
Probabilistic forecasting in infectious disease
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Leonhard Helda∗, Sebastian Meyera,b and Johannes Brachera

Routine surveillance of notifiable infectious diseases gives rise to daily or weekly counts of reported cases stratified
by region and age group. From a public health perspective, forecasts of infectious disease spread are of central
importance. We argue that such forecasts need to properly incorporate the attached uncertainty, so should be
probabilistic in nature. However, forecasts also need to take into account temporal dependencies inherent to
communicable diseases, spatial dynamics through human travel, and social contact patterns between age groups.
We describe a multivariate time series model for weekly surveillance counts on norovirus gastroenteritis from the
12 city districts of Berlin, in six age groups, from week 2011/27 to week 2015/26. The following year (2015/27 to
2016/26) is used to assess the quality of the predictions. Probabilistic forecasts of the total number of cases can be
derived through Monte Carlo simulation, but first and second moments are also available analytically. Final size
forecasts as well as multivariate forecasts of the total number of cases by age group, by district, and by week are
compared across different models of varying complexity. This leads to a more general discussion of issues regarding
modelling, prediction and evaluation of public health surveillance data. Copyright © 0000 John Wiley & Sons, Ltd.

Keywords: age-structured contact matrix; endemic-epidemic modelling; multivariate probabilistic
forecasting; proper scoring rules; spatio-temporal surveillance data

1. Introduction

Forecasting is one of the key goals of infectious disease epidemiology, and mathematical and statistical models play a
central role in this task. For example, Keeling and Rohani [1] (Section 1.5) write that “models have two distinct roles,
prediction and understanding. Prediction is the most obvious use of models.” However, most of traditional infectious
disease epidemiology is concerned with “understanding”, and less so with forecasting.

Indeed, the World Health Organization (WHO) concluded in 2014 that “forecasting disease outbreaks is still in
its infancy, however, unlike weather forecasting, where substantial progress has been made in recent years.” [2]. As
a consequence, WHO has recently organized an informal consultation with more than 130 global experts entitled
“Anticipating Emerging Infectious Disease Epidemics” in order “to define the elements within which epidemics of the
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future will occur” [3]. Likewise, the United States Federal Government has recently sponsored two prediction competitions
on dengue fever in Puerto Rico and influenza-like illness in the United States†.

There have been various attempts to predict future infectious disease trends with mathematical or statistical models.
For example, there has been success in reproducing the spread of the 2002/2003 SARS epidemic based on global flight
travel data [4]. Another commonly considered problem is the prediction of influenza epidemics [5, 6, 7, 8, 9, 10]. However,
these approaches often concentrate on data available as univariate time series. This is often of limited value since infectious
diseases may spread differently in subgroups of the population considered, for example in different age groups. Strong
spatio-temporal dynamics are also very common. A multivariate view is therefore required to predict incidence in different
regions and age groups and this is the scenario we are considering in this article. Of course, other stratification levels such
as gender may also be relevant in other applications.

The key requirements for stratified forecasting of infectious disease incidence are threefold: First, suitable multivariate
models have to be developed for stratified time series of surveillance counts. This includes spatio-temporal models
[11, 12, 13, 14] and models that reflect contact patterns between age groups [15, 16]. Secondly, focus should be on
probabilistic forecasts, rather than on deterministic point predictions [17]. Probabilistic forecasting is the standard in
many other areas of science, including economics and weather forecasting. The inherent difficulty in forecasting epidemics
[18] makes the use of probabilistic forecasts in infectious disease epidemiology even more necessary to properly reflect
forecasting uncertainty. The natural way to obtain probabilistic predictions is through the use of statistical models. An
important aspect of the focus on predictions is the emphasis on the primacy of observables and the notion of a model as a
(probabilistic) prediction device for such observables. Our models may therefore not perfectly represent (individual-based)
disease transmission, but may still be useful for prediction of suitably aggregated surveillance data.

Thirdly, the quality of the forecasts has to be assessed with appropriate predictive model criteria. As in weather
forecasting, we use proper scoring rules to assess the quality of probabilistic (count) predictions. Propriety ensures that
both calibration and sharpness are addressed. Calibration is defined as the statistical consistency of the probabilistic
forecasts and the observations. Sharpness refers to the concentration of the predictive distributions. Thus, the goal is
to “maximize sharpness subject to calibration” [19]. Calibration of univariate forecasts can be visually assessed with
probability integral transform (PIT) histograms for count data [20]. Calibration tests for count data can also be employed
[21, 22, 23]. Related methods have been proposed to assess the quality of multivariate probabilistic forecasts [24, 25, 26].

With this paper we aim to review and address the above issues. In our application we focus on norovirus gastroenteritis
(described in Section 2), an endemic infectious disease where the amount of historical data makes it possible to predict
future disease spread. Although we apply our methods for predictive validation in infectious disease epidemiology
exclusively in the hhh4 [27] modelling framework (described in Section 3) using the R package surveillance [28], the
proposed methodology for assessing probabilistic forecasts (described in Section 4) can also be applied to other modelling
approaches. Section 5 presents results for the norovirus surveillance data and Section 6 concludes with some discussion.

