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The development of new imaging and optogenetics techniques to study the dynamics of large neu-
ronal circuits is generating datasets of unprecedented volume and complexity, demanding the devel-
opment of appropriate analysis tools. We present a tutorial for the use of a comprehensive computa-
tional toolbox for the analysis of neuronal population activity imaging. It consists of tools for image 
pre-processing and segmentation, estimation of significant single-neuron single-trial signals, map-
ping event-related neuronal responses, detection of activity-correlated neuronal clusters, exploration 
of population dynamics, and analysis of clusters' features against surrogate control datasets. They are 
integrated in a modular and versatile processing pipeline, adaptable to different needs. The clustering 
module is capable of detecting flexible, dynamically activated neuronal assemblies, consistent with 
the distributed population coding of the brain. We demonstrate the suitability of the toolbox for a va-
riety of calcium imaging datasets, and provide a case study to explain its implementation. 

INTRODUCTION
Brain function relies on the interaction of large neuronal populations. Anomalies of these complex neu-
ronal circuits are associated with diverse brain disorders1. Therefore, to understand brain function both 
in health and disease, it is necessary to explore the activity dynamics of neuronal networks. Recent ad-
vances in optical methods and optogenetics provide unprecedented possibilities for functional imaging 
of large neuronal populations2–5, and even whole brains6,7, with high spatial (e.g., single-neuron) resolu-
tion. These imaging datasets can be analyzed to reveal the responses of spatially distributed neuronal 
populations to sensory, motor, or task variables5,8–11. 
Nevertheless, the study of large neuronal circuits imposes new challenges to the processing and analysis 
of the complex, high-dimensional datasets typically acquired. A popular analysis approach is based on 
statistical methods of dimensionality reduction12. These methods project the high-dimensional data into 
a low-dimensional space that preserves or reveals underlying features of the data. Remarkably, they have 
been applied to expose organizing principles of neuronal networks dynamics13–15 and to detect neuronal 
assemblies9,16–18. The identification of neuronal assemblies (i.e., neuronal subsets that show correlated 
activity) is a significant step towards a systemic understanding of neuronal circuits, since they can reflect 
functional processing modules2. Importantly, neuronal assemblies are not fixed, rigid structures with 
unique functions. On the contrary, they are dynamic, multifunctional, adaptive and overlapping units3. 
For instance, a neuronal assembly could perform a computation at a given time, but at a different time 
point, a subgroup of this assembly could be part of a different assembly with a different functional role. 
Hence, neurons could belong to multiple assemblies (i.e., non-exclusive assemblies) and play diverse 
roles in different brain processes. Indeed, it is in neuronal assemblies' flexible and distributed nature 
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wherein lies one of the major difficulties in identifying them4. The ability to simultaneously record activity 
in progressively larger neuronal populations is thus paramount in these efforts. 
We recently developed a computational framework that applies dimensionality reduction and clustering 
techniques for the analysis of calcium imaging datasets, which outperforms other traditional algorithms 
in the effective detection of neuronal assemblies embedded within large neuronal networks9. Remark-
ably, this method is able to detect non-exclusive assemblies that are engaged and disengaged on a mo-
ment-to-moment basis, compatible with the distributed and dynamic nature of brain processing19. 
Here, we present a detailed tutorial for the utilization of this framework, implemented in an integrated 
computational toolbox. The toolbox consists of a complete data processing pipeline designed for the 
comprehensive analysis of fluorescence imaging data. It includes modules for video pre-processing, 
morphological image segmentation into regions of interest (ROIs) corresponding to single neurons, ex-
traction of fluorescence signals, analysis of ROI responses to stimulus and/or behavioral variables, detec-
tion of assemblies of ROIs, exploratory analysis of network dynamics and the automatic generation of 
surrogate shuffled datasets to act as controls for statistical purposes. It thus accomplishes a complete 
computational workflow from raw imaging data to interpretable results on neuronal population dynam-
ics. Typically, the full protocol can be completed on a workstation computer in 1–2 hours, depending on 
the size of the dataset.  
Analytical demands vary greatly depending on the scientific questions and the nature of the datasets. 
Therefore, the pipeline is organized in flexible sub-modules that can be bypassed, replaced or used in a 
stand-alone manner, by allowing the user to import and integrate data and/or results from other pre-
ferred methods at different critical points of the pipeline. 

DESCRIPTION OF THE TOOLBOX
Overview 
The toolbox includes four main modules (Fig. 1). The first pre-processing module (steps 1-30) contains 
sub-modules for smooth video registration, automatic detection and interactive manual curation of mo-

tion artifacts and morphological single-neuron ROIs, and automatic detection of ROIs' significant fluo-
rescence events associated with neuronal calcium transients. Since the sub-module defines ROIs that 
correspond to single neurons, we interchangeably use the terms “ROI” and “neuron” throughout the text. 
The second module (steps 31-37) allows the characterization of neuronal responses (i.e., tuning curves) 
with respect to an experimental variable. It also enables mapping of the spatial topography of these re-
sponses, setting appropriate color mappings to efficiently visualize the response features across the im-
aged optical plane. The third module (steps 38-47) performs the detection of neuronal assemblies 
through different methods, including that which we recently introduced9. The fourth module (steps 
48-52) is intended for exploratory analysis of these assemblies. It contains sub-modules for interactive 
exploration of the assemblies' spatio-temporal organization, and visualization of assemblies' activity in 
relation to experimental contexts and/or events (e.g., sensory stimulation, behavioral events, etc.). The 
fifth and final module (steps 53-55) allows for the creation of surrogate control assemblies, useful for sta-
tistical comparison against the original assemblies’ features (spatial, functional, etc; see Box 1). Except 
for the processing pipeline depicted in Figs. 1,3 and  Supplementary Figs. 1-2, all the other figures pre-
sented here are direct screenshots and montages of images and graphs automatically produced by the 
toolbox. 
The methods implemented in this protocol have been extensively tested with in vivo imaging data from 
zebrafish larvae7,9,20 and mice (see Fig. 2) expressing genetically encoded calcium indicators (GCaMPs; 
see Figs. 2b-d and 4-9) or injected calcium indicator dyes (OGB 1-AM; see Fig. 2a). The analyzed imaging 
data was obtained through two-photon laser scanning fluorescence microscopy9,10 (see Figs. 2a-c, 4 and 
6-9), and single-photon light-sheet fluorescence microscopy (see Figs. 2d and 5).  
For all modules, we provide the source code implemented in MATLAB functions and scripts, which the 
user can adapt and modify, if needed. Given the large scope of the pipeline, in this section we limit dis-
cussion to an initial conceptual overview of each module, but we encourage users to gain a better appre-
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ciation of the toolbox through hands-on protocol experience with the provided case study (see Results). 
Most of the underlying mathematical details have been extensively described in Romano et al9.  
 

Figure 1. Overview of the toolbox workflow. Colored boxes indicate the processing modules (color code in top left corner). 
Dashed boxes correspond to optional procedures. Tutorial step numbers related to each procedure are indicated in the bottom-
right corner of each box. Single-headed thin and thick arrows respectively depict the processing-pipeline flow, and the option to 
import pre-analyzed data from other methods into the stand-alone modules of the pipeline. 

The pre-processing module 
This module has several sub-modules that we describe in this section. 

Drift correction 
Longitudinal imaging experiments are prone to present in-plane x-y drifts of the imaged optical section. 
This drift has to be compensated for to obtain stable imaging recordings. This compensation is carried 
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out by the first sub-module (step 1). The series of image stacks is processed with the effective and widely 
used Template Matching image registration plugin of ImageJ. Nevertheless, we often observed that this 
plugin could fail at registering imaging videos that show episodes of large fluorescence variation associ-
ated with global neuronal activations. For situations like this, we included an additional program that 
solves this issue (see Troubleshooting in step 1).   

Artifact detection 
In vivo imaging may present image frames with motion artifacts produced by diverse sources, like animal 
movements, respiratory or cardiac/vascular pulsation, etc. The following sub-module (steps 2-7) detects 
and discards these aberrant frames. First, a program automatically detects a series of candidate frames 
with movement artifacts by performing a cross-correlation across the imaging frames and an image tem-
plate. The  template consists of a spatially smoothed image frame that preserves the major anatomical 
landmarks, with reduced image noise (this is particularly important for laser-scanning imaging tech-
niques, like two-photon microscopy). The second part of this sub-module (steps 8-9) is an interactive 
graphical user interface (GUI) that allows for manual inspection and curation of each artifact candidate. 
However, if complete automatization is desired, the GUI has the option to skip the individual inspection 
of each candidate. 

ROI segmentation 
The following sub-module uses digital image processing techniques to perform morphology-based image 
segmentation, in order to separate the ROIs that correspond to individual cells from the signal of other 
cells and the surrounding neuropil (steps 10-19). As expected, the success of this module depends on the 
image's spatial resolution, the anatomy of the imaged region, and the cellular labeling by the fluorescent 
reporter. Here, we demonstrate that it can successfully process remarkably different datasets (see below 
and Figs. 2 and 6). Nevertheless, if the user is not satisfied with the results obtained, the automatic ROI 
segmentation can be bypassed, since the module's GUI can also be used to manually draw all the ROIs, or 
to automatically implement a custom hexagonal grid of ROIs (see Supplementary Fig. 1a and Fig. 5). 
The automatic detection of ROIs is performed in a few simple and interactive steps in the GUI, which are 
explained in the next paragraph. First, the image of the optical plane is spatially normalized. Then, two 
thresholds, thrsoma and thrneuropil must be set to obtain the automatically detected ROIs. The GUI then al-
lows the user to curate the resultant ROIs. For this, a series of ROI morphological criteria (area, fluores-
cent intensity, and perimeter circularity) can be applied to rapidly filter undesired ROIs (step 18; see Fig. 
6b). Finally, the GUI allows the user to manually add, delete or modify the ROIs (step 19; see Fig. 6c). 
We now explain the calculations involved in these steps. Synthetic calcium dyes label cells rather uni-
formly. On the other hand, genetically encoded calcium reporters are typically expressed in the cytosol, 
and can be excluded from nuclei or not. Imaging cells where the reporter is excluded from the nuclei re-
sults in characteristic ring-shaped fluorescent labels; where the reporter is present in nuclei, imaging re-
sults in uniformly filled spot labels. Therefore, this sub-module allows the user to specify the kind of fluo-
rescent labeling used (i.e., labeled nuclei or not), switching between algorithms tailored to detect ROIs in 
either of these two conditions. 
The steps of the ROI segmentation algorithm are the following. First, the imaged video is averaged across 
frames to obtain the image avgImg. Fluorescent labeling may be uneven in the imaged plane. Therefore, 
the intensity of  avgImg must be spatially normalized to avoid biases in the segmentation. For this, we 
first filter avgImg with either a 10% or a 90% order-statistic filter (with a running square window), obtain-
ing avgImg10 and avgImg90, respectively. We then calculate the spatially normalized image avgImgNorm as 
avgImgNorm = ( avgImg – avgImg10 ) / ( avgImg90 – avgImg10 ). The user can set the size of the square run-
ning window so that avgImgNorm clearly shows the fluorescent-labeled cells with an intensity that does 
not vary significantly across the imaged plane. If cell nuclei are unlabeled, avgImgNorm is converted to its 
complement (i.e., its negative), converting the unlabeled nuclei into bright spots. The user then has to 
interactively set two threshold parameters, thrSoma and thrNeuropil, that will result in binary masks that 
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identify cell somata and the regions that surround them (i.e., the neuropil), MaskSoma and MaskNeuropil, re-
spectively (see left panel in Fig. 6a). MaskNeuropil  is calculated through a simple thresholding procedure on 
avgImgNorm using thrNeuropil. MaskSoma is calculated through an extended-maxima transform on avgImgNorm, 
which consists of the regional maxima of the H-maxima transform of avgImgNorm (obtained by suppress-
ing all maxima in avgImgNorm whose height is less than thrSoma). Then, both MaskSoma and MaskNeuropil are 
imposed as regional minima to the image complement of avgImgNorm. Finally, a watershed transforma-
tion is performed to obtain the ROI perimeters. The imposition of regional minima in MaskNeuropil prevents 
the watershed algorithm from finding “catchment basins” (i.e., ROIs) in unwanted regions (i.e., the neu-
ropil). This allows the implementation of the watershed transform in imaged regions where labeled cells 
are spatially distributed in a sparse or scattered manner. Finally, the GUI can be used to manually curate 
ROIs, as previously explained. 
We provide 5 examples of single-neuron ROI detection performance obtained with two-photon imaging: 
i) for an injected synthetic dye that labels the entire volume of the neurons (OGB-1 AM) in mouse visual 
cortex21 (see Fig. 2a); ii) for mCherry-labeled nuclei in a GCaMP6s imaging experiment obtained by viral 
injections in the mouse somatosensory cortex11,22 (see Fig. 2b); iii) for large-field imaging of nuclei-ex-
cluded GCaMP3 in transgenic zebrafish larvae (see Fig. 2c); iv) for a preparation similar to iii but imaging a 
smaller field (the provided case study; see Fig. 6); and v) an example of single-neuron ROI detection in 
single-photon high-acquisition rate (100 Hz) light-sheet imaging of a transgenic zebrafish expressing 
GCaMP5 (see Fig. 2d). These examples illustrate the algorithm's performance in settings that differ 
markedly in neuronal labeling density (examples iv and i being the most and less dense, respectively), 
and with imaging techniques of different spatial resolution and acquisition rates (two-photon laser scan-
ning and single-photon light-sheet microscopies). As explained in Results, we typically obtain a >85-90% 
success rate in automatically detecting single-neuron ROIs.   

