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Abstract

Samples of bacteria collected over a period of time are attractive for several reasons, including the
ability to estimate the molecular clock rate and to detect fluctuations in allele frequencies over time.
However, longitudinal datasets are occasionally used in analyses that assume samples were collected
contemporaneously. Using both simulations and genomic data from Neisseria gonorrhoeae, Streptococcus
mutans, Campylobacter jejuni, and Helicobacter pylori, we show that longitudinal samples (spanning more
than a decade in real data) may suffer from considerable bias that inflates estimates of recombination
and the number of rare mutations in a sample of genomic sequences. While longitudinal data are
frequently accounted for using the serial coalescent, many studies use other programs or metrics, such as
Tajima’s D, that are sensitive to these sampling biases and contain genomic data collected across many
years. Notably, longitudinal samples from a population of constant size may exhibit evidence of
exponential growth. We suggest that population genomic studies of bacteria should routinely account for
temporal diversity in samples or provide evidence that longitudinal sampling bias does not affect
conclusions.

Introduction

Evolutionary analysis of bacterial genomes provides insights into the origins of diversity and is
increasingly used to inform control measures for infectious pathogens. Many analyses based on simple
population genetic models, such as coalescent or diffusion theory (Kingman 1982; Kimura 1964), assume
individuals are sampled contemporaneously (i.e. from the same generation). This assumption is
reasonable for data from eukaryotes, which typically have longer generation times such that samples
across years may only differ by a few generations. However, bacteria have shorter generations such that a
sample collected across years could violate this assumption, and the consequences for the inference of
evolutionary parameters from such data have not been extensively studied. An important exception is the
serial coalescent (implemented in BEAST; Drummond et al. 2002) which can account for such differences
in sampling times and has been used extensively to reconstruct the history of microbes. In many cases
longitudinal samples may be purposefully collected to estimate mutation rates from ‘measurably evolving
populations’ (Drummond et al. 2003). Nonetheless, serial coalescent methods do not currently allow for
inference of selection or complex demographic scenarios and so researchers may choose other methods
with different features to analyze population genetic data, such as the popular algorithms that fit models
to data using the mutation site-frequency spectrum (SFS; e.g. Excoffier et al. 2013, Gutenkunst et al.
2009). Coalescent methods may also not allow homologous recombination, which is quite common in
many bacteria and may be quantified using patterns of linkage disequilibrium or phylogenetic
congruence (Smith et al. 1993; Suerbaum et al. 1998; Feil et al. 2001).

We use simulations to show that longitudinal samples have an excess of rare mutations compared
to contemporaneous data and can exhibit more evidence of recombination. These patterns can be seen in
real genomic datasets, including previously published samples N. gonorrhoeae, S. mutans, C. jejuni, and H.
pylori as examples. Our results suggest that, at least for some bacterial species, longitudinal samples
spanning ~10 years have biased summary statistic values that can result in misleading demographic
inference or between-species comparisons of recombination rates (e.g. Smith et al. 1993; Feil et al. 2001),
especially if species differ in generation time, population size, or sample composition. Thus, researchers
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doing analyses sensitive to the shape of the genealogy should either account for different sampling times
or provide sufficient evidence that longitudinal sampling biases do not affect conclusions.

Results and Discussion

Longitudinal samples have distinct genealogies. The process of coalescence describes the
underlying genealogy of a sample of sequences, which dictates the patterns of genetic diversity we
observe. Sequences collected from different generations (i.e. a longitudinal sample) cannot coalesce until
their ancestral lineages are simultaneously present. Until this occurs (going backwards in time - the
period noted Tsamp in Figure 1), particular lineages may mutate and recombine but cannot coalesce,
distorting genealogical structure. These genealogical distortions are negligible if the evolutionary time (in
generations) separating longitudinal samples (Tsamp) is small in comparison to the mean time to pairwise
coalescence (Tcoa) in which mutation and recombination occur in contemporaneous samples (Depaulis et
al. 2009). However, any factors that decrease Tcoa, such as smaller effective population sizes from
transmission bottlenecks, or increase Tsamp, Such as shorter generation times (in years, the timescale on
which samples are collected) may cause longitudinal samples to have distinct differences from
contemporaneous ones.

We simulated three different sampling schemes in which we longitudinally sampled sequences
through time in different ways (Figure 2A). For each sampling scheme, we varied the timespan between
the first and last sample, using either 0.2N or 0.5N generations, where N is the population size. Compared
to a contemporaneous sample, longitudinal samples had SFS with an excess of rare single-nucleotide
polymorphisms (SNPs; Figure 2B;Depaulis et al. 2009) and exhibited more evidence of historical
recombination as measured by pairwise phylogenetic compatibility (PC) between pairs of mutations
(Wilson 1965, Figure 2C). The time spanning sample collection affected observed patterns of genetic
variation much more than the particular sampling schemes used here, although the asymmetric sample
(scheme 3) with more lineages from certain time points was slightly less biased (Figure 2). Other
unexplored sample structures, such as those with a vast majority of lineages coming from a similar
generation, would likely look more like contemporaneous samples.