2. Norovirus gastroenteritis surveillance data

Norovirus gastroenteritis is characterized by a “sudden onset of vomiting, diarrhea and abdominal cramps lasting 2–3
days” [29]. Its generation time is similar to seasonal influenza (3–4 days). The disease is highly contagious, transmitted
directly from person to person, but also indirectly via contaminated surfaces or food. No vaccination is available. Weekly
(lab-confirmed) counts have been downloaded from https://survstat.rki.de (Figure 1). Our training data –
identical to the one analysed in Meyer and Held (2016) [16] – are stratified into 6 commonly used age groups (0–4, 5–14,
15–24, 25–44, 45–64, and 65+ years) and 12 city districts (of Berlin), and covers the period from week 2011/27 to week
2015/26. The following year (2015/27 to 2016/26) has been used to assess model predictions (test data).

†https://predict.phiresearchlab.org/
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Figure 1. Reported incidence of norovirus infections in Berlin, Germany, stratified by age group. The incidence on the left axis is per 100 000 inhabitants and obeys the same
√-scale in all panels. The corresponding counts can be read off from the right axis. The population fractions of the age groups are 4.6%, 7.8%, 10.4%, 30.4%, 27.9%, and 18.9%,
respectively. The yearly Christmas break in calendar weeks 52 and 1 is highlighted. The last season (to the right of the dashed vertical line) is used as test data.

3. Endemic-epidemic models for infectious disease counts

We start with a modelling framework for spatio-temporal infectious disease counts in Section 3.1. This is extended in
Section 3.2 to include social contact patterns between age groups.

3.1. Space-time model

In a series of papers [27, 30, 31, 12], a modelling framework for multivariate surveillance count time series of infectious
diseases has been proposed. The formulation is built upon an additive decomposition of disease incidence into an endemic
and an epidemic component. The endemic component may represent seasonal and climatic variation, heterogeneity
in population numbers and other socio-demographic characteristics. The epidemic component describes the force of
previously infected individuals and thus spatio-temporal interaction [12].

Let Yrt denote disease counts in region r and week t. Given the counts Yr,t−1, r = 1, . . . , R, in the previous week, Yrt
is assumed to be negative binomial distributed, i. e. Yrt ∼ NBin(µrt, ψ), with mean

µrt = νrt er + φrt
∑
r′

bwr′rcYr′,t−1 (1)

and overdispersion parameter ψ, so Var(Yrt) = µrt(1 + ψ µrt). Here νrt is an unknown endemic log-linear predictor and
er are known population fractions of the different districts. The epidemic log-linear predictor φrt describes the force of
infection from time t− 1 to time t where bwr′rc denote normalized weights for r′ to r transmission from Yr′,t−1 to Yrt,
i. e.

∑
rbwr′rc = 1 [12].
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Spatio-temporal modelling has always been an important feature of infectious disease epidemiology. For example,
Keeling and Rohani [1] dedicate a whole section to spatial dispersal of infections. An important discovery was that short-
time travel behaviour follows approximately a power law with respect to distance [32]. Specifically, the relative frequency
Pr(d) of the distance d traversed by ∼500 000 dollar bills within 4 days in the U.S. has been shown to follow a power law:
Pr(d) ∝ d−1.59. An interesting feature of the power law is that it is scale-free, i. e. the power parameter (here −1.59) does
not depend on the unit in which the distances d are measured. A power law for areal data has also been proposed [12, 16]
and is based on the adjacency order or′r between regions r′ and r as distance measure:

wr′r = (or′r + 1)−ρ. (2)

Here adjacent regions r and r′ have order or′r = 1, regions where we need to traverse one other region are of order 2 and
higher orders are defined accordingly. The power parameter ρ is treated as unknown and estimated from the data.

In our application we model νrt and φrt in (1) as

log νrt = α(ν)
r + βxt + γ(ν) sin(ωt) + δ(ν) cos(ωt) (3)

log φrt = α(φ)
r + γ(φ) sin(ωt) + δ(φ) cos(ωt) (4)

with region-specific effects α(ν)
r and α(φ)

r in both components, a Christmas break indicator xt (to account for reduced
reporting and school closure in calendar weeks 52 and 1) in the endemic component, and sinusoidal log-rates with
frequency ω = 2π/52 in both components [31]. An alternative model replaces α(φ)

r by α(φ) + τ log(er), so includes a
parametric “gravity model” [33, 11] as described in the next section in more detail.

A multivariate branching process formulation [27] is useful to derive the (time-dependent) epidemic proportion λt as a
function of the model parameters. We omit details here but will report the average epidemic proportion λt, which describes
the average proportion of the incidence that can be explained with the epidemic component.

3.2. Age-structured spatio-temporal model

Consider now counts Ygrt stratified by age group g, region r and week t. Again we use a negative binomial likelihood
with mean

µgrt = νgrt egr + φgrt
∑
g′,r′

bcg′g wr′rcYg′,r′,t−1, (5)

now with age group-specific overdispersion parameter ψg. The unknown log-linear predictors νgrt and φgrt, and the known
population fractions egr also become age group-specific. There are now two sets of weights: cg′g quantifies transmission
from age group g′ to age group g, while wr′r remain spatial weights for r′ to r transmission. The product cg′g wr′r is
normalized such that

∑
g,rbcg′g wr′rc = 1.