Calculation of relative fluorescence variation 
The final sub-module (steps 20-30) calculates the ROIs' relative fluorescence variation (∆F/F0) and auto-
matically detects significant fluorescence transients in a completely automated manner, based on a few 
experimental parameters that the user must set. It involves performing an (optional) signal correction 
from neuropil fluorescence contamination, a data sanity test, and the detection of the baseline ROI fluo-
rescence.  
Microscopy techniques are continuously improving in resolution power. However, even two-photon fluo-
rescence microscopy has relatively limited resolution (especially axially) for single-neuron in vivo imag-
ing. Thus, the neuropil fluorescence signal can substantially contaminate the somatic signal23,24 so that 
Fmeasured = Fsoma + α  Fneuropil. To correct for this, the module allows the user to set the parameter α so as to 
subtract a local perisomatic neuropil signal from the measured signal11 (step 23). To that end, for each 
ROI, the corresponding local neuropil signal is automatically obtained from a circular area with a 20 μm 
radius that surrounds the ROI in question and excludes all other ROIs (Fig. 3a). Neuropil subtraction is 
particularly important when imaging loosely scattered neurons surrounded by neuropil (e.g., Fig. 2a,b). 
Indeed, signal contamination from the neuropil can notably affect the measurement of the correlations 
between the neuronal fluorescence time courses (Fig. 3b-e). However, the appropriate value of α is still a 
mater of debate25.  
The module then performs a data sanity test that discards ROIs whose fluorescence signal is too low and/
or presents artifactual fluorescence traces (step 22). For the detection of these artifacts, the module first 
calculates for each ROI a smooth estimate of its slowly varying fluorescence baseline (Fsmooth). This base-
line reflects slow fluctuations unrelated to the faster calcium transients associated with neuronal activa-
tions (Supplementary Figure 1b,c), and it is calculated using a running-window average of the 8th per-
centile of the ROI’s fluorescence26, with a time window 40 times larger than the decay time constant of 
the calcium reporter (τ). This procedure results in a Fsmooth that robustly tracks the ROI’s basal fluores-
cence level, without being affected by the fast activation transients. Thus, if an ROI is associated with a 
Fsmooth that shows sudden variations exceeding a user-selected threshold, the ROI is discarded (in prac-
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tice, this eliminates ROIs of unhealthy neurons or healthy neurons that move in or out of focus during the 
imaging session). For the calculation of the ROIs’ ∆F/F0, the user can choose to estimate F0 in two ways 
(step 24): i) use the average ROI fluorescence in a user-selected time window (typically, a time window 
immediately before a particular experimental event, e.g. sensory stimulation, animal movement, etc.); ii) 
use Fsmooth. Option i is useful for short imaging sessions with clearly defined experimental events, while ii 
is particularly useful for rather long sessions where F0 can vary over time. 

Figure 2. Detection of ROIs corresponding to single neurons. Four examples from different animal models, brain regions, imag-
ing techniques and calcium indicators. Left: imaged optical planes. Perimeters of correct and incorrect automatically detected 
ROIs are shown in green and red, respectively. Yellow perimeters, detected ROIs that had to be manually curated, or undetected 
but manually drawn. Right: representative ∆F/F0 traces (black) and significant fluorescent transients detected (red). (a) Mouse 
primary visual cortex bolus injected with OGB-1 AM (two-photon imaging, 256x256 pixels, 30 Hz sampling rate). Data from Scholl 
et al21. (b) Mouse somatosensory cortex, where nuclei of excitatory neurons are transgenically labeled with mCherry (two-photon 
imaging, 256x256 pixels, 7 Hz sampling rate). Calcium dynamics monitored with GCaMP6s. Data from Peron et al11,22. (c) Trans-
genic zebrafish larva pan-neuronally expressing GCaMP3 (two-photon imaging, 512x256 pixels, 1 Hz sampling rate). (d) Right 
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hemisphere of the optic tectum of a transgenic zebrafish larva pan-neuronally expressing GCaMP5 (single-photon light-sheet 
imaging, 232x242 pixels, 100 Hz sampling rate). 

 

Figure 3. Correction of neuropil fluorescence contamination. (a) Left: optical plane imaged with two-photon microscopy of the 
mouse somatosensory cortex (same data as Fig. 2b). Right: examples of the detected ROIs (red) and their circular perisomatic 
masks used to calculate the local neuropil signals (white). Perisomatic masks are overlapping, but each ROI is associated with a 
single circular mask. Black holes inside the perisomatic masks are other detected ROIs not included in the local neuropil signal 
calculation. (b) Left: raw fluorescence traces obtained with the perisomatic masks shown in a (neuropil signal). Right: pair-wise 
correlation matrix for the signals shown in the left. Note the high temporal correlation across the traces. (c) Same as b, for the 
raw fluorescence traces of the ROIs shown in a (somata). (d) Same as c, for the corrected ROI fluorescence traces, obtained by 
subtracting the traces shown in b from the corresponding traces shown in c, with α=0.9. Note the reduction in the temporal cor-
relations, compared to those found in c, despite the small changes of the individual fluorescence traces. (e) Relationship be-
tween the pair-wise correlations shown in c and d. 
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Inference of significant fluorescence transients 
This sub-module automatically infers which fluorescence transients are significantly associated with 
neuronal activations. A few options are available, and users can choose the inference procedure that best 
suits their imaging experiments. This is a critical step for the subsequent analysis. Therefore, while this 
sub-module implements an algorithm for the detection of significant transients, we again allow users to 
bypass this algorithm and import results from alternative methods27–29, if preferred (step 29).   
To infer the statistical significance of fluorescence transients, the algorithm implemented in the toolbox 
considers that any event in the fluorescence time series data belongs to either a neuronal activity process 
or to an underlying noisy baseline. Thus, the sub-module first performs a key step for this inference, 
which is the estimation of the ROIs' fluorescence noise levels (i.e. the baseline fluorescence noise scale 
σ). The sub-module allows for the estimation of σ  using two options (step 25): 1) by fitting a Gaussian 
process to the negative ∆F/F0 fluctuations of each ROI (i.e., those below baseline, which are not related to 
calcium transients and hence are due to measurement noise; Supplementary Figure 1d) and estimating 
the standard deviations of the baseline Gaussian process; 2) by estimating the standard deviations of the 
ROI's ∆F/F0 traces after excluding the largest ∆F/F0 excursions (which should represent the calcium-tran-
sient peaks). Finally, we provide two options for performing the inference of significant transients (steps 
26). First, the user can choose a straightforward method that uses a static fluorescence threshold for each 
ROI. Only those fluorescence excursions that exceed a multiple of the ROI's are considered significant. 
Second, alternatively, the user can adopt a more complex method (but more robust against false posi-
tives), which exploits the estimated model of the underlying noise and applies a dynamic threshold that 
depends on both the ROI's σ and the biophysics of the calcium reporter. For this, the module implements 
a Bayesian odds ratio framework that analyzes fluorescence transitions across imaging frames. It labels 
as significant those transitions whose dynamics meet two conditions: i) they cannot be explained by the 
underlying fluorescence noise, according to a user-selected confidence threshold; ii) they are compatible 
with the reporter’s τ. Finally, the module automatically displays the ∆F/F0 traces and the significant tran-
sients found (step 30; Figs. 2 and 6d). 

The module for analysis of responses 
Several studies aim to relate neuronal activity to experimental events (e.g., sensory stimulation, behav-
ioral response, etc.). Indeed, imaging is particularly suited for revealing the spatial distribution of neu-
ronal responses (i.e., topographic sensory/behavioral functional maps), which may be crucial to under-
stand brain coding strategies. This module (steps 31-37) associates ROI fluorescence responses with a 
given experimental variable, and visually displays them on the imaged optical plane to assess their topo-
graphical organization. This module can also be used in a stand-alone manner, independent of the previ-
ous modules of the processing pipeline, since the user can import ∆F/F0 and ROIs obtained using other 
procedures (see Fig. 1; step 31). For the topographic mapping of ROI responses, there must be a continu-
ous parametric relation between the user-provided variable being mapped and the experimental event 
(e.g., the frequency of an auditory stimulus when mapping tonotopicity, the position of a visual stimulus 
when mapping retinotopicity, etc.). 
The user first needs to provide timing information corresponding to the events of interest (e.g., the time 
of the stimulus), and the module automatically isolates, regroups and displays event-locked single-trial 
and trial-averaged ROI ∆F/F0 responses (see Figs. 4d,e). If significant fluorescence transients were in-
ferred in the previous module (or through other methods and imported), they will be highlighted, allow-
ing for the evaluation of ROI activations at the single-trial level. This automatic ordering and regrouping 
of trial responses is particularly useful for mapping stimuli-induced responses, since studies usually ran-
domize trial ordering to avoid neuronal adaptation to the stimuli. Moreover, the information in these trial 
responses is also summarized in corresponding ROI “tuning curves”, by plotting the trial-averaged ROI 
∆F/F0 responses during a time window locked to event onset as a function of the variable (see bottom 
right panels in Figs. 4d,e).  
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Figure 4. User interface screenshots of the calculated neuronal responses to experimental events. The larva was visually 
stimulated with light spots at different visual field azimuth angles. (a) ROIs are colored with an HSV color code representing their 
preferred azimuth angle (Peak mapping parameter; hue), azimuth selectivity (Tuning width; saturation) and average response at 
preferred azimuth (Response strength; value). The full HSV channel range was used. Due to the skewed distribution of the re-
sponses, only a few responsive ROIs can be visualized. (b) Offsetting and clipping of the saturation and value channels to im-
prove visualization. Black, original values used in a; red, rescaled values used in c. (c) Same data shown in a, but with the 
rescaled channel ranges. After this step, the retinotopic organization of the OT becomes evident. (d and e) Screenshots of the 
responses of two ROIs selected by clicking on Select ROI in c. Average (black) and single-trial (gray) ΔF/F0 responses are orga-
nized according to the stimulus values, where significant trial responses are shown in red. Bottom right, tuning curves of the 
ROIs. Black, mean response; gray patch, standard error. Note how the responsive but less selective ROI in e is shown with a more 
whitish color code (low saturation). 

Finally, these ROI tuning curves are color-coded and superimposed on the imaged optical plane (see Fig. 
4c). For this, the algorithm uses a hue-saturation-value (HSV) colormap (see Supplementary Fig. 2a), 
where hue represents the variable value vpeak that corresponds to the tuning curve peak (the ROI “pre-
ferred” variable value), saturation depicts the tuning width around vpeak (the ROI specificity for vpeak), and 
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value represents the actual ∆F/F0 value at vpeak (∆F/F0peak; the ROI response strength). If the calculated 
ROI responses are associated with a single type of experimental event (e.g., repeated auditory stimula-
tion with a single tone frequency), saturation is not used in the color code, since response specificity can-
not be defined. As mentioned above, for this HSV color code to make intuitive sense, the variable must 
parametrically relate to the experimental event. In some cases, the distribution of ROI response intensi-
ties may be highly skewed (a few very strong responses dominating a set of weaker ones). This can hinder 
the appropriate visualization of the data, if the full range of responses is represented without any color 
rescaling procedure (e.g., Fig. 4a). Therefore, the module allows clipping (to flatten signals that exceed a 
threshold) and offset of the saturation and value channels, improving data interpretability (see Fig. 4b; 
compare Fig. 4c with Supplementary Fig. 2b, where the saturation and value channels were not taken 
into account). Moreover, the user can choose to inversely relate ∆F/F0peak to a transparency channel, 
which smooths out the weak and noisier responses, highlighting the most significant ones. 

The module for detection of assemblies 
As for the response-analysis module, this module  (steps 38-47) can also be used as a stand-alone mod-
ule independent of the previous processing pipeline (see Fig. 1). To define the assemblies (clusters of 
ROIs with similar activity dynamics), the module can detect correlated ROIs by taking into account the 
unfiltered ∆F/F0 traces or by focusing only on the significant ∆F/F0 transients. Furthermore, it can be used 
to analyze single-plane (see Fig. 7) and multi-plane volumetric imaging experiments (see Fig. 5). 
The module has two sub-modules. The first and most important (steps 38-46) implements data cluster-
ing. This sub-module applies three different clustering algorithms: i) PCA-promax clustering; ii) k-means 
clustering; iii) hierarchical clustering. Both ii and iii are standard and widely used clustering methods30,31, 
and i was introduced and described in detail in Romano et al. 2015. Here we briefly describe these, em-
phasizing the more novel PCA-promax approach.  
PCA-promax implements a fully automated method that searches for ROIs whose activations are corre-
lated on average along the entire experiment, but it is also capable of defining significant ROI clusters 
episodically activated in synchrony. Since a given ROI could belong to several functional groups, the algo-
rithm is tailored to define non-exclusive ROI assemblies (i.e., it allows for potential overlap between the 
detected clusters).  
The procedure relies on previously proposed techniques18,32. Briefly, it consists of two processing steps. 
First, it z-scores the activity of each ROI and reduces the dimensionality of the complete z-scored dataset 
of ROI activities through principal component analysis (PCA). The initial z-scoring homogenizes the vari-
ance across ROIs, allowing PCA to reveal the global structure of ROI activity covariance. To define the as-
semblies, it then uses a second algorithm to partition this space of reduced dimensionality, by means of 
non-orthogonal factor rotation, promax33. This latter step extends the simpler PCA-clustering method32 to 
non-exclusive assemblies. 
Dataset dimensionality reduction is obtained by only keeping principal components (PCs) with ei-
genvalues greater than λmax, a theoretical lower bound to the eigenvalues of informative PCs given by the 
Marčenko–Pastur distribution32,34 (equation 1)  

      
     (1) 

where N and T are the number of ROIs and imaging frames, respectively. In practice, for long-term imag-
ing data (30 min videos sampled at ~5 Hz), this procedure typically reduces data dimensionality by ~100 
fold.  
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Figure 5. Detection of assemblies 
of correlated ROIs in zebrafish 
whole-brain light-sheet imaging 
reveals the spatial structure of 
brain activity. Example of a trans-
genic zebrafish larva pan-neu-
ronal ly expressing GCaMP5 
(HuC:GcaMP5). The larva was vol-
umetrically scanned with fast 
multi-plane single-photon light-
sheet microscopy. 40 optical sec-
tions, separated by 5 μm steps in 
the axial direction, were imaged 
almost simultaneously at 2.1 Hz. 
Due to the lack of single-neuron 
resolution in this imaging dataset, 
a grid of hexagons (9 μm in diam-
eter representing approximately 
the area of an average neuron) 
was imposed over each imaged 
optical plane to obtain a total of 
>40,000 ROIs laid out over the 
entire nervous system. (a-f) Some 
of the ROI assemblies found with 
the PCA-promax approach, dis-
played over the maximal intensity 
projection of all imaged optical 
sections (for individual optical 
sections see Supplementary 
Video 1). (a-d) Pairs of symmetric 
unilateral assemblies. (e-f) Single 
bilaterally symmetric assemblies. 
(g) All ROI assemblies found with 
the PCA-promax method, dis-
played over the maximal intensity 
projection of all imaged optical 
sections (for individual optical 
sections see Supplementary 
Video 2). In all panels, assemblies 
are displayed with the same color 

code, according to the similarity of their activity dynamics (the more temporally correlated, the more similar the color; except for 
the temporally correlated assembly pair shown in c, which was colored differently to facilitate visualization). (h) Same as g, but 
for assemblies found using k-means, color-coded according to the similarity of their activity dynamics. To allow for a comparison 
between g and h, the dimensionality of the dataset was reduced through PCA before clustering (otherwise, clustering did not 
converge). A correlation metric and a complete linkage were used. Note how this clustering reveals assemblies whose spatial 
organization is roughly consistent with those shown in g, but exposes a much less biologically relevant fine structure. 

