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Abstract

Motivation:

Comparing the human genome to the genomes of closely related mammalian species has been a powerful tool for
discovering functional elements in the human genome. Millions of conserved elements have been discovered. However,
understanding the functional roles of these elements still remain a challenge, especially in noncoding regions. In
particular, it is still unclear why these elements are evolutionarily conserved and what kind of functional elements are
encoded within these sequences.

Results:

We present a deep learning framework, called DeepCons, to uncover potential functional elements within conserved
sequences. DeepCons is a convolutional neural net (CNN) that receives a short segment of DNA sequence as input and
outputs the probability of the sequence of being evolutionary conserved. DeepCons utilizes hundreds of convolution
kernels to detect features within DNA sequences, and automatically learns these kernels after training the CNN model
using 887,577 conserved elements and a similar number of nonconserved elements in the human genome. On a balanced
test dataset, DeepCons can achieve an accuracy of 75% in determining whether a sequence element is conserved or not,
and the area under the ROC curve of 0.83, based on information from the human genome alone. We further investigate
the properties of the learned kernels. Some kernels are directly related to well-known regulatory motifs corresponding
to transcription factors. Many kernels show positional biases relative to transcriptional start sites or transcription
end sites. But most of discovered kernels do not correspond to any known functional element, suggesting that they
might represent unknown categories of functional elements. We also utilize DeepCons to annotate how changes at each
individual nucleotide might impact the conservation properties of the surrounding sequences.

Availability:

The source code of DeepCons and all the learned convolution kernels in motif format is publicly available online at
https://github.com/uci-cbcl/DeepCons.

Contact:

xhxQics.uci.edu

1 Introduction

One of the most surprising discovery of sequencing and comparing the human and other mammalian genomes is the
revelation of conserved sequences, most of which are located outside of genes. Some of these conserved sequences exhibit
few nucleotide changes throughout millions of years mammalian evolution, suggesting strong purifying selection within
these sequences [1, 2]. Studies based on human and rodent genomes estimate that about 5% bases of mammalian genomes
are under negative selection, among which coding regions only account for 1.5% of the genome [1]. Extensive studies
and methods have been focused on understanding the functional roles of conserved sequences in noncoding regions.
Nevertheless, the exact function of conserved non-coding sequences remains elusive.

Recent advances in deep learning, specifically in solving sequence-based problems in genomics with convolutional
neural networks [3, 4, 5, 6], provide a new powerful method to study sequence conservation. Deep learning refers to
algorithms that learn a hierarchical nonlinear representation of large datasets through multiple layers of abstraction (e.g.
convolutional neural networks, multi-layer feedforward neural networks, and recurrent neural networks). It has achieved
state-of-the-art performances on several machine learning applications such as speech recognition [7], natural language
processing [8], and computer vision [9]. More recently, deep learning methods have also been adapted to solve genomics
problems such as motif discovery [4, 5, 6], pathogenic variants identification [10], and gene expression inference [11].

In this paper we present a deep learning method for studying sequence conservation (DeepCons). DeepCons is a convo-
lutional neural network trained to predict whether a given DNA sequence is conserved or not. By learning to discriminate
between conserved and non-conserved sequences, DeepCons can capture rich information about conserved sequences, such
as motifs. Specifically, we show that, 1) some of the learned convolution kernels are directly related to known motifs, such
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Figure 1: The neural network architecture of DeepCons.

as regulatory motifs CTCF and the RFX family, that are known to be widely distributed within conserved noncoding
elements [12], 2) lots of the kernels have positional bias relative to transcription start sites (TSS), transcription end
sites (TES) and miRNA, indicating their potential roles in transcriptional control and post-transcriptional regulation,
and 3) the kernels that are close to TES display strand bias, suggesting their RNA level regulatory effects. We further
demonstrate that DeepCons could be used to score sequences at nucleotide level resolution in terms of conservation. We
rediscovered known motifs, such as CTCF, JUND, RFX3 and MEF2A, within a given sequence by highlighting each
nucleotide regarding their scores. Finally, we show that the learned convolution kernels represents a large variety of
motifs, and we have made all the kernels publicly available online in the MEME [13] format. We hope researchers may
draw new biological insights from these motifs.