We now specify the model as

log νgrt = α(ν)
g + α(ν)

r + βxt + γ(ν)g sin(ωt) + δ(ν)g cos(ωt) (6)

log φgrt = α(φ)
g + α(φ)

r + τ log(egr) + γ(φ) sin(ωt) + δ(φ) cos(ωt) (7)

cg′g = (Cκ)g′g (8)

wr′r = (or′r + 1)−ρ (9)

with age group and region-specific effects αg and αr in both components (ν and φ). Again we include an indicator xt for
the Christmas break and let seasonal terms enter both components, where we now assume age group-specific seasonality
with coefficients γ(ν)g and δ(ν)g in the endemic component. Note that the formulation (7) for φgrt extends the one used
in Meyer and Held (2016) [16], since we here also allow for seasonal variation in the epidemic component [31]. The
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gravity model feature φgrt ∝ eτgr causes the amount of disease transmission to scale with the population size egr of the
“importing” age group g in district r – with unknown coefficient τ .

To specify the weights cg′g, we estimate a contact matrix C for Germany from recorded contacts of individuals
participating in the POLYMOD study [34]. Note that social contacts are reciprocal at the population level, i. e. there
is an equal number of contacts between age group g and g′ as between age group g′ and g, which has been taken into
account appropriately [35]. We finally specify a power transformation for the contact matrix [16],

cg′g = (Cκ)g′g where Cκ := EΛκE−1 ,

where Λ is the diagonal matrix of eigenvalues and E is the corresponding matrix of eigenvectors of C.
To investigate the relevance of the various model features, we consider four different models of increasing complexity:

Model 1 is based on equation (6) with φgrt ≡ 0 in (5), so only includes the endemic component. Model 2 extends
this with an autoregression on the number of cases Yg,r,t−1 in the same age group and region, i. e. (5) reduces to
µgrt = νgrt egr + φgrt Yg,r,t−1 with φgrt as in (7), but without the gravity model component τ log(egr). Model 3 allows
for spatial dispersal according to (9) and includes the gravity model in (7), but does not include contact data, so cg′g = 1

for g′ = g, otherwise cg′g = 0. Finally, Model 4 is based on the full formulation (5)-(9), so allows for dispersal across
space and across age groups.

4. Predictive model assessment

We validate the models based on probabilistic one-step-ahead and long-term predictions. The one-step-ahead predictions
are all negative binomial distributed, so the predictive mass probability function is known in closed form. Note that the
underlying parameters change from prediction to prediction, as we always refit the model to all available data prior to the
counts to be predicted. A simpler approach would always use the parameter estimates based on the original training data.

The model formulation implies that one-step-ahead predictions in different age groups and different regions are
conditionally independent. Long-term predictions in time, sometimes called path forecasts, are generated through
Monte Carlo simulation by sequentially simulating from one-step-ahead predictions. Note that our time series model
is multivariate (across regions and age groups) and thus the path forecasts are also multivariate. Alternatively, the first two
moments of multivariate path forecasts can be computed analytically in the model class considered, see Appendix A for
details.

Predictions are computed for all combinations of 6 age groups × 12 districts × 52 weeks and have been suitably
aggregated across districts, across age groups, or across time, if required. Similarly, the first two moments of aggregated
counts can be calculated analytically from the moments of the original path forecasts.

4.1. One-step-ahead forecasts

Scoring rules (also called scoring functions) are the key measures for the evaluation of probabilistic forecasts. Scoring
rules assign a numerical score based on the predictive density f(y) for the unknown quantity and on the true value yobs,
that has later materialised. They are typically negatively oriented, i. e. the smaller, the better. They are called proper, if
they do not provide any incentive to the forecaster to digress from her true belief, and strictly proper if any such digress
results in a penalty, i. e. the forecaster is encouraged to quote her true belief rather than any other predictive distribution.
Note that in the literature inappropriate scoring methods are still often used, e. g. correlation coefficients between point
predictions and observations [8, 10]. It is well known in the medical literature that high correlation does not necessarily
imply good agreement [36] and therefore a very poor forecasting method may have high correlation. Furthermore, usage
of metrics incorporating the whole probabilistic forecast (rather than using only point predictions) is still rare [6].
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For ease of presentation we drop the indices g, r and t in this section and denote by Y the predictive distribution which
we compare with the actual observation yobs. The logarithmic score [37] is strictly proper and defined as

LogS(Y, yobs) = − log f(yobs),

i. e. minus the log predictive density at the observed value. A normal approximation gives the Dawid-Sebastiani score
[38]. A strictly proper alternative is the ranked probability score [19], which can be written for count data as

RPS(Y, yobs) =

∞∑
k=0

{Pr(Y ≤ k)− 1(yobs ≤ k)}2 ,

the sum of the Brier scores for binary predictions at all possible thresholds k ∈ {0, 1, . . .} [20]. An equivalent definition is

RPS(Y, yobs) = E |Y − yobs| −
1

2
E |Y − Y ′|, (10)

here Y and Y ′ are independent realisations from f(y) [19].
For Poisson and negative binomial predictive distributions, both scores (LogS and RPS) can be computed directly in the

R package surveillance [28]. In order to develop a calibration test for one-step-ahead count forecasts [23], we compute
the average score RPS across all regions, age groups and one-step-ahead predictions and compare it to its expected
value E0(RPS) under the null hypothesis of “forecast validity” [22], sometimes also called “perfect calibration”. The
difference RPS− E0(RPS) is standardized using the variance Var0(RPS). Note that our model implies that the one-step-
ahead predictions in different age groups and different districts are (conditionally) independent, so underH0 independence
holds for all components of RPS for fixed t. Furthermore, proofs of independence are available for the sequence of scores
across time [21, 22], so in the computation of Var0(RPS) we can simply assume independence of all components of RPS.
Finally, a z-statistic

z =
RPS− E0(RPS)

Var0(RPS)1/2
a∼
H0

N(0, 1)

can be computed where the sign of z indicates if the observations are over-/underdispersed relative to the predictions (+/−
sign of z) [23, 39]. A (two-sided) P -value can be computed to quantify the evidence for miscalibration.