As mentioned previously, since we are looking for non-exclusive assemblies, we relax the PCA orthogo-
nality condition18. Therefore, to delineate the assemblies, the algorithm works on a space of obliquely 
rotated components (promax), that sparsely concentrates the PC loadings along non-orthogonal rotated 
PCs. Hence, after standardizing the loadings on rotated PCs by means of a z-score, a given ROI is included 
in a particular assembly defined by a rotated PC if its z-scored loading on that rotated PC exceeds a 
threshold value. This threshold is easily estimated as the first clear minima in the distribution of z-scored 
maximal ROI loadings (defined by the user at step 42; see Fig. 7a). The algorithm then merges clusters 
determined by two rotated unitary PCs if the dot product of the latter exceeds 0.6 (i.e., clusters with high-
ly similar neuronal compositions; in practice a 0.6 value identified assembly pairs with exceptional over-
lap). As a final constraint, only significantly correlated and synchronous clusters are kept (p < 0.05, com-
pared to surrogate control datasets (see Random surrogate assemblies in Box 1). The assemblies ob-
tained are then automatically displayed. 
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Briefly, k-means partitions data in a fixed number of clusters k, defined by the user. It involves randomly 
selecting k initial centroids and assigning each point (e.g., each neuron) to their closest centroids, thus 
forming k preliminary clusters. The centroids are then updated according to the points in the clusters, 
and this process continues until the points stop changing their clusters (i.e., convergence of the cen-
troids). Typically, the clusters defined by k-means are highly independent and uncorrelated (i.e., they 
present low inter-cluster correlations). 
On the other hand, (agglomerative) hierarchical clustering groups data by creating a cluster tree or den-
drogram. The tree represents a multilevel hierarchy, where clusters at one level are joined as clusters at 
the next level. First, the similarity between every pair of variables (e.g., neuronal fluorescence traces) is 
calculated. Then, these similarities are used to determine the proximity of variables to each other. Vari-
ables are successively paired into binary clusters, and newly formed clusters are grouped into larger clus-
ters in a bottom-up manner, until a hierarchical tree is formed. Finally, clustering is performed by deter-
mining where to cut the hierarchical tree, and assigning all the objects below each cut to a single cluster. 
For both k-means and hierarchical clustering, the user can choose to cluster either the original z-scored 
dataset or the dimensionality-reduced dataset obtained through PCA according to Equation 1. In con-
trast to PCA-promax, for both k-means and hierarchical clustering, a number of important parameters 
have to be set. The user must choose between using a euclidean or a pair-wise correlation metric to cal-
culate distances between variables. For hierarchical clustering only, the user must choose if the distance 
between two clusters is defined by the shortest or longest distance between two points in each cluster 
(single and complete linkage clustering, respectively). Being classic methods, the particularities of clus-
tering with these metrics and linkages has been extensively reviewed30,31. Finally, to obtain the final clus-
tering for both methods, the user has to set the total number of clusters to look for in the data (k for k-
means, and the smallest height at which a horizontal tree cut leaves k clusters for hierarchical clustering). 
The second sub-module (step 47) calculates the time series of the assemblies' significant activations. For 
this, it uses a matching index, MI9,35,36. The MI is defined as 

     (2) 

where Pati is the binary activity pattern of imaging frame i, and Patj is the binary target pattern of assem-
bly j (i.e., binary N x 1 vectors representing the complete population of N ROIs, with ones indicating active 
ROIs and zeros indicating those inactive). Norms are equal to the number of ones in each vector. The MI 
quantifies the proportion of ROI activations that are common to both patterns with respect to the total 
number of activations present in both patterns. It is valued between 0 (no overlap in activations) and 1 
(perfect overlap in activations). To estimate the significance of the assemblies' MIs over the course of the 
experiment, the algorithm uses the hypergeometric distribution. Under the null hypothesis of indepen-
dent ROI activations, this is a discrete distribution that describes the probability of having k “hits” with n 
target ROI activations in a population of N ROIs, showing K activations at a given moment. Therefore, it 
allows estimation of the probability of observing a given activation match by chance, with ROIs indepen-
dently activated. In step 47 the user can select the threshold p-value to consider an assembly activation 
significant. 

The module for exploratory analysis of assemblies 
The first sub-module of this module (steps 48-50) allows for the exploration of the assemblies' overall 
spatial (i.e., topographic) arrangement. Individual assemblies can display diverse topographies, and it is 
informative to analyze whether there is any spatial organization across assemblies. In order to reveal 
their collective topographic layout, the user can order assemblies according to the similarity of their ac-
tivity dynamics, or the similarity of their spatial distribution. Irrespective of these two arrangement pro-
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cedures, assemblies' ROIs are displayed superimposed on the imaged optical plane, color-coded accord-
ing to the arrangement obtained.  
For the first activity-based arrangement option, the correlation between the assemblies’ MIs dynamics 
are used as a distance measure to build a hierarchical clustering tree of the assemblies’ activity. These 
distances and the clustering tree are then used to arrange assemblies according to the optimal leaf order 
that maximizes the similarity between adjacent leaves by flipping tree branches. Colors are then auto-
matically assigned to represent the leaf order. In this way, assemblies with similar dynamics will be simi-
larly colored. This is an unsupervised procedure that does not need user input, and thus it is suitable for 
automatic analysis of large datasets. An example of this kind of ordering procedure is shown in Fig. 5 for 
whole-brain light-sheet imaging.  
For the second spatial-based analysis procedure, the user indicates an anatomical axis in the imaged 
plane, and the assemblies will be ordered according to the position of their centroids along the chosen 
axis. The user can choose the left-to-right or bottom-to-top axis, or draw an arbitrary curve. The user can 
segment the imaged plane in different regions with different axes (see Fig. 7c). Assemblies that “belong” 
to a particular imaged region (i.e., the majority of its component ROIs reside in the region) are then color-
coded according to their order over the corresponding axis. If there is any particular spatial arrangement 
along the axis, a clear color gradient should be observed (see Results and Fig. 7d). 
The second sub-module (steps 51-52) allows an interactive inspection of the neuronal population activity 
raster plot and the dynamics of assemblies' activations. The user can import color-coded time tags to 
highlight the network and assembly dynamics associated with these experimental events (e.g. behavioral 
epochs, sensory and/or neuronal stimulation times, etc.; see Results and Fig. 8). 

The surrogate control module 
When validating results obtained from large multidimensional datasets, the use of appropriate control 
surrogate datasets is critical. This module (steps 53-55) allows pooling user-defined features of neurons 
within the assemblies (e.g., pooling the average neuronal activation frequencies, the neuronal tuning 
curves, neuronal phenotypes, pair-wise activity correlations, pair-wise topographical distances, etc.) to 
assess the statistical significance of the assemblies with respect to surrogate shuffled datasets. Certainly, 
the choice of control datasets that serve as null models will depend on the particular scientific question 
being statistically tested. Here, we focus on two particular kinds of control datasets. We preserve the im-
aged fluorescence dynamics of all ROIs, and regroup ROIs according to: i) surrogate shuffled assemblies 
(where the ROIs of any given original assembly are randomized); ii) surrogate assemblies that preserve 
the original assemblies' spatial features (see Box 1 and Fig. 9). 

COMPARISON TO OTHER METHODS 
ROI segmentation 
ROIs can be determined with algorithms designed to detect either morphological11,23,37 or activity8,28,38 
features (e.g., pixels forming round fluorescent spots, or temporally correlated pixels, respectively). 
These approaches have different advantages and shortcomings. Clearly, the information embedded in 
the temporal dynamics of fluorescence can be exploited to obtain ROIs. However, activity-based methods 
are usually prone to target highly active neurons, whose signal-to-noise ratios (SNRs) are strongest. One 
popular activity-based approach uses independent component analysis (ICA) to parse the multi-dimen-
sional signal into a combination of sparse and statistically independent signals28. However, this algo-
rithm becomes impractical for large fields of view with several hundred ROIs, and assuming statistical 
independence (i.e., decorrelation) of signals can lead to an incorrect segmentation of single-neuron ROIs. 
Similarly, methods that aggregate correlated pixels8 may fuse adjacent temporally correlated neurons 
(indeed, neighboring neurons in the mouse cortex tend to be more correlated than distant ones39). This is 
particularly problematic for studies of neuronal coding, and clearly limiting when investigating neuronal 
activity correlations (e.g., when looking for neuronal assemblies).  
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On the other hand, morphological-based approaches are computationally less intensive and, most im-
portantly, unbiased with respect to the neurons’ activity patterns. The caveat of this approach is that it 
may result in relatively imprecise ROI perimeters, and could potentially miss ROIs with low baseline fluo-
rescence in weakly labeled imaged regions (for example, due to the spatially non-uniform staining of syn-
thetic dye injections). 
Our toolbox implements a more conservative morphological-based algorithm. To avoid segmentation 
problems of the imaged optical planes with uneven fluorescent labeling, the segmentation is performed 
on a spatially normalized image avgImgNorm of the acquired optical plane (see ROI segmentation in The 
pre-processing module). Importantly, the morphological algorithms presented here performed very well 
in the different preparations and the techniques studied (Fig. 2). Nevertheless, the GUI allows the user to 
skip the automatic ROI detection. In this case, the ROIs can be drawn manually, or a hexagonal grid of 
ROIs of a desired size can be implemented. Furthermore, the pipeline allows the import of ROIs obtained 
with other methods, such as the promising spatio-temporal hybrid approaches that are emerging40, 
which seems to perform remarkably well in demixing fluorescent signals from potentially overlapping 
neuronal sources.  
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BOX 1 
Surrogate assemblies for analysis of assemblies' features 
Assemblies consist of groups of neurons (i.e., groups of ROIs). Do neurons that belong to a given assembly share 
any particular (spatial, molecular, activity-related, etc.) properties? If so, this could indicate an underlying orga-
nizing principle. Simply pooling assembly neurons and comparing their features is not enough, especially con-
sidering large heterogeneous neuronal populations composed of different sub-populations unevenly repre-
sented in the data. One solution for this potential population sampling bias is to statistically test against surro-
gate control assemblies. For this purpose, for each experiment we created different sets of assemblies shuffled 
in different ways (see Random surrogate assemblies and Topographical surrogate assemblies below) and con-
trolled for different properties of the data. The significance of a given assembly feature observed in the data is 
thus quantified with respect to the surrogate datasets by calculating the probability of obtaining a feature value 
at least as extreme as the one measured in the data (p-value) in the surrogate assemblies.  
Random surrogate assemblies (RSAs) 
For these control datasets, we permute the indexing of the entire neuronal population for each experiment. 
These permutations allow the creation of a set of shuffled surrogate assemblies for each experiment by using 
the original dataset clustering (i.e., the original non-permuted neuronal assemblies), but sampling neurons ac-
cording to the permuted indexes. This procedure randomizes only the spatial topographies of the assemblies, 
while keeping every other feature of a given dataset intact (e.g., the particular overlaps between assemblies, the 
number of neurons per assembly, the topographical position and the activation time series of each neuron). 
Conserving these properties enables testing the specificity of the neuronal associations present in the assem-
blies.  
Topographical surrogate assemblies (TSAs) 
To test the specificity of neuronal assemblies' features, while controlling for their spatial layout, we impose on 
the random surrogate assemblies the additional constraint of conserving the distribution of the relative pair-
wise physical distances between neurons in the original assemblies, p(d). To build the TSAs for a given assembly 
with n neurons, we randomly choose a neuron and iteratively add n-1 neurons to the assembly's TSA in a way 
that conserves the assembly's p(d) as best as possible. To this end, at a given step j of the iteration (when the 
TSA has already j-1 neurons), we add a new neuron whose pair-wise distances to the j-1 TSA neurons are most 
similar (in a mean-squared-error sense) to any given set of j-1 distances present in the original assembly. When 
the iteration of a TSA is complete, we only keep the TSA if its p(d) is not statistically different from the original 

assembly's p(d) (significance threshold is p-value>0.05; typically we obtain p-value>0.7). 
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Inference of neuronal activations from fluorescence transients 
Calcium imaging is usually performed to monitor neuronal spiking activity. However, inferring spikes 
from fluorescence fluctuations is a complicated computational problem, due to the complex relationship 
between these two variables. The reporter’s fluorescence is a non-linear function of intracellular calcium, 
and the latter is also non-linearly related to the recent neuronal activity history. However, different fluo-
rescence deconvolution or template matching methods have been proposed to infer estimates of spike 
trains and spike-rate dynamics27,29,40,41. Despite not accounting for the non-linear spikes-fluorescence 
coupling, these algorithms have been reported to be fairly effective. Nevertheless, their performance crit-
ically depends on many experimental factors, requiring parameter tuning that usually involves electro-
physiological recordings. Moreover, neurons show diverse relationships between the number of spikes 
fired and their fluorescence changes42, therefore the parameters obtained for one set of neurons will not 
necessarily apply to other sets of neurons or experiments. Hence, we opted to keep signal filtering as 
minimal as possible, and implemented algorithms to detect significant fluorescent transients that can 
confidently be associated with neuronal activity. Importantly, as in deconvolution and template match-
ing methods, our framework allows the extraction of fluorescence transients whose temporal dynamics 
are compatible with the calcium reporter biophysics (i.e., its decay time constant, τ). Revealing these 
significant transients is particularly important for detecting neuronal activations in behaving animals on 
a single-trial basis, where trial-averaging is precluded or sub-optimal43, especially when working with low 
SNR signals.  

