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Metagenomic datasets contain billions of protein
sequences that could greatly enhance large-scale
functional annotation and structure prediction. But
clustering them with current algorithms is imprac-
tical because runtimes depend almost quadratically5

on input set size. Linclust’s linear scaling over-
comes this limitation, enabling us to cluster and
assemble 1.6 billion sequence fragments from ∼2200
metagenomic datasets in (10 + 30) hours on 28 cores
into 711 million sequences. (Open-source software10

and Metaclust database: https://mmseqs.org/).

In metagenomics DNA is sequenced directly from the en-
vironment, allowing us to study the vast majority of mi-
crobes that cannot be cultivated [1]. During the last decade,15

costs and throughput of next-generation sequencing have
dropped two-fold each year, twice faster than computational
costs. This enormous progress has resulted in hundreds
of thousands of metagenomes and tens of billions of pu-
tative gene and protein sequences [2, 3]. Therefore, com-20

puting and storage costs are now dominating metagenomics
[4, 5, 6]. Clustering protein sequences predicted from se-
quencing reads or pre-assembled contigs can considerably
reduce the redundancy of sequence sets and costs of down-
stream analysis and storage.25

CD-HIT and UCLUST [7, 8] are by far the most widely
used protein clustering tools. In their greedy clustering ap-
proach each of the N input sequences is compared with
the Nclus representative sequences of already established
clusters. Runtime therefore scales as O(N×Nclus), almost30

quadratically with the number of input sequences, which re-
sults in impractical runtimes for a billion or more sequences.
Main memory further constrains the size of sequence sets:
UCLUST requires 10 bytes per sequence residue and CD-
HIT requires 1.5 bytes.35

We previously developed a clustering workflow as part of
the MMseqs software suite [9]. An improved version, con-
tained in our new MMseqs2 package [10], profits from novel,
better sequence search modules. The clustering workflow
consists of three cascaded steps of clustering with succes-40

sively higher sensitivity, where each step consists of pairwise
comparisons of all input sequences followed by clustering
using the standard greedy set-cover algorithm. While MM-
seqs2 was developed to reach high sensitivity, Linclust was
designed for maximum speed. Here, we benchmark both45

the MMseqs2 clustering workflow and Linclust for the first
time. Both achieve linear runtime scaling, but Linclust is
30 to 60 times faster. Whereas MMseqs2 uses 6 bytes per

FIG. 1. The five stages of Linclust. (1) The first stage finds
exact k-mer matches between the input sequences (using k=10
for clustering thresholds below 90% and k=14 otherwise). To in-
crease sensitivity we use a reduced alphabet of size 13 here. (1a)
For each sequence, Linclust selects the m=20 k-mers obtaining
the lowest hash values (colored rounded boxes). It thereby tends
to select always the same k-mers. (1b) It sorts all selected k-mers
alphabetically in quasi-linear time, thereby identifying groups of
sequences sharing the same k-mer (dotted boxes). For each k-
mer group, the longest sequence is picked as centre. (2) For
every sequence in the group the Hamming distance to its centre
sequence is computed by gapless extension of the k-mer match
to the ends. Sequences that already now fulfill the coverage and
sequence identity criteria ("safe matches") are assigned to their
centre sequences. (3) For all others the score for the ungapped
alignment with the group’s center sequence extending the k-mer
match is computed and sequences with a sub-threshold score are
filtered out. (4) All others are aligned to their centre sequence
using a manually vectorized gapped local sequence alignment.
Sequence pairs that satisfy coverage and sequence identity crite-
ria are linked by an edge. (5) Finally, the sequences are clustered.
Note that the number of sequence pairs processed in steps 2 to
4 is less than mN , resulting in a linear time complexity.

residue, Linclust needs only 320 bytes per sequence.
The Linclust algorithm is explained in Figure 1. A crucial50

insight to achieve linear time complexity is that we need not
align every sequence with every other sequence sharing a k-
mer. We reach similar sensitivities using a star alignment
strategy in which for each group of sequences sharing a k-
mer (dotted boxes in 1b) only a single "centre" sequence is55

compared to all others in the group.
We measured clustering runtimes on seven sets: the

61 522 444 sequences of the UniProt database, randomly
sampled subsets with relative sizes 1/16, 1/8, 1/4, 1/2, a
set consisting of UniProt plus half of the reversed sequences60