The probability integral transform (PIT) F (yobs) is often used to visually assess calibration, here F (y) denotes the
predictive CDF. Under H0, the probability integral transforms of a sequence of absolutely continuous one-step-ahead
forecasts are independent and uniformly distributed [40]. Here we use a modification of the PIT histogram for count data
[20]. We can also apply the Diebold-Mariano Test for equal predictive performance [41].

For negative binomial predictions, sharpness can be quantified with the estimated overdispersion parameter ψ, which
may be age-dependent. Easier to interpret is the variance-to-mean ratio (VMR) 1 + ψ µ, but this requires an estimate of
the predictive mean µ, where we simply average (in each age group for age-dependent overdispersion parameters) the
predictive means across weeks and districts.

4.2. Multivariate path forecasts

Our target quantity to assess the long-term forecasts are the number of reported cases during the test period, suitably
aggregated to stratification levels of interest. In the simplest case we aggregate over week, age group and region and
predict the final size, i. e. the total number of reported cases during the whole year. We also predict the final size in
different age groups and the final size in different regions. Finally, we predict the so-called epidemic curve, i. e. the total
number of cases for each of the 52 weeks of the test data (aggregated over age group and region), given the training data.

Predictions of aggregated counts enable us to compare our models to simpler models that are applied to suitably
aggregated data. For example, we could just fit a univariate negative binomial time series model to the counts Yt aggregated
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over age group and district to predict the total number of cases per week and to obtain final size predictions (model 5):

Yt ∼ NBin(µt, ψ)

µt = νt + φtYt−1

log(νt) = α(ν) + β xt + γ(ν) sin(ωt) + δ(ν) cos(ωt)

log(φt) = α(φ) + γ(φ) sin(ωt) + δ(φ) cos(ωt) .

Likewise, aggregating the data over regions yields a model for Ygt ∼ NBin(µgt, ψg) to additionally obtain final size
predictions in the different age groups (model 6):

µgt = νgt + φgt
∑
g′

bcg′gcYg′,t−1

log(νgt) = α(ν)
g + β xt + γ(ν)g sin(ωt) + δ(ν)g cos(ωt)

log(φgt) = α(φ)
g + γ(φ) sin(ωt) + δ(φ) cos(ωt)

cg′g = (Cκ)g′g .

Finally, two models for regional counts Yrt ∼ NBin(µrt, ψ) (aggregated over age group) have been applied. Both are
based on the decomposition (1) with power law (2) and endemic model (3). Model 7 uses the epidemic model (4) with
region-specific intercept α(φ)

r . Model 8 is more parsimonious and replaces α(φ)
r by α(φ) + τ log(er), so includes a gravity

model component instead. Note that the more general formulation α(φ)
r + τ log(er) is not identifiable.

One possibility for a proper scoring rule is the multivariate Dawid-Sebastiani score [38]

mDSS(Y ,yobs) = log|Σ|+ (yobs − µ)>Σ−1(yobs − µ), (11)

that depends only on the mean vector µ and the covariance matrix Σ of the predictive distribution. The first term in (11)
involves the determinant |Σ| of the covariance matrix Σ, here Σ is a d× d matrix. Transformed to

DS = |Σ|1/(2d), (12)

this is known as the determinant sharpness (DS) and recommended as a multivariate measure of sharpness [24], with
smaller values corresponding to sharper predictions. In higher dimensions it is useful to report the log determinant
sharpness log DS = log|Σ|/(2d) to avoid unnecessarily large numbers. For presentational reasons we also report the
Dawid-Sebastiani score (11) in a scaled version and divide it by 2d. Finally, we compute an approximate P -value for
forecast validity based on the mDSS [26]. We note that this method assumes approximate normality of the observed data,
which may be questionable if the observed counts are very low.

However, evaluation of (11) and (12) based on Monte Carlo estimates of the first two moments is not recommended,
since the determinant |Σ| is known to be very sensitive to Monte Carlo sampling error [25]. Fortunately we can evaluate
this score exactly since we have analytical results for recursive computation of µ and Σ in our modelling framework, see
Appendix A for details.

In order to take the full predictive distribution into account, the multivariate log-score LogS(Y ,yobs) = − log f(yobs)

will be very difficult to compute based on samples from the predictive distribution f(y). Specifically, if there is no sample
exactly equal to the observed vector yobs, the empirical estimate of f(yobs) will be zero and the log-score will be infinite.
Instead we use a generalization of the ranked probability score (10), the so-called energy score [19]

ES(Y ,yobs) = E ||Y − yobs|| −
1

2
E ||Y − Y ′|| (13)
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for multivariate forecasts Y , here ||.|| denotes the Euclidean norm. The energy score reduces to the Euclidean error
||µ− yobs|| for a deterministic point mass forecasts at µ and can be reported in the same unit as the observations. It has
been noted [25, 42] that the ES discriminates well between forecasts with different means or variances, but less so for
forecasts with different correlation structures.