Detection of functional assemblies 
The identification of assemblies in large neuronal datasets is still an open problem in neuroscience. 
Template-matching studies have been successful in revealing the activation dynamics of a predefined 
population pattern44. These are supervised learning algorithms, since they work on labeled data (i.e., the 
given pattern of interest). However, to reveal hidden structure from unlabeled data, unsupervised learn-
ing algorithms are necessary. Between these approaches, we can highlight pioneering studies seeking to 
assess the presence of higher-order (i.e., higher than pair-wise) correlations in neuronal activity45,46. 
However, these approaches only work for triplets in sets of a few tens of neurons, and did not identify the 
neurons that participated in the correlations. More recently, statistical models have been used to study 
the prevalence of these high-order correlations in larger networks47–51. On the other hand, shuffling 
methods developed to infer the significance of repeated firing sequences were recently tested on elec-
trophysiological recordings of ~100 neurons52,53. However, these algorithms rely on temporally precise 
coordination across neurons and, to our knowledge,  have never been applied to imaging studies. 
Promisingly, others16,17,32 have applied PCA to successfully isolate assemblies of correlated neurons, by 
clustering neurons according to their loadings in each principal component (PC). Importantly, the use of 
the Marčenko–Pastur distribution introduced by Peyrache and colleagues32 (equation 1) allows the use of 
analytical and reliable statistics to infer the significantly correlated signal in the data, instead of the sur-
rogate methods implemented in previous studies45,46,52–54. This is important, since there is still no clear 
agreement on which statistical features should be preserved in these control surrogate datasets. 
Despite these important advances, because PCA represents the data in a space of orthogonal PCs, using 
PCs to delineate assemblies is misleading when neurons participate in different functional assemblies18. 
The PCA-promax algorithm thus further extends this work, relaxing the orthogonality condition and using 
the promax-rotated PCs to isolate assemblies. In this way, the algorithm is capable of detecting non-ex-
clusive assemblies that share ROIs. Furthermore, this approach is data-driven, without the need for any 
parameter fine-tuning. In contrast, two of the most popular unsupervised clustering algorithms used in 
the field, k-means clustering and hierarchical clustering (both also implemented in this toolbox), rely on 
the definition of key parameters (i.e., the total number of clusters and a distance threshold for the cluster 
tree, respectively). Furthermore, they bind members (e.g., neurons) to exclusive and non-overlapping 
clusters, which is problematic considering the distributed coding of the brain, as previously discussed. 

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2017. ; https://doi.org/10.1101/103879doi: bioRxiv preprint 

https://doi.org/10.1101/103879
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nevertheless, both k-means and hierarchical clustering (and their variants) have previously been success-
fully used to detect functional neuronal clusters in imaging experiments7,8,55–58. Remarkably, as we have 
previously shown9, the PCA-promax algorithm consistently and significantly outperforms both of these 
methods, as quantified by two standard cluster quality indexes: 1) the Davies-Bouldin index, which mea-
sures the ratio of the within-cluster scatter and the between-cluster separation; 2) the normalized Hu-
bert’s Γ index, which quantifies the agreement between the observed pair-wise neuronal correlations and 
the ideal case, in which pairs in assemblies have identical activities and pairs from different assemblies 
are uncorrelated. This improvement is most probably due to the fact that while both k-means and hierar-
chical clustering group variables according only to pair-wise distance measures (e.g., pair-wise correlation 
coefficients, euclidean distances, etc), PCA is designed to reveal the global underlying correlational struc-
ture of the dataset through an eigenvector-based multivariate analysis. Furthermore, this improvement 
could also be related to the previously mentioned fact that k-means and hierarchical clustering seek to 
detect independent or hierarchically organized clusters, respectively (see The module for detection of as-
semblies). While the former clustering feature is clearly not in agreement with the distributed nature of 
brain processing, the latter hierarchical character may be consistent with the hierarchical organization 
across brain regions, but is probably not compatible with the functional organization at the neuronal 
sub-circuit level. Importantly, since the PCA-promax method involves a dimensionality reduction proce-
dure, it is effective in processing large datasets, as demonstrated by the detection of biologically relevant 
assemblies in whole-brain zebrafish light-sheet imaging experiments (~ 40,000 ROIs, Fig. 5). To our 
knowledge, few studies7,8,59 have attempted to perform clustering in these large-scale imaging datasets, 
and they have all used k-means clustering. 
As discussed above, functional clustering of neuronal data is a complex mathematical procedure still un-
der development, and the PCA-promax method for detecting assemblies has limitations. The algorithm 
relies on PCA, which implements linear data transformations. Thus, non-linear neuronal activity correla-
tions (i.e., when plotting the activity of a neuron against another neuron produces a curved cloud of 
points) could result in spurious assemblies. Most multivariate statistical analysis methods currently ap-
plied are also linear, but those that rely on manifold learning algorithms60,61 and network theory54 could 
accommodate other non-linear measures of activity similarity. Furthermore, when using PCA, there is no 
guarantee of a straightforward interpretation of the PCs obtained in terms of biological or experimental 
variables. In principle, this could be improved with the recently proposed demixed PCA technique62, 
which reduces the dimensionality of the data, taking into account task parameters (e.g., sensory or motor 
variables). Furthermore, increasingly popular non-negative matrix factorization techniques63, which un-
like PCA impose a positivity constraint to its components, may be more biologically interpretable in 
terms of positive neuronal activations. Finally, the PCA-promax method is particularly suited to delineate 
discrete clusters of ROIs that are engaged in brief events of collective activation. Thus, for population ac-
tivations that present a continuous and long-lasting evolution in time (e.g., propagating spatial waves, 
oscillations), this algorithm would tend to discretize these dynamic phenomena in distinct patterns. For 
example, a wave would be separated in a progression of distinct assemblies that represent different in-
stances of the moving wavefront. Therefore, particular care should be taken in the interpretation of the 
results in these kind of scenarios. Nevertheless, this is not a specific problem of the PCA-promax algo-
rithm, since time-evolving patterns are usually problematic for all clustering methods.    

Comparison to other toolboxes 
There are few software packages available for a comprehensive analysis of calcium imaging data, despite 
several recent and important developments40,64,65. Here, we briefly describe these available toolboxes 
and compare them to the one presented here.  
These available toolboxes are implemented in Matlab40,64 and Python40,65 programs, and they are all fo-
cused on pre-processing analysis of imaging data. They include within-plane motion correction for laser 
scanning microscopy65, image segmentation to obtain neuronal ROIs, extraction of raw fluorescence sig-
nals40,64,65, and signal denoising and spike deconvolution40,64. In particular, the most salient feature of the 
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Tomek et al. package is its accelerated cell morphology-based segmentation algorithm, which can detect 
~100 ROIs in 256x256 pixel images in a few milliseconds, opening the possibility for online analysis. On 
the other hand,  Pnevmatikakis et al. use a powerful spatio-temporal analysis framework based on con-
strained non-negative matrix factorization, capable of demixing spatially overlapping neurons, which 
may prove important for tissue densely packed with somata. 
Like the above described packages, this toolbox also performs data pre-processing and, as shown here, 
can be efficiently applied to different fluorescent reporters, imaging techniques, and imaged regions 
(Figs. 2 and 6). In addition, the present toolbox also covers the correction for neuropil signal contamina-
tion, mapping of functional neuronal responses and the analysis of population activity dynamics. Thus, 
this is the first protocol for a toolbox that covers the complete workflow from raw data to the automatic 
display of results. For example, Tomek et al. presented a supporting module to export fluorescence data 
along with stimulation time tags, which the user could in turn use to additionally develop a mapping 
procedure of functional responses. Here, we present an interactive response analysis module capable of 
automatically producing publication-quality figures, rich in interpretable functional information (Fig. 4). 
Furthermore, our package performs automatic cluster analysis for the detection of neuronal assemblies, 
even in whole-brain data (Pnevmatikakis et al. only pre-processed and segmented this kind of large-scale 
data). Finally, it contains modules for interactive and exploratory analysis of the neuronal population ac-
tivity in the context of experimental and/or behavioral events, which can be extremely useful when deal-
ing with such complex and multivariate datasets.  
With respect to its implementations, the toolbox is designed in a flexible manner that allows importing 
data from other sources, and using separate modules in an autonomous way, bypassing preceding mod-

ules if desired. No previous coding experience is required for its use, since interaction with the toolbox is 
implemented through diverse graphical user interfaces (GUIs). On the other hand, command-based 
packages65 require more coding expertise, but can be run in batch mode without user interaction to au-
tomatically process collections of data. Nevertheless, complete automatization typically comes at the 
expense of a higher rate of data-processing errors, compared to pipelines that incorporate manual cura-
tion. 

PREVIOUS APPLICATIONS
This toolbox has been used by previously reported studies for the analysis of calcium imaging data of 
transgenic GCaMP-expressing zebrafish larvae. We used the toolbox in order to study the spontaneous 
neuronal activity patterns of large (~1000) neuronal populations in the optic tectum (OT), by monitoring 
GCaMP3 fluorescence through two-photon microscopy (4 Hz scanning rate). Through the PCA-promax 
clustering algorithm, we demonstrated that the ongoing spontaneous activity of this sensory brain re-
gion was organized in assemblies of functionally similar neurons, which reflected neuronal mechanisms 
that assure robust circuit functioning for the extraction of behaviorally relevant visual information9. 
Thompson and colleagues also used this algorithm for detecting assemblies from GCaMP5G single-plane 
light-sheet imaging data of ~500 simultaneously monitored OT ROIs scanned at 10 Hz, revealing tectal 
assemblies responsive to different sensory modalities20. They further demonstrated that these assem-
blies are composed of a reliably responsive core of neurons together with a more variable group of part-
ner neurons, revealing a mechanism for robust neuronal coding of stimulus features while retaining con-
textual flexibility. More recently, the toolbox has been also used to demonstrate that sustained rhythmic 
neuronal activity among a specific group of direction-selective tectal neurons was associated with the 
illusory perception of visual motion71. These examples demonstrate that the analysis framework imple-
mented in this toolbox can effectively shed light on the neuronal interactions that underlie brain compu-
tations.   
Finally, in this work, we show that the pre-processing module can also be applied to detect single-neuron 
ROIs and significant fluorescent transients in the cortex of mice injected with OGB-1 AM (sampled at 30 
Hz; Fig. 2a) or expressing genetically encoded GCaMP6s (sampled at 7 Hz; Fig. 2b) imaged through two-
photon microscopy, and in transgenic zebrafish larvae imaged through large-field two-photon mi-
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croscopy (GCaMP3, sampled at 1 Hz; Fig. 2c) or single-photon light-sheet imaging (GCaMP5, sampled at 
100 Hz; Fig. 2d). Moreover, we show that the module for detecting assemblies is remarkably efficient in 
finding biologically meaningful assemblies in datasets of multi-plane whole-brain light-sheet imaging in 
zebrafish larvae, consisting of more than 40,000 ROIs scanned at 2.1 Hz (Fig. 5).  
  

MATERIALS
Equipment 
The pipeline can be run on any desktop computer, but we recommend multicore computers for shorter 
computing times, as several algorithms allow for parallelization (especially for the pre-processing mod-
ule). For analysis of light-sheet imaging data, we used a computer cluster of 328 CPUs based on a HTCon-
dor parallelization system. Imaging videos of long experiments can result in file sizes of several gigabytes 
(GB), and therefore we recommend 64-bit architectures with at least 12 GB of RAM. We also recommend 
screen resolutions of at least 1280 x 800 pixels for a better experience when visualizing data and using 
user interfaces. 
A Matlab installation (MathWorks) is required, including the following toolboxes: Curve Fitting, Image 
Processing, Statistics and Machine Learning, and Parallel Computing. This list of toolbox requirements 
refers to the full processing pipeline; specific modules need different subsets of these toolboxes. We veri-
fied compatibility specifically for Matlab versions R2010a, R2011b, R2014a, and 2015b, but our code 
should, in principle, be compatible with any later version.  
Computer operating systems: any version of Windows, Linux or Mac OS X compatible with the Matlab in-
stallation. 
Data files 
An example case study is included in the downloadable toolbox distribution. It consists of zebrafish larva 
in vivo two-photon calcium imaging data (see Results). 
Software setup 
Installation of the toolbox. Download the analysis toolbox from www.zebrain.biologie.ens.fr/codes. It con-
sists of a zip file that contains all the Matlab source code and a Readme.pdf file that explains all the rele-
vant variables used during the pipeline (this file is vital if the user wishes to adapt or further develop the 
toolbox). It also contains test data for a case study. Double-click on the downloaded toolbox zip file to 
extract its contents. Add the toolbox to Matlab path. For this, open Matlab and type the command:  
 addpath(genpath('Extracted_Folder')) 
where Extracted_Folder is the name of the toolbox unzipped folder. 
Install ImageJ and its Template Matching and Slice Alignment plugin. Download ImageJ from http://image-
j.nih.gov/ij/ and the Template Matching and Slice Alignment from sites.google.com/site/qingzongtseng/
template-matching-ij-plugin and install them following the installation instructions of the corresponding 
websites. 
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PROCEDURE
Pre-processing module 
1) Video registration. If there are no observed movements in the x-y plane of the imaged optical section, 

continue with the next step. Otherwise, open the TIFF stack in ImageJ, click on the Plugins menu, then 
on Template Matching, and then on Align slices in stack. Select Normalized correlation coefficient as 
Matching method, and click on OK. Define a landmark region on a reference frame by clicking and 
dragging to draw a rectangle, and then click on OK to launch the registration. If the video was properly 
registered, save the registered file by selecting Save from the File menu. 