(92 M), and UniProt plus all reversed sequences (123M).
Each tool clustered these sets using a minimum pairwise
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FIG. 2. Linclust is much faster than other sequence
clustering tools, and its runtime scales linearly with se-
quence set size. (A) The plotting symbols indicate runtimes
(measured on a server with two Intel Xeon E5-2640v3 8-core
CPUs and 128 GB RAM), the curves are power law function
fits. Tools were run with sequence identity thresholds of 90%,
70% and 50%. For comparison, we included the runtimes of all-
against-all searches using sequence search tools DIAMOND and
RAPsearch2. (B) Number of clusters at 90%, 70% and 50% se-
quence identity. Lower cluster numbers imply higher sensitivities
to detect similar sequences. Clustering runs were aborted after
48 h to save time.

sequence identity of 90%, 70% and 50%.
At 50% identity, Linclust clusters the 123 million se-

quences 376 times faster than UCLUST, 30 times faster65

than MMseqs2 and, by extrapolation, more than three or-
ders of magnitude faster than it would take CD-HIT, DIA-
MOND [11], and RAPsearch2 [12] (Figure 2A). At 90%
identity, Linclust still clusters these sequences 100 times
faster than UCLUST, 27 times faster than CD-HIT, and70

51 times faster than MMseqs2. Whereas runtimes (at 90
% sequence identity threshold) scale with the set size N as
N1.62 for UCLUST and N2.04 for CD-HIT, they grow only
linearly for MMseqs2 (N1.09) and Linclust (N1.01). Lin-
clust’s Hamming distance stage decreases the exponent by75

FIG. 3. Metaclust can boost the diversity of multiple
sequence alignments (MSAs). Fold changes of MSA diver-
sities when searching only the Uniclust90 versus searching the
Uniclust90 and the new Metaclust database. MSA diversity is
measured as the number of sequences after redundancy filtering.
Each dot corresponds to searching with one of 190 CASP11 and
CASP12 target sequences.

0.24, while the ungapped alignment filter mainly contributes
a constant speedup factor of 1.35 (Supplemental Fig. S1)

To assess the clustering sensitivity we compare the num-
ber of clusters: fewer clusters imply higher sensitivity. We
also measured the tools’ specificities by analyzing the func-80

tional homogeneity of their clusters [13] (Supplemental
Fig. S2,S3). MMseqs2 and Linclust show better speci-
ficity than Uclust and CD-HIT when experimentally derived
Gene Ontology (GO) annotations are used for the assess-
ment and similar specificity when all annotations are used.85

The similar specificities are not surprising as all tools use ex-
act Smith-Waterman alignment and very similar acceptance
criteria (Supplemental Fig. S4, Online Methods).

All three tools produce similar numbers of clusters at 90%
and 70% sequence identity (Fig. 2B). Importantly, despite90

Linclust’s linear scaling of the runtime with input set size, it
manifests no loss of sensitivity for growing dataset sizes. At
50%, Linclust produces 23% more clusters than UCLUST.
But we can increase Linclust’s sensitivity simply by selecting
more k-mers per sequence. By increasingm from 20 to 80 we95

loose only 34% speed but attain nearly the same sensitivity
as UCLUST (Supplemental Fig. S5).

As an illustration of Linclust’s power and flexibility, we
applied it to cluster and assemble 1.59 billion protein se-
quence fragments predicted by Prodigal [14] in 2200 metage-100

nomic and metatranscriptomic datasets [3, 15, 16] (Sup-
plemental Fig. S6). First, we eliminated subfragments
which could be aligned to a longer sequence with 99% of
their residues and a sequence identity of ≥ 95%, producing
849 million filtered sequences in 10 hours on a 2 × 14-core105

server. In the assembly step, we ran Linclust’s stage 1 fol-
lowed by stage 4 on these 849 million sequences to find for
each centre sequence all sequence matches that (1) extend
the centre sequence on either side by at least 5 residues, (2)
have an E-value below 10−5 and (3) at least 90% sequence110
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identity in their overlap region. Centre sequences that ob-
tained matches satisfying these criteria were extended by
these matches and the matched fragments were discarded
(online methods). This assembly step was iterated twice.
The resulting Metaclust dataset consists of 711 million se-115

quences, which makes it, as far as we know, by far the largest
freely available metagenomics-based protein sequence set.