Monte Carlo estimation of (13) is possible if samples from the predictive distribution are available [24]. These samples
can also be used to derive the distribution of ES under the null hypothesis of forecast validity: Suppose we have nsim

samples y(1), . . ., y(nsim) from the predictive distribution f(y). We can then generate nsim samples from the distribution
of ES(Y ,yobs) under H0 by computing the Monte Carlo approximation of (13) based on the realisation yobs = y(i),
i = 1, . . . , nsim and approximate the distribution of Y using the remaining nsim − 1 samples from f(y). Computation of a
(one-sided) Monte Carlo P -value is then possible based on the energy score of the actual observation yobs.

5. Results

5.1. Model fitting results

A comparison of selected parameters together with AIC values is given in Table 1. AIC improves for each of the features
added from model 1 to model 4, where the largest impact is due to the account for autoregression (1→ 2). Likewise, the
average epidemic proportion λt increases with increasing model complexity, so in model 4, 70% of the incidence can be
explained by the epidemic component. There is strong evidence that the epidemic part scales with the population size of
the “importing” districts and age groups with the coefficient τ estimated as 0.62 (95% CI: 0.27 to 0.97) in model 3 and
0.82 (95% CI: 0.49 to 1.14) in model 4. The power parameter ρ of the spatial power law (9) is estimated to be 2.21 (95%
CI: 1.92 to 2.55) in model 3 and 2.30 (95% CI: 2.01 to 2.63) in model 4. Thus, the inclusion of social mixing between
age groups in model 4 results in a slightly larger coefficient, reducing the range of spatial dispersal. Note that the results
of model 4 differ slightly from the estimates reported in Meyer and Held [16] due to the additional seasonal variation
in the epidemic component here. This adds two parameters but improves AIC by 18.3 points. The estimate of the power
coefficient κ for the contact matrix C is 0.41 (95% CI: 0.29 to 0.60). For comparison, in model 6, the estimated exponent
is nearly identical (κ̂ = 0.40) but has more uncertainty (95% CI: 0.23 to 0.67).

Table 1. Comparison of the different models in terms of AIC with selected parameter estimates and associated 95% Wald
confidence intervals.

Model dim ∆AIC τ ρ κ λt

1 36 0.0 — — — 0.00
2 55 -514.4 — — — 0.48
3 57 -631.1 0.62 (0.27–0.97) 2.21 (1.92–2.55) — 0.68
4 58 -677.7 0.82 (0.49–1.14) 2.30 (2.01–2.63) 0.41 (0.29–0.60) 0.70

5.2. Assessing one-step-ahead forecasts

Figure 2 gives the variance-to-mean ratios of the one-step-ahead forecasts in the different age groups and models.
Generally the VMR decreases with increasing model complexity. The predictions become sharper in age groups 65+ and
45–64 when we move from model 1 to 2, 3, and finally to model 4. In age group 00–04 we also see sharper predictions in
model 2–4 compared to model 1.

The mean RPS with z-value and P -value is shown in Table 2. The PIT histograms [20] based on all 6× 12× 52 = 3744

one-step-ahead forecasts are shown in Figure 3. The mean RPS values are in the expected order with smaller (i. e. better)
values for models of increasing complexity and the full model 4 as the best. For all models except for model 1 we see
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Figure 2. Estimated age group-specific variance-to-mean ratios of the one-step-ahead predictive distributions.

Table 2. Comparison of RPS and calibration test results, overall and in the first and last age group.

Overall Age group 00–04 Age group 65+

Model RPS z P -value RPS z P -value RPS z P -value

1 0.454 0.65 0.52 0.535 2.84 0.005 1.112 -1.83 0.067
2 0.436 1.35 0.18 0.516 2.39 0.017 1.019 -0.17 0.87
3 0.434 1.80 0.072 0.513 2.18 0.029 1.009 0.82 0.41
4 0.433 2.28 0.022 0.512 2.26 0.024 1.008 0.79 0.43

some evidence for underdispersed predictions (Figure 3) with more PITs close to one than we would expect under forecast
validity. This indicates potential problems of the negative binomial distribution in the more complex model formulations.

The corresponding results for age groups 00–04 and 65+ are also shown in Table 2. In age group 00–04, there is
evidence for underdispersed predictions with values of the z-statistic larger than 2 for all four models and an even more
pronounced peak of the PIT histogram close to one than for the overall set of forecasts (compare the middle panel in
Figure 5). However, we see some evidence for overdispersed predictions in age group 65+ for model 1 with a negative
value of the z-statistic, which fits the corresponding pattern of the PIT histogram shown in the right panel of Figure 5.

Table 3. P -values from the Diebold-Mariano Test for the pairwise comparison of RPS across the different models.

model 1 model 2 model 3 model 4

model 1 — < 0.0001 < 0.0001 < 0.0001
model 2 — — 0.48 0.23
model 3 — — — 0.12
model 4 — — — —

P -values from the Diebold-Mariano Test are shown in Table 3. We see very strong evidence (p < 0.0001) for differences
in predictive performance between model 1 and the other three models but no evidence for differences in predictive
performance between models 2, 3 and 4.
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Figure 3. PIT histograms of the 3744 one-step-ahead forecasts for the different models.