2) Find potential imaging artifacts by running the command findArtifacts.m in Matlab, and select the reg-
istered TIFF file. 
3) A figure will display an image of the temporal average of the TIFF file, and you will be asked to indicate 
the regions of the optical plane to be analyzed. 
4) Click and drag to draw a rectangular mask that excludes inadequate image borders that could have 
been produced by the video registration performed in step 1. 
5) Draw a polygon mask that excludes imaged regions that are of no interest and could introduce arti-
facts, if there are any. Finish this mask by right-clicking inside the drawn polygon and selecting Create 
mask. 
6) Click and drag to draw a rectangle mask that determines the image template over which the cross-cor-
relation will be calculated across the imaging frames. 

7) A graph will display the cross-correlation values across frames (blue line) and a threshold level (green 
line, default value -3). The frames with cross-correlation values lower than the threshold potentially con-
tain an imaging artifact.  Press the Enter key, and you will have the option to change the default value for 
the threshold, if desired. 
8) A GUI will allow you to manually examine each imaging sequence containing an imaging artifact can-
didate. If you want to automatically label all candidates as validated imaging artifacts without individual-
ly inspecting them, click on Accept All and continue in the next step. Otherwise, navigate through the se-
quences in question by pressing on the Previous frame and Next frame buttons. Frames under examina-
tion for putative artifacts are labeled in red on the Frame number display. If you determine that the frame 
contains an imaging artifact, click on the Yes button under the question Does frame X contain an artifact? 
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CRITICAL 
It is of paramount importance to obtain a properly registered video. If there is a significant residual 
drift after the registration procedure, ROIs will not label a stable region of the imaged plane, com-
promising the subsequent analysis.

TROUBLESHOOTING 
If video registration is unsatisfactory, close the video without saving it, re-open it and run the registra-
tion procedure again, starting from a different reference frame or selecting a different landmark re-
gion. If you observe registration defects at imaging frames that present strong global fluorescence 
variation events, click on the Results window of ImageJ, select Save as… from the File menu, and save 
the registration results in a TXT file with the same name as the imaging video. Then, run SmoothRegis-
tration.m in Matlab, and check if the output video (a file with a _reg_smooth.tif suffix) is properly reg-
istered. 

TIMING  
Depending on the size of the imaging stack and the speed of the computer, the calculation of the 
cross-correlation may take 5-15 minutes. 
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(where X is the number of the frame being examined), otherwise click on No. You can pause the evalua-
tion at any time by clicking on Pause, and resume the inspection by clicking on Continue. 

9) A dialog box will ask you if there are frames that you want to add to the artifacts list. If you do not wish 
to add any frames, just leave the question dialog blank. The final list of detected artifacts will be saved in 
a file with a _ARTIFACTS.mat suffix. 

Segmentation of morphological Regions of interest (ROIs) and extraction of their fluorescence traces 
10) Run the script FindROIs.m and select the fluorescence imaging TIFF file. Set the image pixel size in the 
x and y directions (in μm). To use the algorithm for automatic morphological ROI segmentation, select 
Automatically detect single-neuron ROIs and continue along steps 12-19. Otherwise, to define ROIs 
through manual drawing, or implement a grid of adjacent hexagonal ROIs, select Manually draw all ROIs 
(continue with steps 13 and 19) or Use hexagonal grid of ROIs (proceed to steps 11-12, skipping steps 
13-19), respectively. In all cases, at the end of the selected procedure, all the resulting relevant variables 
will be saved in a Matlab file with a _ALL_CELLS.mat suffix to the TIFF filename. 

11) Select the diameter (in μm) of each hexagonal ROI. 
12) Draw the perimeter of a closed polygon mask that encloses the imaged optical plane region to be 
segmented in ROIs. Right-click inside the mask and select Create mask to define it. For the Use hexagonal 
grid of ROIs option, the obtained hexagonal ROIs inside the mask will be displayed and results will be 
saved. 
13) Move the Gamma and Contrast sliders in the GUI to optimize the display of the image and better visu-
alize the segmentation (i.e., it will not affect the performance of the segmentation algorithm for the Au-
tomatically detect single-neuron ROIs option). When satisfied with the image, click on Continue. 
14) Fluorescent labeling may be uneven in the imaged optical plane. To correct for this, move the Local 
contrast scale slider to perform a local intensity normalization of the image. Labeled cells should be 
clearly visible (even in originally darker image regions) and intensity should not vary significantly across 
the imaged plane. When satisfied, click on Done. 

15) If the fluorescent reporter labels nuclei, click on Labeled Nuclei, otherwise on Unlabeled Nuclei (the 
currently selected option will be indicated in red). This option is useful when using GCaMP indicators 
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TIMING  
Typically, each putative imaging artifact can be inspected in the GUI in a few seconds. Depending on 
their number (which depends on the stability of the imaged video and the threshold defined in step 7) 
this could take a few minutes.

TIMING  
As discussed in Results, while the automatic segmentation and posterior manual curation can typical-
ly be performed in less than 10 min for up to ~1000 ROIs, manual ROI drawing can demand much 
more time, depending on the total number of imaged ROIs (e.g., ~40 min for 500 ROIs). Obviously, the 
segmentation with a hexagonal grid is instantaneous, but it lacks single-neuron resolution.

CRITICAL 
It is this intensity-normalized image that will be segmented. If in the subsequent steps you are not 
able to obtain a satisfactory ROI segmentation, you will always be able to return to this step and per-
form a new normalization with a different value for the Local contrast scale by clicking on Adjust 
gamma again on the GUI.
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which usually do not enter the nucleus, in contrast to synthetic dyes (e.g. OGB-1 AM) and GCaMP NLS vec-
tors. 
16) Move the Border thresh and Cell center thresh sliders to adjust thrNeuropil and thrSoma, respectively. Cell 
somata should be marked in red, and neuropil regions in blue (see left panel in Fig. 6a). Click on Find ROIs 
to inspect the preliminary automatic segmentation obtained using the selected parameters. 

Figure 6. User interface screenshots of three different steps of the ROI 
segmentation and ΔF/F0 calculation procedure. Optical sections cor-
respond to the OT of a zebrafish larva pan-neuronally expressing 
GCaMP3 (HuC:GCaMP3). Parameters displayed are those chosen for 
the case study. (a) Left: selection of the thrSoma and thrNeuropil threshold 
values for detecting, respectively, putative cellular nuclei (red) and 
marking regions to be ignored by the segmentation procedure (blue; 
interface is shown in green). Since neuronal somata are mostly 
packed in the OT's stratum periventriculare (SPV) layer, the tectal 
neuropil and surrounding regions were ignored by the mask drawn in 
step 12. When somata are sparsely scattered in neuropil (e.g., Figs. 
2a,b) the latter can be marked with a higher thrNeuropil value. Right: 
Perimeters of the automatically detected ROIs (red). (b) Selection of 
morphological criteria to filter automatically detected ROIs (step 18). 
Red, perimeters of selected ROIs after filtering. (c) Final manually 
curated ROIs (step 18) of the SPV layer. (d) Screenshot of the auto-
matically displayed examples of ΔF/F0 traces (black) and their signifi -
cant fluorescent transients detected (red; step 30). 
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CRITICAL 
Avoid merging neighboring cells by setting thrSoma too high or over-segmenting cells by setting it too 
low. Labeling the neuropil in blue with an appropriate thrNeuropil will instruct the algorithm to avoid 
looking for ROIs in these regions. Fine-tuning of this parameter is not important when cells are tightly 
packed (e.g., Fig. 6), but will be of great help when cells are sparsely distributed (e.g., Fig. 2a,b).
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17) Preliminary ROI perimeters will be shown in red. If they do not enclose cells completely, click on Big-
ger ROIs. If they exceed the cellular areas, click on Smaller ROIs (the currently selected option will be indi-
cated in red). If results are not satisfactory, return to step 16. Otherwise, click on Done. You will always be 
able to  return to steps 16-17 by clicking on Find regional minima again on the GUI. 
18) Interactively impose several morphological criteria (ROIs' minimal and maximal areas, intensities and 
circularities) to filter undesired ROIs (Fig. 6b). For this, move the corresponding sliders to any desired 
value, and click on Run in order to see the filtering effect. When finished, click on Done. You will always be 
able to return to this step by clicking on Find automatic ROIs again on the GUI. 
19) Curate the ROI segmentation obtained (for the Automatically detect single-neuron ROIs option; Fig. 
6c); define ROIs (for the Manually draw all ROIs option): 
 i) To add new ROIs, click on Draw ROIs, click along the perimeter of every new ROI, and close the 
perimeter with a final right-click. Repeat this last procedure to add as many ROIs as desired. When done 
adding new ROIs, click on Stop Draw ROIs and draw an additional ROI. This last ROI will not be taken into 
account, but all the previously drawn ROIs will be defined. 
 ii) To select multiple ROIs for deletion, click on Delete ROIs and right-click once on each ROI to 
delete, then click on Stop Delete ROIs and right-click once more in any place on the image. Again, this last 
selection will have no effect, but all the previously selected ROIs will be deleted.  
iii) In order to delete multiple ROIs in a specific region, select Delete ROIs Area, draw the perimeter of a 
closed polygon mask that encloses the concerned ROIs, right-click inside the mask and select Create 
mask to remove all ROIs inside the mask. 
To better visualize the imaged optical plane, click on Hide ROIs to stop displaying ROI perimeters for a few 
seconds. When finished, click on Done and results will be saved. 
  
Computation of ROIs' relative fluorescence variations (∆F/F0) and detection of significant transients 
20) Run the script ProcessFluorescenceTraces.m. The goal of this script is to determine the significant fluo-
rescence transients in the data. Select the file with the _ALL_CELLS.mat suffix which contains the ROIs' 
fluorescence traces. 
21) Set the imaging parameters: the sampling frequency of the imaging video, and the fluorescence de-
cay time constant of the reporter (τ; default value is the one reported for GCaMP366, but for the correct 
detection of significant fluorescence transients, the τ of the imaged calcium reporter should be used). 
22) Set the parameters for a data sanity test to eliminate ROIs whose fluorescence dynamics displays arti-
facts or have low signal-to-noise ratios (SNRs). The parameters are: the minimal number of pixels per ROI; 
the minimal ROI fluorescence relative to the baseline, used to detect ROIs whose fluorescence is too dim 
(lower parameter values will require more fluorescence from adequate ROIs); and the maximal sudden 
decrease in ROI baseline fluorescence, which detects ROIs whose baseline fluorescence is not stable 
(higher parameter values will require more stable fluorescence from adequate ROIs). ROIs that do not 
satisfy these criteria will be displayed, removed from the _ALL_CELLS.mat file, and will not be further ana-
lyzed (a backup of the original data will be saved with an _ALL_CELLS_Original.mat suffix). 

23) Choose if you want to subtract the local neuropil signal from each ROI fluorescence time series. If you 
answer Yes, you will be able to set the parameter α for the subtraction. 
24) Select the method for the estimation of the ROIs’ baseline fluorescence. If you select Average fluores-
cence on time window, you will set a time window over which a constant basal fluorescence F0 will be cal-
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CRITICAL 
This step is intended to remove ROIs that could compromise the automated analysis. In our experi-
ence, the suggested default parameters are sufficient to assure data robustness, and they do not elim-
inate adequate ROIs. However, if the script fails to proceed, modify these values to increase the con-
straints on ROI data.
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culated. If you select Smooth slow dynamics, F0 will be set equal to Fsmooth, which tracks the slow varia-
tions of the ROIs’ basal fluorescence level. 
25) Select the method for the estimation of the noise in the signal (the characteristic scale σ of the ROIs’ 
baseline fluorescence noise). If you select Gaussian model, σ will be obtained by fitting a Gaussian model 
to the baseline fluorescence variations (recommended option). Otherwise, select Standard deviation and 
σ will be estimated as the standard deviation of the baseline fluorescence variations. 

26) Select the method for the estimation of significant fluorescence transients in the data. You can either 
select Static threshold to use a constant fluorescence threshold (depending only on the ROI's σ) or Dy-
namic threshold for one that is dynamic (using both ROI's σ  and the reporter's fluorescence decay time 
constant τ to analyze fluorescence transitions across imaging frames). Alternatively, select Import data to 
import significant transients calculated using an alternative method. If you select the Static threshold, 
skip steps 28-29. If you choose the Dynamic threshold, skip steps 27 and 29. Finally, for Import data, skip 
steps 27-28. 

27) Choose the minimal baseline-noise-scaled ΔF/F0 for an ROI's significant fluorescence transient (ΔF/F0 
x 1/σ; a measure of the SNR of the ROI's transient). The default value for this parameter is 3 (i.e., only 
variations bigger than 3 times the baseline fluorescence noise level are considered significant). This pa-
rameter can be adjusted according to the SNR of the imaging video. The result of this section's analysis is 
saved in a Matlab file with a _RASTER.mat suffix. 
28) Set the minimal confidence (based on the noise model) that an ROI fluorescence transient is not noise 
(default is 95%). These values can be adjusted according to the SNR of the imaging video. The result of 
this section's analysis is saved in a Matlab file with a _RASTER.mat suffix. 
29) Select a .mat file containing a T x N array called significantTransients, where T and N are the number of 
imaging frames and ROIs, respectively. This array should contain a 1 at position (i,j) if the ROI i at imaging 
frame j showed a significant fluorescence transient, or 0 otherwise. The result of this section's analysis is 
saved in a Matlab file with a _RASTER.mat suffix. 
30) Select if you want to display examples of ROI ΔF/F0 traces along with the significant transients ob-
tained highlighted in red (Figs. 2 and 6d). If you select Yes, you will then set the number of example traces 
to plot (ordered by level of ROI activity), and the ΔF/F0 scale of the plot. Once plotted, you will be asked if 
more traces should be displayed. 
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CRITICAL 
The Standard deviation option should only be used if the imaged videos are short in time (i.e., shorter 
than ~1000 imaging frames).

