1)

(
d
b

)k
,

(4)

where we set w = y(t1− t) and assume y(t1) ≈ 1 and N0 is very small. We again note that because of 13

the nature of our approximation, it is possible to compute S(i, µ, t1) even for i > N1. For a practical 14

calculation of S(i, µ, t1), however, this treatment should not matter so much as mentioned above. 15

Equation (4) means that the relative frequency distribution of S(i, µ, t1) is determined by the ratio of 16

d to b, while N1µ determines the absolute number of mutations. 17

It is straightforward to obtain the expected normalized AFS (pdf of i given a segregating mutation, 18

i.e., i = (1, 2, 3, ..., N1)) as 19

AFS(i, t1) =
S(i, µ, t1)

∑N1
i′=1 S(i′, µ, t1)

, (5)

where, for a large N1, the denominator of eq.(5) is approximated by 20

N1

∑
i′=1

S(i′, µ, t1) ≈
∞

∑
i′=1

S(i′, µ, t1) =
∫ 1

0

1
1− d

b w
dw = − b

d
log
(

1− d
b

)
. (6)

5
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Of particular importance is the case of b � d, that is, the population grows very rapidly, where1

Equation (4) becomes2

S(i, µ, t1) = N1µ · 1
i(i + 1)

(7)

and3

AFS(i, t1) =

1
i(i+1)

∑N1
i′=1

1
i′(i′+1)

N1→∞−→ 1
i(i + 1)

. (8)

At this limit, it is interesting to note that S(i, µ, t1) is independent of b or d.4

We can consider the opposite extreme, b ∼ d, where the underlying assumption of our calculation5

(i.e., the population grows exponentially) is obviously broken. Nevertheless, if we formally proceed6

our calculation by taking the limit b→ d, we obtain7

S(i, µ, t1) ≈ N1µ · 1
i
, (9)

which reproduces the result for a Moran process in a constant-size population (Fu 1995; Griffiths8

and Tavaré 1998; Wakeley 2009). This is not a coincidence because our assumption b = d with9

deterministic treatment simply means a constant size population, but this equation does not work10

well in our randomly reproductive population without keeping the population size constant. For11

AFS, we have12

AFS(i, t1) =
1
i

∑N1
i′=1

1
i′

N1�1
≈ 1

i
· 1

log N1 + γ
, (10)

where γ ≡ 0.577215 · · · is the Euler’s constant.13

We performed forward simulation to check how our equations work. Our simulations assumed14

that N0 = 10, N1 = 105, µ = 10−4, b = 4, and d = {0, 0.2, 0.4, 1}, and Figure 2 shows the average15

spectra (up to i = 25) over 105 simulation runs. Theoretical results based on Equation (4) are shown16

in closed circles. It is demonstrated that Equation (4) is in excellent agreement with the simulation17

results (colored open boxed) for all four cases. We further compare the values computed by Equation 718

(filled triangles in Figure 2), which is a simple approximation to Equation (4) when b� d. We find19

that Equations (4) and (7) produce almost identical numerical values, which are indistinguishable20

in Figure 2, indicating that the simple approximation works very well when d = 0. Furthermore,21

Equation (7) could be in fairly good agreement with the results of Equation (4) with d/b = 0.05,22

indicating that the simple form (Equation (7)) can be a good approximation when d/b� 0.05.23

For applying our theoretical result to data, it is more convenient to consider a sample rather than24

the entire cell population. Suppose that n random cells are sampled from the population. Then, the25

expected number of mutations that are shared by i (1 ≤ i ≤ n) cells in a sample of size n is given by26

Ssample(i, µ, t1|n) =
N1

∑
i′=i

(i′
i )(

N1−i′
n−i )

(N1
n )

S(i′, µ, t1), (11)

which is, for a large N1, approximated by using a Poisson distribution as27

Ssample(i, µ, t1|n) =
N1

∑
i′=1

Poisson ni′
N1

(i) · S(i′, µ, t1), (12)

6
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Equation 4
Equation 4
Equation 4
Equation 4
Equation 7  (= Equation 4 with d=0)

Figure 2 Population allele frequency spectra, AFS(i, t1), when d/b = {0, 0.05, 0.2, 0.25}. The the-
oretical results from Equations (4) and (7) are compared with simulations. Forward simulations
were performed with N0 = 10, N1 = 105, µ = 10−4, b = 4, and d = {0, 0.2, 0.4, 1}. It should be
noted that Equation (4) with d = 0 is identical to Equation (7).

where Poissonλ(i) = λi

i! e−λ. Then, it is straightforward to obtain normalized sample AFS. If we 1

include fixed mutations, the normalized sample AFS is given by 2

AFSsample(i, t1|n) =
Ssample(i, µ, t1|n)