5.3. Assessing long-term forecasts

Final size predictions are shown in Figure 4. All models tend to overpredict the total number of cases with varying
uncertainty. In the worst cases (models 1, 2 and 8), the observed number of cases is not or only poorly supported by
the predictions. The best model (in terms of RPS) is model 4, the most complex formulation, followed by model 6. This
underlines the importance of using an age-structured modelling approach supported by social contact data.

Figure 5 (left panel) displays the probabilistic forecasts for the total number of cases in the different age groups for
models 1–4 and 6. While all models predict the number of cases reasonably well in the lower five age groups, there are
remarkable differences for the last age group 65+. Model 1 overpredicts the number of cases in age group 65+ considerably,
while models 2–4 give similar point predictions, but with increasing uncertainty. As a consequence, the observed number
of cases in age group 65+ is well supported by the predictive distributions of models 3, 4 and 6, less so for model 2, and
not at all for model 1.

The middle and right panels of Figure 5 give PIT histograms of the one-step-ahead forecasts for the five models for
age group 00–04 and 65+, respectively. The PIT histograms for the other age groups are all very close to uniformity. The
PIT histograms for age group 00–04 are very similar for models 1–4 with a pronounced peak at values close to 1. This
indicates a tendency to underpredict relatively large observed values. A similar pattern can be seen for model 6, where
the PIT histogram is based on a smaller number of observations. The PIT histogram for age group 65+ and model 1
indicates a bias of the estimates with a tendency to predict larger values than observed. This results in overprediction of
the aggregated counts shown in the left panel. In contrast, the PIT histogram of model 6 is inconspicuous. The other three
models compensate the bump of the PIT histogram around 0.2 with another peak at values of PIT close to 1. This seems
to lead to greater uncertainty of the final size predictions as shown in the left panel. Note that the calibration tests based
on the mean RPS of the one-step-ahead forecasts (Table 2) give evidence for miscalibrated forecasts in age group 00–04
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Figure 4. Final size predictions based on 1000 simulations with RPS and two-sided P -value. The white dots represent the predictive means.

for all the models, but no such evidence for age group 65+. However, the negative value of the z-statistic of model 1 (with
corresponding P -value of 0.067) already indicated a potential problem of this formulation.

Table 4 gives values of the log determinant sharpness for the different models and the different stratification levels.
The first column gives values for total final size, where we observe for models 1 to 4 a tendency for larger values of
logDS, i. e. more dispersed predictions, with increasing complexity, see also Figure 4. However, this pattern is less clear
for the models 5–8 that work on aggregated data. An interesting pattern appears for the predictions by age group, region,
or week: With only one exception, the models that analyse the data in the finest resolution (1–4) give sharper predictions
than the models that analyse aggregate data (5–8). In particular, the most sophisticated model with both a spatial power
law and social contact data (model 4) gives the sharpest prediction for the epidemic curve. This can be explained by the
fact that the predictions from this model have the largest autocorrelations among all models from week 20 onwards (and
also quite large before week 20), see Figure 6 bottom. Note also that the logDS values by region roughly reflect the order
of the correlations between regions (Figure 6 top right) with a tendency for larger values of logDS for smaller correlations.
However, logDS is also a function of the marginal variances, so the agreement of logDS and the correlations is not perfect.
Similarly, the correlations of the predictions between age groups, shown in the top left panel of Figure 6 for models 4
and 6, do not lead to smaller values of logDS by age group because of larger variances compared to models 1 and 2, as
can be seen in the left panel of Figure 5.

Table 4. Log determinant sharpness (logDS).

Total by Age Group by Region by Week

Model logDS rank logDS rank logDS rank logDS rank

1 4.63 1 3.12 1 3.30 1 2.30 4
2 5.32 3 3.32 2 3.78 6 2.29 2
3 6.06 7 3.59 4 3.62 2 2.29 3
4 6.10 8 3.51 3 3.63 3 2.27 1
5 5.86 5 2.57 8
6 5.92 6 3.64 5 2.41 7
7 5.68 4 3.66 4 2.32 6
8 5.21 2 3.69 5 2.30 5
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Figure 5. Left panel: Final size predictions in the different age groups based on 1000 simulations from models 1–4 and 6. Middle and right panel: PIT histograms of one-step-ahead
forecasts in age groups 00–04 and 65+, respectively. The PIT histograms for model 6 are based on 52 observations each, whereas the other histograms are based on 12× 52

observations.
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Figure 6. Correlations implied by the different models: between age-groups (top left), regions (top right) and consecutive weeks (bottom). Models where correlations are 0 by
construction are omitted from the two top figures.