CRITICAL 
The Static threshold option is a simpler framework, but may be prone to detecting false positives in 
noisy data. The Dynamic threshold option is more computationally demanding, imposing larger con-
straints on the data (inferring data-driven noise models, hence making stronger assumptions on the 
data). However, it is more robust in the detection of real fluorescence transients in noisy data, espe-
cially for long videos (longer than ~3000 imaging frames). Therefore, the choice depends on the SNR of 
the dataset, and the user's outlook as to the analytical framework. We recommend testing both op-
tions and evaluating the result displayed at step 30.
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Analysis of neuronal responses 
31) Run RunResponseMapping.m and select the file with the _RASTER.mat suffix, produced either through 
this toolbox, or with data imported from other methods (for the format of this file, see Imported Fluores-
cence Data File in Box 2). 
32) Select the .mat file with the timing information of the experimental events to be associated with ROI 
responses (for the format of this file, see Response Analysis Input File in Box 2). 
33) Set the parameters for the procedure: the duration of each experimental event, and the duration of 
the time window, locked to event onset, over which ROI responses will be calculated. A graph will display 
the spatial topography of ROI responses (Fig. 4a). 
34) To improve visualization of the data, click on Remap colors to adjust the saturation and value chan-
nels (if only one kind of experimental event was provided in step 32, color saturation will not be used). 
This will modify how response features are color scaled. Set the offset, lower and upper bound of the 
channels. Both the original and rescaled channels will be displayed (Fig. 4b), along with the spatial 
topography of ROI responses using the new color code (Fig. 4c). 
35) Add or remove a transparency to the drawn ROIs proportional to their corresponding value channel 
by clicking on Transp. on/off (default is transparency on). 
36) To display the average and single-trial responses and the tuning curve of a particular ROI (Figs. 4d,e), 
click on Select ROI and right-click on the ROI of interest. Change the layout of the average and single-trial 
responses by clicking on Plot order and choosing the number of rows used to display them. 
37) When finished, click on Save and the calculated responses will be saved in a file with a 
_RESPONSE_MAP.mat suffix. 

Detection of neuronal assemblies 
38) If you wish to find assemblies for a multi-plane volumetric imaging experiment, run CombineMulti-
Plane.m and select all the _RASTER.mat suffix files that correspond to each imaged plane (for data im-

ported from other methods see Imported Fluorescence Data File in Box 2). This will generate files with  
_MultiPlane_ALL_CELLS.mat and _MultiPlane_RASTER.mat suffixes that you should use in the next step. 
Otherwise, for single-plane imaging experiments, skip this step. 
39) Run the program FindAssemblies.m, and select the file with the _RASTER.mat suffix (for data imported 
from other methods see Imported Fluorescence Data File in Box 2). 
40) Select the clustering algorithm to be used. For PCA-promax, skip steps 44-45; for k-means, skip steps 
41-43 and step 45; and for hierarchical clustering, skip steps 41-43. 
41) Select a cut-off value for the parameter that determines if a neuron belongs to an assembly (i.e., the z-
scored maximal loading on the rPCs, zMax). If you choose No, zMax will be set to the default value of 2;  
skip step 42. Otherwise, select Yes and continue with the next step. 
42) A graph will display the probability density of zMax of all ROIs. This distribution should be multi-
modal, where ROIs that do not significantly correlate with other ROIs are concentrated in the first distrib-
ution peak.  Select the zMax value that best separates this first peak from the rest of the distribution (see 
Fig. 7a). For better visualization you can optimize the smoothing level of the distribution by moving the 
Smooth parameter slider on the right of the graph and clicking on Test smoothing to inspect the distribu-
tion. To choose the value of zMax, click on Select cut-off and then click on the corresponding distribution 
point. 
43) A window will display two population activity histograms and a raster plot of neuronal activity. The 
red line (determined by the zMax) on the raster plot separates neurons that belong to assemblies (above 
the line) from those that do not (below the line). Neurons above this line should participate in episodes of 
synchronous activity of distinct neuronal subpopulations (i.e., showing correlated activities). The middle 
population activity histogram corresponds to these assembly neurons. The population activity histogram 
of neurons below the red line is shown in the bottom panel. The activities of these latter neurons should 
look relatively uncorrelated with the rest of the neurons. Explore the raster plot by using the Pan and the 
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Zoom icons in the figure's toolbar. Press Enter if you are satisfied with the threshold selected. If not, an-
swer No and you will be redirected to the zMax threshold selection of the previous step. 
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BOX 2 

Imported Fluorescence Data File 
For T imaging frames and N ROIs, a .mat file with the _RASTER.mat suffix contains the following variables: 
 deltaFoF: a T x N matrix of the ∆F/F0 time series of all ROIs. 
 raster: a T x N matrix. For each column (i.e., each ROI), it is filled either with zeros for frames with  
 non-significant fluorescent transients or with the ∆F/F0 values of the frames with significant transients. 

If the user does not wish to plot significant trial responses in the response analysis module, or if all the 
∆F/F0 values should be considered in the module for the detection of the assemblies (instead of only 
the significant transients), it should be a T x N matrix filled with ones. 

 movements: T x 1 binary array, with ones for frames where an imaging artifact was found, 
          and otherwise zeros. 
 dataAllCells.avg: average image of the imaging file, showing the anatomy of the imaged plane. 
 dataAllCells.cell_per: an Nx1 cell array, containing the perimeter coordinates for each ROI. 
 dataAllCells.cell: a 1 x N cell array, containing the pixel indexes of each ROI. 

Response Analysis Input File 
A .mat file containing a 1 x S Matlab cell array called mapData, where S is the total number of experimental event 
types (for the OT case study, these are the azimuth positions of the visual stimuli). Each layer of the cell array (e.g., 
each stimulation position), should contain the following variables: 
 label: a string with the corresponding event label for the Mapping parameter color bar (e.g., “-35o”). 
 value: a scalar with the corresponding parametric value of the mapped event (e.g., “35”). 
 onsetTime: a vector of scalars corresponding to the timing information in seconds of each event trial  
      (e.g., “[10.0 25.2 37.1]” for 3 trials). 

Time Tags for Assemblies File 
A .mat file containing an N x 1 vector called timeTags, where N is the total number of imaging frames. In this vector, 
frames with no particular tags are labeled with a value of 0, and those associated with a given tag are labeled with 
the corresponding tag number, according to your experimental setup (for example, frames tagged with a number 1 
for when the animal is running, a number 2 when there was an optogenetic stimulation, a number 3 when a visual 
stimulation was presented, etc.). 

File With ROI Features to Test Against Surrogate Assemblies 
For evaluating certain features of the assemblies, the user must provide a .mat file with the features to be tested 
against the control surrogate datasets. To test F features, this file should contain a Matlab cell array called variable, 
whose dimension should be Fx1 (that is, one cell for each feature). For a total population of N neurons, the dimen-
sion of each cell in variable depends on the kind of feature to be tested, as described below. 
Single-neuron features: for a scalar feature Fi (e.g., the average activation rate of each neuron), variable{Fi} should 
have a dimension of Nx1. For a vectorial feature Fi sampled at m conditions (e.g., the response tuning curves of neu-
rons with respect to a visual stimulus at m positions of the visual field), variable{Fi} should be a Matlab structure. In 
this structure, the values of the features are stored in a Nxm array called variable{Fi}.y (for the tuning curves example, 
this corresponds to the ΔF/F0 neuronal responses), and a 1xm array called variable{Fi}.x must store the condition 
values (the tested visual field positions).  
Neuronal-pair features: for a pair-wise scalar feature Fi (e.g., the pair-wise activity correlations), variable{Fi} should 

have a dimension of NxN.
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Figure 7. Detection of neuronal assemblies. (a) 
Screenshot for the selection of the zMax threshold. 
After setting the smooth parameter with the slider 
(top-right), the threshold is chosen with a mouse click 
on the graph of the density distribution (red arrow). 
(b) Screenshot of 3 of the assemblies (out of 42) au-
tomatically displayed. ROIs that belong to each as-
sembly are labeled in yellow. (c) Screenshot of the 
two anatomical axes defined by the user (step 50). 
The Along curve option was selected, two masks were 
drawn to divide the imaged plane in two regions, and 
the user drew a curve with the mouse for each region. 
Each curve is automatically colored such that the 
combined curves reproduce the hue gradient used in 
Figs. 4a,c. The chosen curves span the rostro-caudal 
retinotopic axis of each OT hemisphere. (d) Screen-
shot of the figure obtained displaying the spatial or-
ganization of the assemblies along the selected axes. 
Assemblies' ROIs are colored according to the defined 
axis (i.e., the position of the assemblies’ spatial cen-
troid with respect to the defined axis). The compari-
son with Fig. 4c confirms that assemblies reproduce 
the OT's retinotopic functional map. 

44) Select if the dimensionality of the data should be reduced through PCA, the total number of clusters 
to look for in the data, and the distance metric to be used (euclidean or correlation). 
45) Select the linkage algorithm to calculate the hierarchical tree: single or complete.  
46) A series of figures will display the spatial topographies of all the assemblies found in the data. Results 
will be saved in a Matlab file with a _CLUSTERS.mat suffix. 

47) Run AssembliesActivations.m. This script will analyze all the population activity bouts and estimate if 
they can be confidently assigned to specific neuronal assemblies. Select the file with the _CLUSTERS.mat 
suffix obtained in the previous step. Select the threshold p-value to calculate the significance of the acti-
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TROUBLESHOOTING 
To evaluate the validity of the obtained assemblies, run steps 38-47 choosing different methods and 
parameters, and then run the program indexesAssemblies.m on all the _CLUSTERS.mat files obtained. 
This program will test the clusterings in these files, by calculating and displaying the Davies-Bouldin69 
(DB) and the normalized Hubert's Γ70 cluster quality indexes. You should choose the _CLUSTERS.mat 
that results in the lowest DB and the highest Γ indexes. Furthermore, the relevance of the assemblies 
obtained can also be qualitatively assessed by inspection of their anatomical topography in relation 
to experimental events (e.g., sensory or motor functional maps), especially when imaging large brain 
regions. 
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vation of an assembly (default is 0.01, lower values correspond to a higher statistical confidence). Results 
will be saved in the _CLUSTERS.mat file. 

Exploratory analysis of assemblies 
48) Run the AssembliesTopographicalOrganization.m script to evaluate and display all the assemblies col-
or-coded according to their spatial or temporal organization (the obtained organization data will be 
saved in a _ORDER_TOPO,mat suffix file). Select the file with the _CLUSTERS.mat suffix and choose if as-
semblies should be organized according to the similarity of their activity dynamics (click on Similarity of 
dynamics) or according to their spatial distribution along a particular anatomical axis (choose Along 
topographical axis). For the former temporal option, the color-coded assemblies will be displayed (e.g., 
Fig. 5), and the image will be saved in a file with a _assemblies_topo_temporal.png suffix. For the latter 
spatial option, continue to next step. 
49) Assemblies will be organized (and color-coded) according to the spatial projection of their topo-
graphical centroids over a user-defined axis. This axis can be drawn (click on Along curve, and continue to 
step 50). Alternatively, it can be automatically set as the left-to-right axis (click on Left-right) or the bot-
tom-to-top axis (Bottom-top option). For these two latter options, skip step 50, and the color-coded as-
semblies will be displayed (saved in a file with a _assemblies_topo_spatial.png suffix). 
50) The imaged plane may contain multiple brain regions with their corresponding topographical axes. 
Set the number of regions. For each region, draw a polygon mask that encloses the region, and finish the 
mask by right-clicking inside the drawn polygon and selecting Create mask. For each region, define the 
corresponding axis by drawing a curve with several mouse clicks, finishing it with a final right-click. The 
axis curve will be displayed with a color code along its length (Fig. 7c). If you are not satisfied with the 
curve, click on No to the Satisfied with the curve? question and draw it again. Once finished, the color-
coded assemblies will be displayed (Fig. 7d; saved in a file with a _assemblies_topo_spatial.png suffix). 
Assemblies will be colored according to the selected axis: each assembly will be displayed with the color 
of the axis point that is physically closest to the assembly’s centroid. 
51) The script AssembliesDynamicsVisualization.m allows you to explore and evaluate the dynamics of the 
activation of the assemblies. You will also be able to incorporate multiple time tags corresponding to ex-
perimental events (e.g., behavioral epochs, sensory and/or neuronal stimulation times, etc.). Run it and 
select the _CLUSTERS.mat file. Select the _ORDER_TOPO.mat file from the previous step. If you want to 
incorporate experimental time tags, click on Yes and select a .mat file where the tags are stored (see Time 
Tags for Assemblies File in Box 2 for the required file format). 
52) A figure will display the assemblies' activation dynamics in relation to the experimental time tags in-
formed in the last step (Fig. 8). The buttons on the left allow the choice of which assemblies to display. 
For visualization of all the assemblies, click on All. For a selection of assemblies, click on Selection and 
provide a space-separated list of assemblies to be displayed. You can explore the raster plot of the top 
panel using the Pan and the Zoom icons in the figure toolbar, and the middle and bottom panel graphs 
will be displaced in synchrony with the top panel. 

Generation of control surrogate datasets for statistical analysis of assemblies' features  
53) Run the program SurrogateData.m. Select the corresponding _CLUSTERS.mat file. Choose if you wish 
to produce Random surrogate assemblies, Topographical surrogate assemblies or Both (see Box 1). Set the 
number of surrogate assemblies to produce per original assembly (default is 100). The surrogate assem-
blies will be saved in a file with a _SURROGATE_CLUSTERS.mat suffix. 

27

TIMING 
Depending on the total number of topographical surrogate assemblies, this program could perform 
calculations for a few minutes up to an hour.
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Figure 8. Screenshot of the exploration of the assemblies' activity dynamics (step 52), zoomed over a 175 s period of the imaged 
activity. Top: raster plot of the ROI's significant fluorescence transients, with ROIs sorted according to the order stored in the 
_ORDER_TOPO.mat file, allowing the visualization of distinct assemblies. ROIs not assigned to any assembly lie below the red 
line. Grayscale: ΔF/F0 amplitude. Middle: Histogram of significant transients in the complete population. The red line marks the 
threshold for significant population events (peaks exceeding this threshold cannot be explained by chance, as inferred by a shuf-
fling procedure). Color-coded bars below the histogram show the experimental time tags informed in step 51 (tag 1; here, when 
the larva was visually stimulated). Bottom: Assembly activation dynamics (as measured by the Matching index) for 5 assemblies 
selected with the Subset button (same color labels as in Fig. 7d). Note that each activation peak of the same color corresponds to 
the activation of roughly the same group of neurons. 