2 Methods

2.1 DeepCons

DeepCons is a convolutional neural network [3] composed of one input layer, three hidden layers and one output layer.
The first input layer uses one hot encoding to represent each input sequence as a 4-row binary matrix, with the number
of columns equal to the length of the sequence. The second layer is a convolution layer composed of different convolution
kernels with rectified linear units as the activation function. Each convolution kernel acts as a motif detector that scans
across input matrices and produces different strengths of signals that are correlated to the underlying sequence patterns.
The third layer is a max pooling layer that takes the maximum output signals of each convolution kernel along the whole
sequence. The fourth layer is a fully connected layer with rectified linear units as activation. The last layer performs a
non-linear transformation with sigmoid activation and produces a value between 0 and 1 that represents the probability of
a sequence being conserved. DeepCons contains ~2.3 million parameters. Figure 1 shows the neural network architecture
of DeepCons.

DeepCons was trained using the standard back-propagation algorithm [14] and mini-batch gradient descent with the
Adagrad [15] variation. Dropout [16] and early stopping were used for regularization and model selection. Detailed
parameter configurations are given in the Supplementary.

DeepCons was implemented based on two Python libraries, Theano [17] and Keras http://keras.io/. Training
was performed on an Nvidia GTX TITAN Z graphics card. DeepCons is publicly available at https://github.com/
uci-cbcl/DeepCons.

2.2 Logistic regression

We also trained a baseline model using logistic regression (LR) for benchmarking purposes. Instead of using raw sequences
as inputs, we first computed the counts of different k-mers of length 1-5 bp [4]. We then normalized the counts by
subtracting the mean and dividing by the standard deviation and used these values as features. We also added a small L2
regularization of le-6 to the cross entropy loss function of LR during training. LR was implemented with the scikit-learn
[18] library.
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Figure 2: The ROC curves of DeepCons and LR on classifying conserved and non-conserved sequences on the testing
dataset.

3 Results

In this section, we first introduce the dataset of conserved and non-conserved sequences we used in this study and show the
performances of both DeepCons and LR on this dataset. Next, we demonstrate that DeepCons captures rich information
within the conserved sequences by showing that some learned convolution kernels correspond to known motifs, many
kernels have positional bias relative to TSS, TES and miRNA, and display strand bias relative to TES. We further
demonstrate that the learned model could be used to score the importance of each nucleotide within a given sequence in
terms of conservation, and rediscovered known motifs with these scores. Finally, we clustered all the convolution kernels
and show that they represents a large variety of informative motifs.

3.1 Classifying conserved and non-conserved sequences

We first show that DeepCons can accurately discriminate between conserved and non-conserved sequences. To build the
dataset of conserved sequences, we downloaded the 46-way phastCons conserved elements [1] under mammal category
from UCSC genome browser [19] based on hgl9. We excluded conserved sequences that overlap with repetitive sequences
(http://www.repeatmasker.org/). or coding exons. We then filtered away conserved sequences that were either shorter
than 30 bp or longer than 1,000 bp for training the model, leaving 887,577 sequences in the end. 75% of the nucleotides were
preserved after the length filtering. To build the dataset of non-conserved sequences, we randomly shuffled the 887,577
conserved sequences on hgl9, excluding repetitive sequences, coding exons and conserved sequences themselves. After
combining both conserved and non-conserved sequences, we randomly set aside ~80% for training (1,415,154 sequences),
~10% for validation (180,000 sequences) and ~10% for testing (180,000 sequences). Details of data preprocessing are
given in the Supplementary.

DeepCons achieved 74.9% accuracy and an area under the curve (AUC) of 0.830 on the testing dataset. The baseline
LR model achieved 65.9% accuracy and 0.722 AUC on the testing dataset. Figure 2 shows the receiver operating
characteristic (ROC) curves of both DeepCons and LR on the testing dataset. DeepCons outperforms the baseline LR
model significantly on classifying conserved and non-conserved sequences.