One application of Metaclust is to build more diverse
multiple sequence alignments (MSAs) (Figure 3). We ran
MMseqs2 searches with the 190 target sequences from the120

community-wide critical assessments of techniques for pro-
tein structure prediction, CASP11 and CASP12 [17], and
constructed MSAs from the matched sequences. In the first
version, we searched the Uniclust90 database with an ac-
ceptance E-value of 0.1, in the second version we merged125

matches from two searches, through Uniprot90 and through
the Metaclust databases, with E ≤ 0.05. We measured
the diversity of the obtained MSAs as number of sequences
remaining after redundancy-filtering with 80% pairwise se-
quence identity and 70% minimum coverage with the query130

sequence. By including the search through Metaclust, we
increase the diversity of MSAs dramatically, by 113% on
average (dashed line). The two assembly steps helped a lot,
as a search through the set of 849 million unassembled se-
quences led to a much lower average diversity increase of 60135

% (Supplemental Fig. S7).
Through this increase in diversity (1) Metaclust will make

profile sequence searches more sensitive and raise the frac-
tion of annotatable sequences in genomic and metagenomic
datasets [6, 16]. (2) It will also increase the number pro-140

tein families for which reliable structures can be predicted
de novo, as shown by Ovchinnikov et al. [18], who used
an unpublished dataset of 2 billion metagenomic sequences.
(3) It should allow us to predict more accurately the effects
of mutations on proteins [19].145

We have integrated Linclust into our software package
MMseqs2 (Many-to-many sequence searches) [10]. We hope
Linclust and MMseqs2 will prove helpful for exploiting the
tremendous value of the many publicly available metage-
nomic and metatranscriptomic datasets. Linclust should150

lead to considerable savings in computer resources in cur-
rent applications. Most importantly, we hope it will make
previously infeasible large-scale analyses possible.
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Online methods
The Linclust algorithm consists of five stages (Fig. 1):

1. Finding exact k-mer matches. The first stage finds
exact k-mers matches between sequences that are extended200

in later stages 2-4. We transform the sequences into a re-
duced alphabet of 13 letters to increase the number of k-
mer matches and hence the k-mer sensitivity at a moderate
reduction in selectivity. (The alphabet optimization is de-
scribed below.) We set by default k = 10 for clustering205

thresholds below 90% sequence identity and k = 14 other-
wise. For each sequence we extract m = 20 k-mers, as de-
scribed in "Selection of k-mers". Increasing m (option -m
increases sensitivity at the cost of a moderately decreasing
speed (Supplemental Fig. S5).210

We store each extracted k-mer index (8 bytes), the
sequence identifier (4 bytes), its length (2 bytes), and
its position j in the sequence (2 bytes) in an array of
length mN . Therefore, Linclust has a memory footprint
of mN × 16 bytes. We sort this array by the k-mer index215

using insertion sort from the OpenMP template library
(http://freecode.com/projects/omptl). The sorting has
a quasi-linear time complexity of O(mN log(mN)) and
typically takes less than 10% of the total runtime. The
sorting groups sequences together that contain the same220

k-mer. For each such k-mer group we select the longest
sequence as its centre sequence. For each array entry we
overwrite the position j with the diagonal i− j of the k-mer
match with the centre sequence, where i is the position of
the group’s k-mer in the centre sequence.225

2. Hamming distance pre-clustering. For each k-mer
group we compute the Hamming distance (the number of
mismatches) in the full amino acid alphabet between the
centre sequence and each sequence in the group along the230

stored diagonals i − j . This operation is fast as it needs
no random memory or cache access and uses AVX2/SSE4.1
vector instructions. Members that already satisfy the speci-
fied sequence identity and coverage thresholds on the entire
diagonal are removed from the results passed to stage 3 and235

are added to the cluster of their centre sequence after step 5.

3. Ungapped alignment filtering. For each k-mer
group we compute the optimal ungapped, local alignment
between the centre sequence and each sequence in the group240

along the stored diagonals i − j, using one-dimensional
dynamic programming with the Blosum62 matrix. We
filter out matches between centre and member sequences
if the ungapped alignment score divided by the length of
the diagonal is very low. We set a conservative threshold,245

such that the false negative rate is 1%, i.e., only 1% of
the alignments below this threshold would satisfy the two
criteria, sequence identity and coverage. For each combina-
tion on a grid {50, 55, 60, . . . , 100}⊗ {0, 10, 20, . . . , 100}, we
determined these thresholds empirically on 4 million local250

alignments sampled from an all-against-all comparison of
the UniProt database [20].