54) The program AssembliesVsSurrogate.m will compare user-defined features of original and surrogate 
assemblies. For this, the program will pool single-neuron features (e.g., the average frequency and/or 
intensity of activation, the neuronal tuning curve, the neuronal identity, etc) and/or neuronal-pair fea-
tures (e.g., the pair-wise activity correlation, the pair-wise topographical distance, etc.) according to the 
neuronal groups represented in the original and surrogate assemblies. You can test F features by provid-
ing an appropriate .mat file (see File with ROI Features to Test Against Surrogate Assemblies in Box 2 for 
the required file format). Run AssembliesVsSurrogate.m, select the _CLUSTERS.mat file, then the .mat file 
for the neuronal features, and the program will compare against the surrogate assemblies stored in the 
_SURROGATE_CLUSTERS.mat file created in the previous step. 
55) A set of graphs will be displayed for each kind of surrogate assembly used (Random, or Topographical; 
Fig. 9a). For scalar variables, each graph will display a histogram of the pooled features of the original 
(top panel) and the surrogate assemblies (bottom panel; Fig. 9b,c). For vectorial variables, histograms 
are replaced by a graph of the average feature curve (black line) and pooled single-neuron curves (gray 
lines). The final pooled features will be saved in a file with a _ASSEMBLIES_vs_SURROGATE.mat suffix that 
contains the original and surrogate assemblies' features in Fx1 cell arrays named varAssemblies and var-
NMs, respectively. Use any pertinent statistical test of your choice to assess the significance of the origi-
nal assemblies' features when compared against the surrogate assemblies. 
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Figure 9. Comparison of specific features of the assemblies with those of surrogate controls. (a) Spatial layouts of a given as-
sembly detected in the data, and of one example of a Random surrogate assembly (RSA, where an equal number of ROIs are ran-
domly placed) and a Topographical surrogate assembly (TSA, where ROIs are placed preserving the inter-ROI distances of the 
original assembly). (b) The normalized frequency histogram of average ROI activity levels (mean significant ΔF/F0 per imaging 
frame) obtained for ROIs included in assemblies (top) and those included in TSAs. (c) Same as b, but for the ROI activity correla-
tions (pair-wise Pearson correlation coefficient). 

RESULTS
The file called OT_reg_smooth.tif (in the folder Test data of the toolbox distribution) contains data from a 
two-photon imaging experiment of the optic tectum (OT) of transgenic GCaMP3-expressing zebrafish lar-
vae. It will be used as a case study in this section. In this experiment, the OT was imaged while periodical-
ly stimulating the larva with single light spots in different positions of the larva's visual field to map the 
OT functional retinotopicity. With this case study, we wish to illustrate the use of the toolbox and, fur-
thermore,  assist users who wish to adapt this procedure to their own datasets. We also comment on the 
results obtained when analyzing other kinds of data. 
We will focus on the more involved procedures of the protocol, skipping some of the simpler initial pre-
processing steps. Hence, this case study has been already registered for drifts of the optical plane using 
SmoothRegistration.m as explained in step 1 (for a demonstration of the registration effect, compare with 
the unregistered OT.tif file), and movement artifacts have already been detected as explained in steps 2-9 
(artifacts were detected with default parameter values, and were stored in OT_reg_smooth_ARTIFACTS.-
mat). The user is encouraged to perform all the protocol steps on this case study, but we also provide all 
the remaining Matlab files that we obtained with the tutorial (see folder Test data\Processed files), so that 
users can compare their own results.  
For the OT case study, Figures 6a-c show the parameters selected for the intermediate steps and a typical 
result of using the semi-automatic ROI detection algorithm, as described in steps 12-19. Figure 2 illus-
trates the applicability efficiency of the algorithm for the analysis of markedly different imaging data. The 
identification of ROIs in the OT case study is rather difficult, due to the high density of neuronal somata 
and the thin GCaMP3-expressing boundaries between neurons. Nevertheless, with the chosen parame-
ters, it can be completed in ~10 mins (depending on user experience), obtaining 854 ROIs. For both 
mouse cortical datasets (Fig. 2a,b) it took less than 5 mins to obtain 149 and 505 ROIs, respectively. For 
the large-field dataset in zebrafish (2178 ROIs), it took ~10 mins (Fig. 2c). Finally, for the light-sheet imag-
ing dataset we obtained 438 ROIs in less than 10 mins (Fig. 2d).  Typically, the user may need to curate 
5-15% of the ROIs automatically obtained, depending on imaging quality. For the present examples, after 
setting the parameters for ROI segmentation (steps 12-18) and filtering (step 19), we had to curate 9% of 
the ROIs for the OT (Fig. 6) and both mouse cortical datasets (Fig. 2a,b), while for the large-field zebrafish 
dataset, 8% of the ROIs were curated (Fig. 2c). For the single-plane single-photon light-sheet imaging 
dataset shown in Figure 2d, we had to curate 15% of the ROIs, due to the lower spatial resolution of this 
technique. Since simultaneous multi-plane light-sheet imaging does not guarantee single-neuron resolu-

29

A
ss

em
bl

y
a

R
S

A
TS

A

Assemblies

TSAs TSAs

Mean activity
0 0.02 0.04 0.06

Fr
eq

ue
nc

y

0

0.1

0.2

0.3

Mean activity
0 0.02 0.04 0.06

Fr
eq

ue
nc

y

0

0.1

0.2

0.3

Assemblies

0

0.02

0.04

0.06

Correlation coeff.
0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

0

0.4

0.8

b c

Correlation coeff.
0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2017. ; https://doi.org/10.1101/103879doi: bioRxiv preprint 

https://doi.org/10.1101/103879
http://creativecommons.org/licenses/by-nc-nd/4.0/


tion, we used an array of hexagonal ROIs (Fig. 5; steps 11-12). Manual curation of ROI segmentation is the 
protocol step that demands the most user intervention. 
We continue with the inference of significant ΔF/F0 transients, which can also be applied to a variety of 
imaging conditions (Figs. 2 and 6d). For the present zebrafish OT case study and the large-field zebrafish 
dataset, the data sanity test was run with default parameters (step 22), no neuropil signal correction was 
used (step 23), the ROIs’ baseline noise σ  can be estimated with the Gaussian model (step 25), and the 
significance of fluorescence transients can be inferred with the Dynamic threshold method with default 
parameters (steps 26-28). The mouse cortical data was similarly analyzed, but with neuropil signal cor-
rection, and the appropriate τ  of the calcium reporters. For the light-sheet imaging datasets in Figs. 2d 
and 5, σ was also estimated with the Gaussian model, but due to the large size of the datasets, significant 
transients were obtained with the faster Static threshold method (step 26). Nevertheless, we encourage 
the user to experiment with both changing parameters and implementing the alternative procedures of 
the protocol (e.g., estimation of σ through Standard deviation, or importing data from other methods in 
step 29). 
To illustrate the capabilities of the response analysis module (steps 31-37), we present the results ob-
tained for the OT case study (Fig. 4). Here, stimulation consisted of 3 trials of 4o light spots presented at 
different visual-field azimuth positions (-45o to 45o in 5o steps, 0o represents directly in front of the larva). 
The file with trial stimulation information used by the response analysis module (step 32) is  OT_reg_s-
mooth_TimeTagsMapping.mat. Despite the small number of trials analyzed (3 per azimuth angle), Figure 
4 demonstrates the potential of mapping the neuronal preferred stimulus, selectivity and response 
strength with a hue-saturation-value (HSV) color code, which allows an efficient visual inspection of the 
topography neuronal responses (compare the information conveyed by mapping in Fig. 4c with that of 
Supplementary Fig. 2b, where the saturation and value channels were rendered flat). However, since the 
range of neuronal responses can be quite large, the HSV mapping typically must be optimized to avoid 
obscuring/smothering weaker but significant responses. The module's GUI greatly facilitates this opti-
mization (Fig. 4b) by revealing relevant biological information (Fig. 4c) that would otherwise be obscured 
(Fig. 4a). Furthermore, the responses of any ROI of interest can be interactively explored (Fig. 4d). Impor-
tantly, the versatility of this module design allows the study of the neuronal coding of any other kind of 
(parametric) experimental variable (e.g., stimulation, behavioral) whose time tags are known, in an au-
tomatic manner.  
For the detection of neuronal assemblies in the OT case study, we used the PCA-promax method. We 
chose to manually select the single input parameter required by the program, the zMax threshold (step 
42, Fig. 7a). Examples of the spatial topographies of the detected assemblies are shown in Figure 7b, 
which reveal a majority of spatially compact neuronal clusters. This is an expected result given the light-
spot visual stimulation used and the retinotopic organization of the OT, where neighboring positions in 
the visual field are mapped on neighboring positions in the OT67,68. In Figure 5 and Supplementary 
Videos 1 and 2, we demonstrate the result of using the PCA-promax method to detect assemblies in large-
scale multi-plane light-sheet imaging (i.e., spontaneous activity of >40,000 simultaneously monitored 
ROIs scanned at 2.1 Hz in a zebrafish larva). Several bilaterally symmetric assemblies and unilateral as-
semblies with their corresponding contralateral counterparts were found. This illustrates the richness of 
the biological information obtainable with this clustering algorithm, which surpasses other popular algo-
rithms (k-means) in exposing the spatio-temporal organization of this high dimensional dataset (compare 
Figs. 5g and 5h). We encourage users to detect assemblies in the OT case study using the k-means and 
hierarchical clustering algorithms implemented in the module, and experiment on the effect of changing 
the clustering options (e.g., distance metric, linkage option). The validity of the assemblies obtained with 
the different methods can be evaluated through the provided cluster quality indexes (see Troubleshoot-
ing of step 46). 
The retinotopic-like organization of the observed assemblies in the OT case study can be further con-
firmed with the exploratory analysis module, without any information about the visual stimulation 
events (Figs. 7c,d; steps 48-50). This demonstrates the potential of the assemblies’ module to uncover 
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latent organizing principles of the data in an unsupervised manner. The assemblies' activation dynamics 
can also be further studied using steps 51-52. In Figure 8, we present an example of the dynamics of a 
few selected assemblies, confirming that most of them are engaged by some light-spot stimulations, as 
indicated by the experimental time tags provided in the OT_reg_smooth_TimeTags.mat file. 
Finally, assemblies' features can be compared against control surrogate assemblies (Fig. 9; steps 53-55). 
In this case study, as a feature input file for step 54, we used the OT_reg_smooth_VARIABLE.mat file. This 
file stores the average ROI activity levels in the vector variable #1, and the ROI-ROI activity correlations in 
the matrix variable #2. We found that compared to Topographical surrogate assemblies, assemblies do 
not show any particular trend in the average activity level of their component ROIs (Fig. 9b), but they do 
significantly group correlated ROIs (Fig. 9c). The same trend was observed when comparing with Random 
surrogate assemblies. This example allows the user to further validate the clustering results, which effec-
tively groups correlated ROIs, without showing a bias for the most active ones (a common concern in 
clustering procedures). Nevertheless, this module is not limited to methodological questions such as 
these. It aims to evaluate scientific questions, such as assessing whether assemblies group ROIs accord-
ing to their functional properties (such as those obtainable with the response analysis module), quanti-
fied by ROI features that the user  provides in a feature input file. Furthermore, cross-talk between this 
module and the results revealed by the exploratory analysis module (see Fig. 1) allows the user to prop-
erly choose relevant features to be tested. 

ACKNOWLEDGEMENTS
We thank Simon Peron, Karl Svoboda and collaborators, and also Nicholas Priebe, Boris Zemelman and 
collaborators for sharing with us the mouse somatosensory and visual cortex data, respectively, through 
the crcns.org data sharing portal (datasets ssc-1 and pvc-10). We thank the members of the Sumbre 
group for helpful discussions and continuing testing of the toolbox. We thank the Marin Burgin lab at 
IBioBA for their support. This work was supported by EraSysBio+ Zebrain, ERC stg 243106, ANR-10-
LABX-54 MEMO LIFE, ANR- 11-IDEX-0001-02 PSL* Research University, Avenir grant INSERM, Argentine 
Agency from the Promotion of Science and Technology (PICT 2013-0182), and Structural Convergence 
Fund for MERCOSUR (FOCEM).  

AUTHOR CONTRIBUTIONS
S.A.R. designed the toolbox, developed the software, performed imaging experiments and analyzed 
datasets. V.P.-S. developed software and interactive user interfaces. A.J. and A.C. contributed and ana-

lyzed light-sheet imaging data. J.B-W. Developed the HuC:GCaMP5 zebrafish line. S.A.R. and G.S. wrote 
the manuscript. 