3.2 Known motifs

Previous results have shown that regulatory motifs are widely distributed within conserved noncoding elements across
the human genome, such as CTCF and the RFX family [12]. We observed similar results when examining the learned
convolution kernels of DeepCons. Specifically, we converted the kernels from the convolution layer to position weight
matrices, using the method described in DeepBind [5]. Then, we aligned these kernels to known motifs using TOMTOM
[20]. 69 kernels match known motifs significantly (F < le — 2), including the CTCF and RFX families. Figure 3 shows
four examples of identified known motifs.
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Figure 3: Four known motifs (top) aligned with convolution kernels (bottom).
(a)CTCF; (b)JUND; (c)RFX3; (d)MEF2A.
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Figure 4: The positional distributions of the top four biased kernels relative to TSS and TES. (a)TSS; (b)TES.
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Figure 5: The strand bias of the top 100 positional biased kernels relative to TSS and TES. The x-axis is the rank of
each kernel. The y-axis is the fraction of forward strand genes that each kernel is positional biased to.

3.3 Positional bias

We observed that many of the convolution kernels have display bias relative to TSS, TES and miRNA. Specifically, we
downloaded RefSeq gene models[21] and obtained 4,000 bp sequences centered on the TSS or the TES of each gene.
Then, we used CentriMo [22] to assess the positional bias of each kernel relative to TSS and TES. 264 and 779 kernels
have significant (E < le —5) positional bias relative to TSS and TES, respectively, indicating these kernels have potential
roles in transcriptional control and post-transcriptional regulation. Figure 4 shows the positional distributions of the
top four biased kernels relative to T'SS and TES. We note that, the well known polyadenylation signal AATAAA and
its reverse compliment TTTATT are among the top four positional biased kernels relative to TES. Previous results have
also reported that motifs discovered in conserved sequences have positional bias relative to T'SS and TES [23].

Besides positional bias relative to TSS and TES, we also observed several kernels have positional bias relative to
miRNA. We downloaded all the 1,881 human hairpin miRNA from miRBase [24] and used CentriMo [22] to test the
positional bias of each kernel relative to miRNA. 122 kernels have significant (E < le — 5) positional bias relative to the
first 10 positions of miRNA. Previous results have also reported that 95% of 8-mers discovered in conserved sequences
match the first 10 positions of miRNA [23].

3.4 Strand bias

In addition to positional bias, we also observed the convolution kernels that are close to TES have strand bias. Specifically,
for each of the top 100 positional biased kernels relative to TSS and TES, we looked at the strand of the genes that the
kernel is close to. Figure 5 shows the fractions of forward strand genes for each kernel. We found the fractions of forward
strand genes is tightly distributed around 0.5 for kernels that positional biased to T'SS, while the fractions significantly
deviate from 0.5 for kernels that are positional biased to TES, suggesting those kernels also have strand bias and their
RNA level regulatory effects.

3.5 Scoring sequences at nucleotide level resolution

We adopted the method of saliency maps [25, 26] to compute the gradient of a given sequence and used it as a score to
annotate each nucleotide within the sequence. Negative gradients were clipped to 0. Figure 6 shows the saliency maps
of four conserved sequences. The motifs of CTCF, JUND, RFX3 and MEF2A are clearly recovered in this example,
demonstrating their relevancy to conservation.

3.6 Motifs summary

Finally, we clustered all 1,500 convolution kernels into 820 clusters, using RSAT motif hierarchical clustering tool [27].
The clustering results suggest that DeepCons learned a large variety of informative motifs (Figure 7). Lots of the motifs
have been characterized in previous sections, while most of other motifs do not correspond to any known functional
element, suggesting that they might represent unknown categories of functional elements. The complete RSAT clustering
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Figure 6: The saliency maps of four conserved sequences. The black letters below the gray line are the nucleotides of
each sequence. The colored letters above the gray line are the nucleotides highlighted by their gradients, with the height
proportional to the gradient. Four motifs are rediscovered in this example. (a)CTCF; (b)JUND; (¢)RFX3; (d)MEF2A.

Figure 7: The hierarchical clustering heatmap of all the 1,500 kernels using RSAT motif clustering tool [27]

results and the 1,500 kernels in the format of MEME [13] are publicly available online at https://github. com/uci-cbcl/
DeepCons.