∑n
i′=1 Ssample(i′, µ, t1|n)

=
∑N1

i′=1 Poisson ni′
N1

(i) · S(i′, µ, t1)

∑n
i′=1 ∑N1

i′′=1 Poisson ni′′
N1

(i′) · S(i′′, µ, t1)
, (13)

and if fixed mutations are ignored 3

AFSsample(i, t1|n) =
Ssample(i, µ, t1|n)

∑n−1
i′=1 Ssample(i′, µ, t1|n)

=
∑N1

i′=1 Poisson ni′
N1

(i) · S(i′, µ, t1)

∑n−1
i′=1 ∑N1

i′′=1 Poisson ni′′
N1

(i′) · S(i′′, µ, t1)
. (14)

Backward Treatment by the Coalescent: The coalescent is one of the major theories in organismal 4

population genetics. It is a sample-based theory: The lineages of sampled individuals are traced 5

backward in time until they coalesce into their MRCA (most recent common ancestor). We here apply 6

this logic to a sampled cells from a tumor, and obtain essentially the same theoretical results as those 7

from the forward treatment (i.e., Equations (11 - 14)). 8

Let us consider a pair of random (different) cells from the final tumor with N cells, where N is 9

already a large number. Because the following argument works at any time in Phase II (assuming N0 10

is very small), we shall use N for the population size rather than N1. We consider backward time τ 11

from the present, such that the present time is set to τ = 0. Let T2 be the time it takes for the two 12

lineages to coalesce. We consider an infinitesimally small time interval ∆τ such that at most one 13

event (birth or death) can occur. The conditional probability that the population size was N − 1 at 14

7
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time ∆τ backward, conditioned on that the present population size is N is given by1

P(Nτ=∆τ = N − 1|Nτ=0 = N) =
P(Nτ=∆τ = N − 1)P(Nτ=0 = N|Nτ=∆τ = N − 1)

P(Nτ=0 = N)

=
P(Nτ=∆τ = N − 1)

P(Nτ=0 = N)
b(N − 1)∆τ.

(15)

The probabilities P(N∆τ = N − 1) and P(N0 = N) can be calculated based on the forward process,2

but for a large N it is expected that their difference is at most of order ∆τ, so the leading term of the3

expression above is b(N − 1)∆τ. This equation represents the probability that a birth event occurred4

in the interval ∆τ. The birth event can cause the coalescence between two specific lineages, with5

probability6

2
N

1
N − 1

, (16)

and therefore the probability of coalescence is, up to the first order of ∆τ, given by7

b(N − 1)∆τ · 2
N(N − 1)

=
2b
N

∆τ. (17)

In the mean time, we must take into account the fact that the population is shrinking at rate r = b− d8

backward in time (Slatkin and Hudson 1991). The rate of coalescence between two lineages at time τ9

is approximated by10

ρ2,τ =
2b

Ne−rτ
. (18)

Note that this formula is consistent with a well-known formula for the Moran process when the11

population size is fixed (e.g., Wakeley 2009), namely, setting b = d = 1 reproduces12

ρ2,τ =
2
N

, (19)

which is the per-generation rate of coalescence for the Moran model.13

Let P2(τ) be the probability that the coalescence between the two lineages have not occurred yet14

by time τ, for which the following differential equation holds:15

dP2(τ)

dτ
= −ρ2,τP2(τ) = −

2b
Ne−rτ

P2(τ). (20)

With P2(0) = 1 as a boundary condition, the solution is given by a double exponential function:16

P2(τ) = exp
[
− 2b

rN
(erτ − 1)

]
. (21)

Therefore, the density function of coalescent time T2 is given by17

Density(T2 = τ2) = −dP2(τ2)

dτ2

=
2b
N

exp
[
− 2b

rN
(erτ2 − 1) + rτ2

]
(22)

=
2berτ2

N
exp

[
− 2b

rN
(erτ2 − 1)

]
.

8
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Following the same logic, for k(> 2) cells, we have 1

ρk,τ =
k(k− 1)b

Ne−rτ

Pk(τ) = exp
[
−k(k− 1)b

rN
(erτ − 1)

]
,

Density(Tk = τk) =
k(k− 1)berτk

N
exp

[
−k(k− 1)b

rN
(erτk − 1)

]
.

(23)

In order to consider the coalescent process of n sampled cells up to their MRCA, we are interested in 2

the joint pdf of {T2, T3, ..., Tn−1, Tn}, which is given by 3

Density({T2, T3, ..., Tn−1, Tn} = {τ2, τ3, ..., τn−1, τn}) =
2berτ2

Nk=2
exp

[
− 2b

rNk=2
(erτ2 − 1)

]
×6berτ3

Nk=3
exp

[
− 6b

rNk=3
(erτ3 − 1)

]
(24)

× . . .