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2017. ; https://doi.org/10.1101/103879doi: bioRxiv preprint 

https://doi.org/10.1101/103879
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 
1. Deisseroth, K. Circuit dynamics of adaptive and maladaptive behaviour. Nature 505, 309–17 (2014). 
2. Harris, K. D. Neural signatures of cell assembly organization. Nat. Rev. Neurosci. 6, 399–407 (2005). 
3. Briggman, K. L. & Kristan, W. B. Multifunctional pattern-generating circuits. Annu. Rev. Neurosci. 31, 271–94 

(2008). 
4. Wallace, D. J. & Kerr, J. N. Chasing the cell assembly. Curr. Opin. Neurobiol. 20, 296–305 (2010). 
5. Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals pre-

cise micro-architecture in visual cortex. Nature 433, 597–603 (2005). 
6. Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular 

resolution using light-sheet microscopy. Nat. Methods 10, 413–20 (2013). 
7. Panier, T. et al. Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective 

Plane Illumination Microscopy. Front. Neural Circuits 7, 65 (2013). 
8. Portugues, R., Feierstein, C. E., Engert, F. & Orger, M. B. Whole-brain activity maps reveal stereotyped , dis-

tributed networks for visuomotor behavior. Neuron 81, 1328–1343 (2014). 
9. Romano, S. A. et al. Spontaneous neuronal network dynamics reveal circuit’s functional adaptations for be-

havior. Neuron 85, 1070–1085 (2015). 
10. Candelier, R. et al. A microfluidic device to study neuronal and motor responses to acute chemical stimuli in 

zebrafish. Sci. Rep. 5, 12196 (2015). 
11. Peron, S. P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular resolution map of barrel cortex activity dur-

ing tactile behavior. Neuron 86, 783–799 (2015). 
12. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 

(2014). 
13. Niessing, J. & Friedrich, R. W. Olfactory pattern classification by discrete neuronal network states. Nature 

465, 47–52 (2010). 
14. Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal 

lobe projection neurons. Neuron 48, 661–73 (2005). 
15. Mante, V., Sussillo, D., Shenoy, K. V & Newsome, W. T. Context-dependent computation by recurrent dynam-

ics in prefrontal cortex. Nature 503, 78–84 (2013). 
16. Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I. & Battaglia, F. P. Replay of rule-learning related 

neural patterns in the prefrontal cortex during sleep. Nat. Neurosci. 12, 919–926 (2009). 
17. Benchenane, K. et al. Coherent theta oscillations and reorganization of spike timing in the hippocampal- 

prefrontal network upon learning. Neuron 66, 921–936 (2010). 
18. Lopes-dos-Santos, V., Conde-Ocazionez, S., Nicolelis, M. a L., Ribeiro, S. T. & Tort, A. B. L. Neuronal assembly 

detection and cell membership specification by principal component analysis. PLoS One 6, e20996 (2011). 
19. Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nat. Rev. Neurosci. 1, 125–32 

(2000). 
20. Thompson, A. W., Vanwalleghem, G. C., Heap, L. A. & Scott, E. K. Functional profiles of visual-, auditory-, and 

water flow-responsive neurons in the Zebrafish Tectum. Curr. Biol. 26, 743–754 (2016). 
21. Scholl, B., Pattadkal, J. J., Dilly, G. A., Priebe, N. J. & Zemelman, B. V. Local integration accounts for weak 

selectivity of mouse neocortical parvalbumin interneurons. Neuron 87, 424–437 (2015). 
22. Guo, Z. V et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–94 (2014). 
23. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 

(2013). 
24. Ji, N., Sato, T. R. & Betzig, E. Characterization and adaptive optical correction of aberrations during in vivo 

imaging in the mouse cortex. Proc. Natl. Acad. Sci. 109, 22–27 (2012). 
25. Peron, S., Chen, T.-W. & Svoboda, K. Comprehensive imaging of cortical networks. Curr. Opin. Neurobiol. 32, 

115–123 (2015). 
26. Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging large-scale neural activity 

with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007). 
27. Yaksi, E. & Friedrich, R. W. Reconstruction of firing rate changes across neuronal populations by temporally 

deconvolved Ca 2 + imaging. Nat. Methods 3, 377–383 (2006). 
28. Mukamel, E. A., Nimmerjahn, A. & Schnitzer, M. J. Automated analysis of cellular signals from large-scale 

calcium imaging data. Neuron 63, 747–60 (2009). 

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2017. ; https://doi.org/10.1101/103879doi: bioRxiv preprint 

https://doi.org/10.1101/103879
http://creativecommons.org/licenses/by-nc-nd/4.0/


29. Vogelstein, J. T. et al. Fast nonnegative deconvolution for spike train inference from population calcium 
imaging. J. Neurophysiol. 104, 3691–3704 (2010). 

30. Izenman, A. J. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. 
Springer Texts in Statistics (2008). doi:10.1007/978-0-387-78189-1 

31. Hastie, Trevor, Tibshirani, Robert, Friedman, J. The Elements of Statistical Learning The Elements of Statistical 
Learning Data Mining, Inference, and Prediction, Second Edition. Springer series in statistics (2009). doi:
10.1007/978-0-387-84858-7 

32. Peyrache, A., Benchenane, K., Khamassi, M., Wiener, S. I. & Battaglia, F. P. Principal component analysis of 
ensemble recordings reveals cell assemblies at high temporal resolution. J. Comput. Neurosci. 29, 309–25 
(2009). 

33. Hendrickson, A. E. & White, P. O. PROMAX: a quick method for rotation to oblique simple structure. Br. J. Stat. 
Psychol. 17, 65–70 (1964). 

34. Tracy, C. A. & Widom, H. Level-Spacing Distributions and the Airy Kernel. Commun. Math. Phys. 159, 35 
(1992). 

35. Hilgetag, C., Kötter, R., Stephan, K. & Sporns, O. in Computational Neuroanatomy–Principles and Methods 
(ed. Ascoli, G.) 295–335 (Humana Press, 2002). 

36. Sporns, O., Honey, C. & Kötter, R. Identification and classification of hubs in brain networks. PLoS One (2007). 
doi:10.1371 

37. Miller, J.-E. K., Ayzenshtat, I., Carrillo-Reid, L. & Yuste, R. Visual stimuli recruit intrinsically generated cortical 
ensembles. Proc. Natl. Acad. Sci. 111, E4053–61 (2014). 

38. Smith, S. L. & Häusser, M. Parallel processing of visual space by neighboring neurons in mouse visual cortex. 
Nat. Neurosci. 13, 1144–9 (2010). 

39. Smith, M. a & Kohn, A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neu-
rosci. 28, 12591–603 (2008). 

40. Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. 
Neuron 89, 299 (2016). 

41. Grewe, B., Langer, D., Kasper, H., Kampa, B. M. & Helmchen, F. High-speed in vivo calcium imaging reveals 
neuronal network activity with near-millisecond precision. Nat. Methods 7, 399–405 (2010). 

42. Lin, B. B.-J., Chen, T. T.-W. & Schild, D. Cell type-specific relationships between spiking and [Ca2+]i in neu-
rons of the Xenopus tadpole olfactory bulb. J. Physiol. 582, 163–175 (2007). 

43. Churchland, M. M., Yu, B. M., Sahani, M. & Shenoy, K. V. Techniques for extracting single-trial activity patterns 
from large-scale neural recordings. Curr. Opin. Neurobiol. 17, 609–18 (2007). 

44. Louie, K. & Wilson, M. A. Temporally structured replay of awake hippocampal ensemble activity during rapid 
eye movement sleep. Neuron 29, 145–156 (2001). 

45. Abeles, M. & Gerstein, G. L. Detecting spatiotemporal firing patterns among simultaneously recorded single 
neurons. J. Neurophysiol. 60, 909–24 (1988). 

46. Abeles, M. & Gat, I. Detecting precise firing sequences in experimental data. J. Neurosci. Methods 107, 141–
154 (2001). 

47. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated 
network states in a neural population. Nature 440, 1007–12 (2006). 

48. Shlens, J. et al. The Structure of Multi-Neuron Firing Patterns in Primate Retina. J. Neurosci. 26, 8254–8266 
(2006). 

49. Roudi, Y., Nirenberg, S. & Latham, P. E. Pairwise maximum entropy models for studying large biological sys-
tems: When they can work and when they can’t. PLoS Comput. Biol. 5, (2009). 

50. Ohiorhenuan, I. E. et al. Sparse coding and high-order correlations in fine-scale cortical networks. Nature 
466, 617–21 (2010). 

51. Ganmor, E., Segev, R. & Schneidman, E. Sparse low-order interaction network underlies a highly correlated 
and learnable neural population code. Proc. Natl. Acad. Sci. U. S. A. 108, 9679–84 (2011). 

52. Gansel, K. S. & Singer, W. Detecting multineuronal temporal patterns in parallel spike trains. Front. Neuroin-
form. 6, 1–16 (2012). 

53. Picado-Muiño, D., Borgelt, C., Berger, D., Gerstein, G. & Grün, S. Finding neural assemblies with frequent item 
set mining. Front. Neuroinform. 7, 9 (2013). 

54. Humphries, M. D. Spike-train communities: finding groups of similar spike trains. J. Neurosci. 31, 2321–36 
(2011). 

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2017. ; https://doi.org/10.1101/103879doi: bioRxiv preprint 

https://doi.org/10.1101/103879
http://creativecommons.org/licenses/by-nc-nd/4.0/


55. Ozden, I., Sullivan, M. R., Lee, H. M. & Wang, S. S.-H. Reliable coding emerges from coactivation of climbing 
fibers in microbands of cerebellar Purkinje neurons. J. Neurosci. 29, 10463–73 (2009). 

56. Dombeck, D. A., Graziano, M. S. & Tank, D. W. Functional clustering of neurons in motor cortex determined 
by cellular resolution imaging in awake behaving mice. J. Neurosci. 29, 13751–60 (2009). 

57. Bonifazi, P. et al. GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Sci-
ence. 326, 1419–24 (2009). 

58. Bathellier, B., Ushakova, L. & Rumpel, S. Discrete neocortical dynamics predict behavioral categorization of 
sounds. Neuron 76, 435–49 (2012). 

59. Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. Methods 11, 941–950 (2014). 
60. Roweis, S. T. & Saul, L. K. Nonlinear dimensionality reduction by locally linear embedding. Science. 290, 

2323–2326 (2000). 
61. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in an olfactory system. Neuron 39, 

991–1004 (2003). 
62. Kobak, D. et al. Demixed principal component analysis of neural population data. Elife 5, 1–37 (2016). 
63. Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–

91 (1999). 
64. Tomek, J., Novak, O. & Syka, J. Two-Photon Processor and SeNeCA: a freely available software package to 

process data from two-photon calcium imaging at speeds down to several milliseconds per frame. J. Neuro-
physiol. 110, 243–56 (2013). 

65. Kaifosh, P., Zaremba, J. D., Danielson, N. B. & Losonczy, A. SIMA: Python software for analysis of dynamic 
fluorescence imaging data. Front. Neuroinform. 8, 80 (2014). 

66. Yamada, Y. et al. Quantitative comparison of genetically encoded Ca indicators in cortical pyramidal cells 
and cerebellar Purkinje cells. Front. Cell. Neurosci. 5, 18 (2011). 

67. Burrill, J. D. & Easter, S. S. Development of the retinofugal projections in the embryonic and larval zebrafish 
(Brachydanio rerio). J. Comp. Neurol. 346, 583–600 (1994). 

68. Niell, C. M. & Smith, S. J. Functional imaging reveals rapid development of visual response properties in the 
zebrafish tectum. Neuron 45, 941–51 (2005). 

69. Davies, D. L. & Bouldin, D. W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1, 
224–227 (1979). 

70. Theodoridis, S. & Koutroumbas, K. Pattern Recognition. Wiley Interdisciplinary Reviews Computational Sta-
tistics 5748, (2009). 

71. Pérez-Schuster V., Kulkarni A,, Nouvian M., Romano S.A., Lygdas K., Jouary A., Dippopa M., Pietri T., Hau-
drechy M., Candat V., Boulanger-Weill J., Hakim V., Sumbre G. Sustained Rhythmic Brain Activity Underlies 
Visual Motion Perception in Zebra sh. Cell Reports 17: 1098–1112 (2016). 

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2017. ; https://doi.org/10.1101/103879doi: bioRxiv preprint 

https://doi.org/10.1101/103879
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Figure 1. Pre-processing of fluorescence dynamics. (a) Red, hexagonal grid of 6 μm-diameter, over an imaged 
optical section of OT of a zebrafish larva pan-neuronally expressing GCaMP3. The region covered by the grid is defined with a 
user-drawn mask (step 12). (b) Left, raw fluorescence of a ROI (black) and the estimated Fsmooth. Right, ΔF/F0 obtained using Fs-

mooth as F0. Note how slow fluctuations are removed, producing a stable ΔF/F0. (c) Zoom of a. Note how follows slow fluorescence 
variations, ignoring the fast, neuronal activity related fluorescence transients. (d) Estimation of the baseline fluorescence noise 
(σ) of a ROI. Black, normalized histogram of the ROI's ΔF/F0; red, Gaussian fit to the negative fluorescence ΔF/F0.  
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Supplementary Figure 2. Mapping of responses to HSV color-code. (a) Schema illustrating the definition of the hue, saturation 
and value to visually represent ROI responses in a color-code. Left, ROI tuning curve. Arrows indicate the particular hue, satura-

tion and value of this ROI. Right, colorbars representing the range of hue, saturation and value for all the imaged ROIs. Arrows 
indicate the color-code parameters for the ROI tuning curve shown in the left. (b) Display of neuronal responses only represent-
ing preferred stimulus (i.e., the peak mapping parameter). Same as Fig. 4, but disabling saturation and value channels, thus only 
representing preferred stimulus on the hue channel. The noisier image obtained underscores the utility of additionally repre-
senting the neuronal selectivity and response strength.  

Supplementary Video 1. Volumetric distribution of example assemblies shown in Fig. 5a-f. Assemblies obtained with the PCA-
promax algorithm. For each panel, the corresponding axial projection of the example assemblies is initially displayed, followed 
by their layout over each one of the 40 imaged optical planes (plane depths are indicated in lower right corners).  

Supplementary Video 2. Volumetric distribution of all the assemblies shown in Fig. 5g. Assemblies obtained with the PCA-pro-
max algorithm. The axial projection of all the assemblies found in the dataset is initially displayed, followed by each one of the 
40 imaged optical planes (plane depths are indicated in lower right corners).  

36

45°
40°
35°
30°
25°
20°
15°
10°
5°
0°
-5°
-10°
-15°
-20°
-25°
-30°
-35°
-40°
-45°

b

Value
Saturation

Hue

A
ve

ra
ge

 Δ
F/

F0

Mapping parameter
-50 0 50

-0.1

0

0.1

0.2

0.3

0.4

o o o

45o

40
35
30
25
20
15
10
5
0
-5
-10
-15
-20
-25
-30
-35
-40
-45

o
o

o

o
o
o

o
o

o

o

o

o

o

o
o

o

o

o

Hue
10

15

21

26

32

Tu
ni

ng
 w

id
th

Saturation
0.99

0.75

0.51

0.26

0.02

R
es

po
ns

e 
st

re
ng

th
 (a

ve
ra

ge
 Δ

F/
F0

)

Value
a

o

o

o

o

o

P
ea

k 
m

ap
pi

ng
 p

ar
am

et
er

P
ea

k 
m

ap
pi

ng
 p

ar
am

et
er

-1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2017. ; https://doi.org/10.1101/103879doi: bioRxiv preprint 

https://doi.org/10.1101/103879
http://creativecommons.org/licenses/by-nc-nd/4.0/