4. Local gapped sequence alignment. Sequences
that pass the ungapped alignment filter are aligned to255

their centre sequence using the AVX2/SSE4.1-vectorized

alignment module with amino acid compositional bias
correction from MMseqs2 [10], which builds on code from
the SSW library [21]. Sequences satisfying the specified
sequence identity and coverage thresholds are linked by an260

edge. These edges (neighbor relationships) are written in
the format used by MMseqs2 for clustering results.

5. Clustering using greedy set cover. The sequences
are clustered using the greedy set cover algorithm in MM-265

seqs [9]. It processes the sequences in order of decreasing
number of linked sequences. The top sequence and its
linked neighbours are assigned to a new cluster and removed
from all lists of neighbours. The next sequence having the
most linked neighbours is picked until no sequence remains270

unassigned. Greedy set cover is fast and performs well in
practice. Its runtime is proportional to the total number of
edges, which is bounded by Nm.

Reduced amino acid alphabet We iteratively con-275

structed reduced alphabets starting from the full amino
acid alphabet. At each step we merged the two letters
{a, b} → a′ = (a or b) that conserve the maximum mutual
information, MI =

∑A
x,y=1 p(x, y) log2 (p(x, y)/p(x)/p(y)).

Here A is the new alphabet size, p(x) is the probability280

of observing letter x at any given position, and p(x, y)
is the probabilities of observing x and y aligned to each
other. These probabilities are extracted from the Blosum62
matrix. When a and b are merged into a′, for example,
p(a′) = p(a) + p(b) and p(a′, y) = p(a, y) + p(b, y). The285

default alphabet with A = 13 merges (L,M), (I,V), (K,R),
(E, Q), (A,S,T), (N, D) and (F,Y).

Selection of k-mers. To be able to cluster together se-
quences together we need to find a k-mer in the reduced290

alphabet that occurs in both. Because we extract only a
small fraction of k-mers from each sequence, we need to
avoid picking different k-mers in each sequence. Our first
criterion for k-mer selection is therefore to extract the same
subset of k-mers in all sequences. Second, we need to avoid295

positional clustering of selected k-mers in order to be sensi-
tive to detect local homologies in every region of a sequence.
Third, we would like to extract k-mers that tend to be con-
served between homologous sequences. We note that the
k-mers to be selected cannot simply be stored due to their300

sheer number (≈Ak m/L).
We can satisfy the first two criteria by computing hash

values for all k-mers in a sequence and selecting the m k-
mers that obtain the lowest hash values. Since appropriate
hash functions can produce values that are not correlated305

in any simple way with the hash keys, i.e. our k-mers, this
method should randomly select k-mers from the sequences
such that the same k-mers always tend to get selected in all
sequences. We developed a simple 16 bit rolling hash func-
tion with good mixing properties, which we can compute310

very efficiently using the hash value of the previous k-mer
(Supplemental Fig. S8).

In view of the third criterion, we experimented with
combining the hash value with a k-mer conservation
score Scons(x1:k) =

∑k
i=1 S(xi, xi)/k. This score ranks315
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k-mers x1:k by the conservation of their amino acids,
according to the diagonal elements of the Blosum62
substitution matrix S(·, ·). We scaled the hash func-
tion with a rectified version of the conservation score:
hash-value(x1:k)/max {1, Scons(x1:k)− Soffset}. Despite its320

intuitive appeal, we did not succeed in obtaining significant
improvements and reverted to the simple hash function.

Parallelization and supported platforms. We used
OpenMP to parallelize all stages by applying the "#pragma325

omp parallel for" directive to the loops over the input
sequences (stage 1a,b) or centre sequences (stages 2, 3).
Linclust supports Linux and Mac OS X and CPUs with
AVX2 or SSE4.1 instructions.