× (n− 1)(n− 2)berτn−1

Nk=n−1
exp

[
− (n− 1)(n− 2)b

rNk=n−1
(erτn−1 − 1)

]
×n(n− 1)berτn

Nk=n
exp

[
−n(n− 1)

rNk=n
(erτn − 1)

]
,

where Nk=j is the population size at the moment when the original n lineages coalesce up to j 4

lineages. In other words, Nk=j is the population size ∑n
`=j+1 τ` time units before the present. Thus, 5

the coalescent times are not independent one another, that is, Tj is given conditional on ∑n
`=j+1 τ`. 6

We can generate a (n− 1)-turple of coalescent time, {τ2, τ3, ..., τn−1, τn}, from the joint distribution 7

(24) in the following way. First we set Nk=n = N1, that is the size of the population where n samples 8

are originally taken. Then, generate a random number τn according to the density distribution given 9

by (23). Next, set Nk=n−1 = N1 exp[−rτn], and generate a random number τn−1 according to the 10

density distribution given by (23). The value of Nk=n−2 is then set to Nk=n−2 = N1 exp[−r(τn + τn−1)] 11

and τn−2 is generated, and so on. 12

The expected normalized AFS under this coalescent process can be described as 13

AFSsample(i, t1|n) =
(n− i− 1)!(i− 1)! ∑n−i+1

k=2 k(k− 1)(n−k
i−1)ETk

(n− 1)! ∑n
k=2 kETk

(1 ≤ i ≤ n− 1), (25)

where ETk is the expectation of Tk that can be obtained from (24) (Griffiths and Tavaré 1998; Wakeley 14

2009). For the absolute number of mutations that exactly i individuals in a sample of size n have, 15

Ssample(i, µ, t1|n), it is not difficult to see that 16

Ssample(i, µ, t1|n) = bµ
(n− i− 1)!(i− 1)! ∑n−i+1

k=2 k(k− 1)(n−k
i−1)ETk

(n− 1)!
(1 ≤ i ≤ n− 1), (26)

holds. This is because ETn contributes to Ssample(1, µ, t1|n) in the form of 2b · µ · (1/2) · nETn = 17

bµnETn, where 2b is the backward rate of birth event per lineage, µ is the mutation rate, (1/2) is 18

the chance that the focal lineage receives a mutation at a single birth event, n is the total number 19

9
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Equation 11 (forward)
simulation

Equation 25 (backward)
Equation 27 (Durrett)

Equation 11 (forward)
simulation

Equation 25 (backward)
Equation 27 (Durrett)

Equation 11 (forward)
simulation

Equation 25 (backward)
Equation 27 (Durrett)

Equation 11 (forward)
simulation

Equation 25 (backward)
Equation 27 (Durrett)

d/b = 0 d/b = 0.05

d/b = 0.1 d/b = 0.25

Figure 3 Population allele frequency spectra, AFS(i, t1), when d/b = {0, 0.05, 0.2, 0.25}. The the-
oretical results from our forward and backward treatments and Durrett’s approximation (28) are
compared with simulations. The simulation results are icentical to those used in Figure 2.

of independent lineages, and ETn is the expected duration during which there are n independent1

lineages. As the expected coalescent time ETk can be computed based on the numerical procedure2

provided above, it is straightforward to numerically calculate the sample AFS with Equations (25)3

and (26).4

DISCUSSION5

This article considers a model of a rapidly growing cancer cell population for exploring how muta-6

tions accumulate within the population. The expected AFS of derived mutations is obtained in a near7

exact form by both forward (branching theory) and backward (coalescent theory) treatments. Durrett8

(2013, 2015) obtained two approximate formulas to the sample-based AFS:9

Ssample(i, µ, t1|n) =
{ nµ

1−(d/b) log[N1{1− (d/b)}] if i = 1
nµ

1−(d/b)
1

i(i−1) if 2 ≤ i ≤ n− 1,
(27)

which was ultimately improved to be10

Ssample(i, µ, t1|n) =
{

µ
1−(d/b) ∑

N1{1−(d/b)}
k=1

n
n+k

k
n+k−1 if i = 1

nµ
1−(d/b)

1
i(i−1) if 2 ≤ i ≤ n− 1.