4 Discussion

Comparative genomics is an powerful tool in finding functional elements across the human genome. However, our
understanding of the functional roles of these conserved sequences remains incomplete, especially in noncoding regions.
Here we present a deep learning approach, DeepCons, to understand sequence conservation by training a convolutional
neural network to classify conserved and non-conserved sequences. The learned convolution kernels of DeepCons captured
rich information with respect to sequence conservation that 1) some of them match to known motifs that are known to be
widely distributed within conserved noncoding elements, 2) lots of them have positional bias relative to both transcription
start sites (TSS), transcription end sites (TES) and miRNA, indicating their potential roles in transcriptional control and
post-transcriptional regulation regulation, and 3) they also have strand bias relative to TES, suggesting their RNA level
regulatory effects. Given that the kernels alone can capture known sequence biases in some annotated genic elements, it
may be interesting to understand and visualize the subsequent layers. One promising solution is to apply a dimension
reduction on the activations from the dense layer and observe whether other non-coding elements such as long non-
coding RNAs, TSSs, and TESs cluster together. Other clusters may correspond to functional elements that have yet
to be properly characterized. We finally demonstrate that DeepCons could be used to score sequence conservation at
nucleotide level resolution. We rediscovered known motifs, such as CTCF, JUND, RFX3 and MEF2A, within a given
sequence by highlighting each nucleotide regarding their scores. In summary, we have developed a new deep learning
framework for studying conserved sequences using convolutional neural networks. We have made all the kernels publicly
available online at https://github.com/uci-cbcl/DeepCons as motifs, and we hope researchers may discover new
biology by studying these motifs.

Convolutional neural networks are very effective at finding local sequence patterns through its kernels, but the kernels
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will typically fail to find long range sequence patterns that correspond to complex regulatory mechanisms. The size of
the pattern mostly depends on the length of the convolution kernel, which typically ranges from a few bases to less than
one hundred bases. Using multiple convolutional layers may help to capture broader ranges of sequence patterns, but
interpreting kernels at top layers that are not directly connected to the input sequences remains difficult. Long short term
memory (LSTM) networks [28], on the other hand, are specifically designed to capture long term sequential patterns,
and have been widely applied to analysis natural languages [29]. However, LSTM is also very inefficient to train since its
backpropagation step is equivalent to passing the error through dozens, even hundreds, of layers. We applied LSTM to
classify conserved and non-conserved sequences, but due to the large training set the algorithm took prohibitively long
time to just finish even one epoch. Next, we plan to investigate multi-GPU training schemes that are now supported by
TensorFlow [30], and hopefully this solution will speed up training LSTM to within an acceptable time range. Interpreting
LSTM trained on sequence data also requires novel thinking. Visualizing the memory cell activities [31] may shed some
lights on revealing long term sequence patterns.
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5 Supplementary

5.1 Parameter configurations

DeepCons is composed of:
1. Convolutional layer of 1,000 kernels of length 10 and 500 kernels of length 20 with rectified linear activation.
2. Global max-pooling layer, with window size and stride size equals to the sequence length.
3. Fully connected dense layer of 1,500 hidden units with rectified linear activation.
4. Sigmoid output layer with cross-entropy loss.

25% dropout [32] was applied to the convolutional layer and 50% dropout was applied to the fully connected dense layer.
Adagrad [15] combined with mini-batch stochastic gradient descent of batch size 128 was used to perform parameters
update. Model training was scheduled for 100 epochs but may early stop if the validation loss did not decrease for 10
epochs.
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5.2 Data preprocessing

To build the dataset of conserved sequences, we downloaded the 46-way phastCons conserved elements [1] under mammal
category from UCSC genome browser [19] based on hgl9. The original conserved elements were further flanked 5 bp both
upstream and downstream, and overlapping elements after flanking were merged into one element. We excluded conserved
sequences that overlap with repetitive sequences (http://www.repeatmasker.org/) or coding exons. We then filtered
away conserved sequences that were either shorter than 30 bp or longer than 1,000 bp for training the model, leaving
887,577 sequences in the end. 75% of the nucleotides were preserved after the length filtering. To build the dataset of
non-conserved sequences, we randomly shuffled the 887,577 conserved sequences on hgl9, excluding repetitive sequences,
coding exons and conserved sequences themselves. We then obtained the reverse complement of each sequence. Both the
original sequence and the reverse complement were padded with the letter “N” such that all the sequences have the same
length of 1,000 bp, and were finally concatenated with a gap of 20 bp “N”. Raw sequences in text format were converted
into Numpy format with one-hot encoding, which are the input format for model training. We randomly set aside ~80%
for training (1,415,154 sequences), ~10% for validation (180,000 sequences) and ~10% for testing (180,000 sequences).
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