Table 5 gives both the energy and the Dawid-Sebastiani score by different stratification levels. Likewise, Table 6 gives
the corresponding P -values for forecasts validity. The two scores agree quite well with model 4 giving the best (or second
best) predictions in total, by age group and by region. Somewhat surprisingly, model 4 gives quite poor predictions by week
for the DSS (rank 7), but not for the ES (rank 2). This can be explained by the fact that the ES is known to be insensitive to
misspecifications in the correlation structure of multivariate predictions. We have already noted that the autocorrelations of
the model 4 predictions are quite large. However, the observed time series (see Figure 7), has an oscillating pattern around
weeks 20 and 30. This discrepancy between observed and predicted correlation seems to be detected by the DSS, but not
by the ES. This can also be seen from Table 6, where the test based on DSS gives strong evidence for miscalibration of
the forecasts by week for all models except for models 5 and 6. Interestingly, these two models have the largest values
of logDS, see Table 4, but are still best in terms of DSS, see Table 5. Larger uncertainty of the predictions (see Figure 7)
combined with relatively small autocorrelations (see bottom panel of Figure 6) seems to make model 5 the best in terms
of DSS. Note that the corresponding test based on the ES identifies only model 1 and 8 as miscalibrated (and model 2 to
a lesser extent). For the other stratification levels the P -values based on the DSS tend to be larger than the corresponding
ones based on the ES.
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Figure 7. Long-term predictions of the epidemic curve in the last 52 weeks.
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Table 5. Energy score and scaled Dawid-Sebastiani score for the different models and aggregation levels.

Total by Age Group by Region by Week

Model ES rank DSS rank ES rank DSS rank ES rank DSS rank ES rank DSS rank

1 452.5 8 17.10 8 409.7 5 5.67 5 161.8 4 4.85 6 136.3 8 3.32 8
2 418.3 7 8.67 7 377.3 4 4.13 4 162.7 5 4.25 5 133.5 7 3.12 4
3 322.5 3 6.83 3 293.0 3 3.93 2 158.8 3 3.98 1 126.2 6 3.14 6
4 242.7 1 6.58 1 227.0 1 3.88 1 132.8 1 3.99 2 109.3 2 3.21 7
5 369.3 5 7.03 4 118.3 3 3.05 1
6 269.3 2 6.68 2 277.3 2 4.07 3 108.0 1 3.07 2
7 388.5 6 7.39 5 180.2 6 4.10 3 122.4 4 3.13 5
8 364.5 4 8.41 6 136.1 2 4.22 4 123.5 5 3.11 3

Table 6. P -values for forecast validity.

Total by Age Group by Region by Week

Model Direct DSS ES DSS ES DSS ES DSS

1 0.002 < 0.0001 < 0.0001 < 0.0001 0.0005 0.0002 0.0002 < 0.0001
2 0.002 0.01 0.021 0.14 0.17 0.52 0.034 0.002
3 0.084 0.21 0.19 0.66 0.16 0.72 0.15 0.001
4 0.24 0.33 0.27 0.62 0.29 0.72 0.25 0.0001
5 0.07 0.13 0.35 0.57
6 0.15 0.22 0.14 0.52 0.34 0.064
7 0.034 0.064 0.097 0.57 0.089 0.003
8 0.01 0.011 0.093 0.39 0.008 0.003

6. Discussion

In this paper we have described a multivariate model framework for infectious disease surveillance counts by borrowing
strength from different regions and different age groups. This model framework provides probabilistic forecasts that are
useful for epidemic forecasting. Specifically, means and covariance matrices are available analytically as well as Monte
Carlo samples from the full predictive distribution. Predictive model assessment helps to identify poor predictive models.
The application has shown the importance of predictive model assessment in different strata. We have emphasized the
importance to use appropriate methodology for predictive model assessment, including proper scoring rules and tests for
forecast validity.

Our study has shown that complex modelling on the original fine resolution generally leads to better predictions of
future disease incidence, even of aggregated quantities. As a consequence, the most complex model 4 was nearly always
the best in predictive performance. The only exception are predictions by week, where model 4 turned out to predict
poorly in terms of DSS. We were able to explain this feature by the discrepency of strong predicted correlations on the one
hand, but oscillating observed number of cases on the other hand. This model deficiency was not detected by the energy
score, in accordance with similar observations made in the literature [25, 42]. Consideration of models for aggregated data
showed the importance to integrate contact pattern data in the analysis of age-stratified surveillance data (model 6), as this
model was consistently among the top three models in terms of ES and DSS. The spatial dimension turned out to be less
important, which may be different in applications with more districts.

Our forecasts were always based on one particular model. A possible extension of our approach would be to use a
Bayesian model average framework to combine forecasts from different models into one averaged forecast. The model
weights may even differ based on differing forecasts and could be based on AIC or BIC computed from the training data
[43], if the models considered act on the same data resolution. Such model averages are known to have better forecast
properties and have been successfully applied in weather forecasting [44].
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Appendix A

We derive the first two moments of multivariate path forecasts in the hhh4 modelling framework. For this purpose, it
is irrelevant whether strata are defined by age groups, regions or both, so we only use one index r = 1, . . . , R to denote
strata. The weeks are indexed such that t = 0 corresponds to the week on which we condition our path forecasts. Since
the following derivations do not rely on model-specific choices for offsets or weights, we generalise (1) as

Yrt ∼ NBin(µrt, ψr)

µrt = νrt +
∑
r′

ϕr′rtYr′,t−1

where ϕr′rt is a function of φrt and wr′r.
We can derive several recursive relationships for the conditional moments of Y = (Y>1 ,Y

>
2 , . . .)