330

Tools and command line options for benchmark
comparison. The sequence identity in UCLUST and CD-
HIT is defined as fraction of identical residues relative to the
length of the shorter sequence. In Linclust, we use a highly
correlated measure (Fig. S2 in [22]) that is better suited335

to distinguish homologous from non-homologous sequences:
the local alignment score divided by the maximum length of
the two aligned sequence segments. To ensure comparable
acceptance criteria, we demanded in addition a minimum
coverage of 90% of the shorter by the longer sequence.340

We tested CD-HIT (version 4.6) with the parameters -T
16 -M 0 and -n 5 -c 0.9, -n 4 -c 0.7, and -n 3 -c 0.5 for 90%,
70% and 50% respectively. UCLUST (version 7.0.1090) was
run with --id 0.9, 0.7, 0.5, and Linclust (commit fe2369c)
was executed using --target-cov and 0.9 --min-seq-id 0.9 or345

--min-seq-id 0.7 or --min-seq-id 0.5 for 90%, 70% and 50%
respectively. Runtimes were measured with the Linux time
command.

Functional consistency benchmark. We evaluated the350

functional cluster consistency based on Gene Ontology
(GO) annotations of the UniProt knowledge base. We
carried out two tests: one based on (1) experimentally
validated GO annotations and (2) general functional GO
annotations (mostly inferred from homologous proteins).355

The UniProt 2016_03 release was clustered by each tool
at 90%, 70% and 50% sequence identity level and then
evaluated. For CD-HIT we computed only the clustering at
90% sequence identity because of run time constraints. For
each cluster, we computed the ’worst’ and ’mean’ cluster360

consistency scores, as described earlier [13]. These cluster
consistency scores are defined respectively as the minimum
and the mean of all pairwise annotation similarity scores
between the cluster’s representative sequence and the other
sequences in the cluster.365

Clustering and assembling metagenomic sequences.
We downloaded ∼1800 metagenomic and ∼400 metatran-
scriptomic datasets with assembled contigs from IMG/M
[3] and NCBI’s Sequence Read Archive [15] (ftp://ftp.370

ncbi.nlm.nih.gov/sra/wgs_aux) using the script metad-

ownload.sh from https://bitbucket.org/martin_steinegger/
linclust-analysis. We predicted genes and protein sequences
using Prodigal [14] in the contigs and added the 40.2 mil-
lion protein sequences from the Ocean Microbiome Refer-375

ence Gene Catalog (OM-RGC) [16].
Since many of the predicted metagenomic protein se-

quences are fragments, we first eliminated fragments by run-
ning Linclust with the following acceptance criteria: (1) The
shorter of the two sequences has at least 99% of its residues380

aligned and (2) the fraction of identical residues among the
aligned ones is at least 95% (Linclust options --target-cov 99
--min-seq-id 0.95 --cluster-mode 2). Based on the similarity
graph, we clustered the sequences using the simple greedy
clustering algorithm implemented in MMseqs [9]. (We used385

this algorithm rather than the greedy set-cover algorithm
to ensure that the representative sequence of each cluster is
also always the longest one in the cluster.) The fragment
elimination step took 10 hours on 2 x 14 cores and reduced
the number of sequences to 736 million.390

For the fragment assembly, we then ran stage 1 of
Linclust (Fig. 1) to find k-mer matches (options -c 0.0
–min-seq-id 0.9) and we aligned all matched pairs using
stage 4 (options –min-seq-id 0.9 -e 0.00001). We accepted
only sequence matches that extended the centre sequence395

either to the left or right by at least 5 residues, that
achieved an E-value below 10−5, and that had a fraction
of at least 90% identical residues in the aligned region.
This resulted in 115 million centre sequences with at least
one accepted match. We ran FAMSA[23] to compute a400

multiple sequence alignment (MSA) for each of these centre
sequences. The assembled sequences were computed from
the MSAs by taking the most frequent amino acid of each
column in the MSA. The assembly increased the average
length of the 115 million centre sequences from 168 to405

208 amino acids. All sequences in the 115 million MSAs
were removed and replaced by the 115 million assembled
sequences. We repeated the assembly step and could
further assemble 23.5 million centre sequences, increasing
their average length from 245 to 298. The final "Metaclust"410

database contains 711 million sequences of metagenomic
origin.

Metaclust protein sequence sets. The Meta-
clust database is available as FASTA formatted file at415

https://metaclust.mmseqs.org/.

Code availability. Linclust has been integrated into our
free GPLv3-licensed MMseqs2 software suite [10]. The
source code and binaries for Linclust can be download at420

https://github.com/soedinglab/mmseqs2.

Data availability. All scripts and benchmark data
including command-line parameters necessary to repro-
duce the benchmark and analysis results presented here425

are available at https://bitbucket.org/martin_steinegger/
linclust-analysis.
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