(28)

In Figure 3, the numerical results from our forward and backward derivations (i.e., Equations (11)11

and Equation (26) are compared with Durrett’s two approximations (Equations (27) and (28)). There12

is nothing surprising that Equations (11) and (26) are in excellent agreement because they are in near13

10
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exact forms. In addition, we find Durrett’s improved approximation (28) is extremely good, while 1

the first approximation (27) would overestimate the singleton frequency (not shown). 2

The advantage of our near exact expressions over Durret’s great approximation is that our theory 3

would provide some mathematical intuitions, which could be useful for data analysis. (i) First, our 4

forward expression (4) can be approximated to a very simple form for a large r = b− d: 5

S(i, µ, t1) ≈ N1µ · 1
i(i + 1)

.

This means that N1µ determines the absolute number of mutations and the relative frequency is 6

converged to 1
i(i+1) with r → ∞, which is independent of the growth rate. Provided that the growth 7

rate of a typical cancer cell population is very large, AFS may not be very informative to estimate 8

the growth rate. Rather, N1µ may be more informative biologically because the mutation rate (µ) 9

may be easily estimated if N1 is given. It may not be very difficult to obtain a rough estimate of N1 10

from the size of tumor. One might think that this implication seems odd: What if a tumor has grown 11

from N0 = 1 to N1 = 1010 in an hour or so? An hour could be too short to accumulate mutations. To 12

address this question, we should note that how short the time is taken, it has to have involved at 13

least N1 − N0 cell divisions and that the mutation rate is defined per cell division, not per time unit. 14

(ii) Second, our backward expression for the coalescent time is 15

2berτ2

N
exp

[
− 2b

rN
(erτ2 − 1)

]
(identical to Equation (22)), which is in a similar form to that under the standard coalescent in 16

organismal population genetics: 17

erτ2

N
exp

[
− 1

rN
(erτ2 − 1)

]
(29)

(Slatkin and Hudson 1991). The difference between those two expressions can easily be explained; the 18

factor 2 in the former equation reflects the fact that the our model assumes overlapping generation, 19

while Slatkin and Hudson (1991) did not (e.g., Wakeley 2009). After neglecting this factor 2, these two 20

equations are completely equivalent when the birth rate of a cell is b = 1 in our model. By comparing 21

these two equations, the expression of Slatkin and Hudson (1991) for organismal population genetics 22

is a special case of our expression. In other words, the well-established backward theory of organismal 23

population genetics can be directly used to a cancer cell population by introducing a scale factor b 24

that determines the relative rate of coalescent and population shrinkage (in backward). 25

One may think from our formulas of coalescent time (22) that the absolute values of b and r = b− d 26

jointly specifies the process. This is indeed true if we are interested in the absolute length of waiting 27

time until coalescence. On one hand, if only allele frequency spectrum is of interest, those absolute 28

values are much less important. Rather, the ratio of d to b, namely d/b, is a crucial determinant of the 29

spectrum, as is obvious in Equation (4), which explicitly tells us that it is the case because it depends 30

on b and d only through d/b. It may be difficult to see this fact in our backward formula (e.g., (22)), 31

but if we rescale backward time and introduce a new timescale τ′ by τ′ = bτ, then Equation (20), for 32

example, changes to 33

dP′2(τ
′)

dτ′
= −ρ2,τ′P′2(τ

′) = − 2
Ne−(r/b)τ′

P′2(τ
′), (30)

which depends on b and d only through r/b = 1− (d/b) and therefore only through d/b. This intu- 34

itively makes sense because in our cancer model, mutation occurs only at birth events, so the absolute 35

waiting time until a birth event occurs is irrelevant when we focus on AFS of a population/sample. 36

11
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(iii) Third, our expressions are based on solid derivations. Therefore, the basic logic behind our1

derivations can be applied to more complex growth pattern as long as b� d. It can be considered that2

the growth of a cancer cell population may not be necessarily exponential. Driver mutations could3

increase the growth rate, while the growth process may slow down if the availability of resources4

such as space, oxygen, and other nutrients is limited. Such change of the growth curve may be5

incorporated by replacing Equation (1), which will be involved in the integration in (4) in the forward6

treatment and in the rate of coalescent specified by (18) in the backward treatment.7

In summary, assuming an exponentially growing cancer cell population, we obtained near exact8

expressions of AFS (only continuous approximation is involved) from both forward and backward9

treatments. The former is in a simpler form and enhance our intuitive understanding of the process,10

while the latter provides a theoretical framework for coalescent (backward) simulations of a cancer11

cell population. Our theoretical results show that the difference from organismal population genetics12

is mainly in the coalescent time scale and the mutation rate is defined per cell division, not per time13

unit (e.g., generation). Except for these two factors, the basic logic are very similar between organis-14

mal and cancer population genetics. Therefore, a number of well established theories of organismal15

population genetics could be translated to cancer population genetics with simple modifications.16
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