>, where Yt =

(Y1t, Y2t, . . . , YRt)
>. For the means we obtain

E(Yrt |Y0) = E(E(Yrt |Yt−1) |Y0) = νrt +
∑
r′

ϕr′rt E(Yr′,t−1 |Y0) .

Similarly we can derive the second moments

E(Y 2
rt |Y0) = E(E(Y 2

rt |Yt−1) |Y0)

= E(Var(Yrt |Yt−1) + E(Yrt |Yt−1)2 |Y0)

= E
(

(1 + ψr · E(Yrt |Yt−1)) · E(Yrt |Yt−1) + E(Yrt |Yt−1)2
∣∣∣ Y0

)
= E

(
E(Yrt |Yt−1) + (1 + ψr) · E(Yrt |Yt−1)2

∣∣∣ Y0

)
= E

(
νrt +

∑
r′

ϕr′rtYr′,t−1 + (1 + ψr) ·
(
νrt +

∑
r′

ϕr′rtYr′,t−1

)2 ∣∣∣ Y0

)
= νrt +

∑
r′

ϕr′rt E(Yr′,t−1 |Y0)

+ (1 + ψr) ·
(
ν2rt + 2 νrt ·

∑
r′

ϕr′rt E(Yr′,t−1 |Y0) +
∑
r′,r̃

ϕr′rtϕr̃rt E(Yr′,t−1Yr̃,t−1 |Y0)

)
.

A somewhat simpler result can be obtained for the product terms (r 6= s)

E(YrtYst |Y0) = E(E(YrtYst |Yt−1) | Y0)

= E(E(Yrt |Yt−1)E(Yst |Yt−1) | Y0)

= E

((
νrt +

∑
r′

ϕr′rtYr′,t−1

)
·
(
νst +

∑
s′

ϕs′stYs′,t−1

) ∣∣∣ Y0

)
= νrtνst + νrt ·

∑
s′

ϕs′st E(Ys′,t−1 |Y0) + νst ·
∑
r′

ϕr′rt E(Yr′,t−1 |Y0)

+
∑
r′,s′

ϕr′rtϕs′st E(Yr′,t−1Ys′,t−1 |Y0) .
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These componentwise formulations are somewhat involved, but a nice matrix formulation of the recursion exists. Define
Ỹt = (1, Y1t, . . . , YRt)

>, ψ̃ = (1, ψ1, . . . , ψR)> and

ϕ̃t =


1 0 0 · · ·
ν1t ϕ11t ϕ21t · · ·
ν2t ϕ12t ϕ22t · · ·
...

...
...

. . .


such that

E(Ỹt |Y0) = ϕ̃t E(Ỹt−1 |Y0) = ϕ̃tϕ̃t−1 . . . ϕ̃1Ỹ0 .

With

Mtt = E(ỸtỸ
>
t |Y0) =


1 E(Y1t |Y0) E(Y2t |Y0) · · ·

E(Y1t |Y0) E(Y 2
1t |Y0) E(Y1tY2t |Y0) · · ·

E(Y2t |Y0) E(Y2tY1t |Y0) E(Y 2
2t |Y0) · · ·

...
...

...
. . .


the above moment equations then allow for a simple recursive procedure consisting of one matrix transformation and one
modification of the diagonal:

M00 = Ỹ0Ỹ
>
0 ,

M̈tt = ϕ̃tMt−1,t−1ϕ̃
>
t , and

(Mtt)rs =


1 if r = s = 1,(
1 + ψ̃r

)
· (M̈tt)rr + (M̈tt)1r if r = s > 1,

(M̈tt)rs otherwise.

This is still limited to pairs of counts from the same week t. The following allows calculations across weeks:

Mt,t+k = E(ỸtỸ
>
t+k |Y0) = E(E(ỸtỸ

>
t+k |Yt) | Y0)

= E(Ỹt E(Ỹt+k |Yt)
> | Y0)

= E
(
Ỹt E(Ỹt+k−1 |Yt)

>ϕ̃>t+k | Y0

)
= E

(
Ỹt E(Ỹt+k−1 |Yt)

> | Y0

)
ϕ̃>t+k

= E(ỸtỸ
>
t+k−1 |Y0)ϕ̃>t+k

= Mt,t+k−1ϕ̃
>
t+k

⇔Mt+k,t = E(Ỹt+kỸ
>
t |Y0) = ϕ̃t+kMt+k−1,t .
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To compute E(YY>) from the Mtu’s we only need to omit the first row and column of each Mtu. The entire recursive
construction of this matrix can be visualized as follows:

E(YY>) =



E(Y1Y
>
1 ) → E(Y1Y

>
2 ) → E(Y1Y

>
3 ) → · · ·

↓ ↘
E(Y2Y

>
1 ) E(Y2Y

>
2 ) → E(Y2Y

>
3 ) → · · ·

↓ ↓ ↘
E(Y3Y

>
1 ) E(Y3Y

>
2 ) E(Y3Y

>
3 ) → · · ·

↓ ↓ ↓ ↘
...

...
...

. . .


The covariance matrix is then calculated as Cov(Y) = E(YY>)− E(Y)E(Y)>.

To aggregate across strata (e. g. to break our results down to stratification only by region, only by age group etc.), we
can use Cov(BY) = B Cov(Y)B> where the matrix B is suitably defined.
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