SFS for nonsynonymous sites under purifying selection were also more skewed by sampling bias,
but overall levels of purifying selection as measured by ratios of nonsynonymous to synonymous
diversity were roughly similar across all samples (Figure S1).

Bacterial genetic samples may span relevant evolutionary timescales. To illustrate the potential for
bacteria to have genealogies distorted by longitudinal sampling, we used genomic datasets from four
bacterial pathogens sampled over time: N. gonorrhoeae (Grad et al. 2016; spanning 13 years), S. mutans
(Cornejo et al. 2013; spanning 27 years), C. jejuni (Sheppard et al. 2013; Yahara et al. 2014; spanning 11
years), and H. pylori (Blanchard et al. 2013; spanning 11 years). We selected these datasets because they
not only contained longitudinal samples spanning more than a decade from a restricted geographic
location but also had enough samples from a given year for meaningful comparison (i.e. greater than or
equal to 10). Population structure may also frequently create biases in evolutionary inference, but this
has been studied elsewhere (e.g. Lapierre et al. 2016), so we attempted to minimize the effects of
structure by only looking at samples within a city (San Diego, California, USA for N. gonorrhoeae or
Cleveland, Ohio, USA for H. pylori), country (United Kingdom for S. mutans), or sequence type (ST45 for C.
jejuni).

For three species examined, a sufficient number of generations separate longitudinal samples
(T1ong) with respect to population size (Tcoa1) to distort genealogies and create measurable differences
between summary statistics: serial samples exhibit more evidence of historical recombination (although
only slightly for C. jejuni) and have skewed SFS with an excess of rare mutations (Figure 3B). SFS for
larger samples, which are unavoidably longitudinal, are either similar or slightly more skewed than
subsamples (Table S1). These summary statistic biases could thus affect within-species estimation of
recombination rates (e.g. Takuno et al. 2012) or between-species comparisons (e.g. Smith et al. 1993; Feil
et al. 2001) if sampling dates are not accounted for, especially if datasets differ in sampling timespans or
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species have different generation times or effective population sizes (e.g. Suerbaum et al. 1998 which
compares bacteria with a eukaryote). These biases could also create problems for any application that
relies on the shape of the SFS, such as the calculation of Tajima’s D (as in Touchon et al. 2014) or
programs that use the SFS to fit demographic models to data, such as 8adi, prfreq, or fastsimcoal2 (used in
Cornejo et al. 2013; Pepperell et al. 2013; Montano et al. 2015, respectively). However, these biases could
be favorable for other applications such as genome-wide association studies since longitudinal samples
would exhibit less linkage than contemporaneous ones.

Summaries for longitudinal and contemporaneous H. pylori samples appear quite similar (Figure
3). Potential explanations include larger population sizes, longer generation times, or other factors such
as population structure.

To illustrate, we used fastsimcoal2 (Excoffier et al. 2013) to fit two demographic models, either
constant population size or exponential growth, to all samples. In agreement with the sample SFS in
Figure 3B, model fits to longitudinal samples either had grossly inflated signals of population growth for
N. gonorrhoeae or, for S. mutans, provided evidence for growth when contemporaneous samples were
better explained by a model of constant size (Table 1, Figure S2). The 8-fold population growth estimated
from the longitudinal S. mutans sample is similar to that reported to the 5-fold growth in Cornejo et al.
2013. Thus, while these results are not definitive, they still provide evidence that longitudinal sampling
bias may have contributed to some, if not all, of the signal of growth in S. mutans. Masking rare variants
(e.g. singletons and doubletons) does not ameliorate these biases, according to growth model fits to
simulated datasets with larger sample sizes (n=50, Table S2).

Conclusions

Samples collected over time are common in the growing literature on the population genomics of
bacteria. This reflects analyses of samples already collected and in freezers, but also a deliberate strategy
to examine the way populations change over time. We have found that longitudinal sample schemes can
produce erroneous signals of population growth and exaggerated rates of recombination if sample dates
are ignored. This happens for intuitive reasons illustrated in Figure 1; the longer sampling period
provides more generations for mutation or recombination to occur, skewing the SFS and the total amount
of observed recombination. This can generate wholly artificial signals of population growth.

While our results urge caution in interpreting evolutionary analyses when collection dates are not
accounted for, this problem is not expected to affect species with small Ting (longer generations or near-
contemporaneous samples) and/or large Tcoa (large population sizes), such as non-pathogenic bacteria
that have less population structure and do not experience frequent population bottlenecks from limited
transmission. However, bacterial genomic samples frequently span more than a decade and may have
significant biases. We thus suggest that sampling dates and proof that analyses do not suffer from
longitudinal sampling bias should be routinely provided in evolutionary genetic studies of bacteria.

Methods

Bacterial Genomic Data. N. gonorrhoeae data were kindly provided by Yonatan Grad (Grad et al.
2016), C. jejuni data were provided by Samuel Sheppard (Sheppard et al. 2013, Yahara et al. 2014), and
we downloaded S. mutans data used in Cornejo et al. 2013 and H. pylori data reported in Blanchard et al.
2013 from NCBI. We analyzed de novo assemblies with PROKKA (Seemann 2014), using an amino acid file
from a reference genome (FA1090 for N. gonorrhoeae, UA159 for S. mutans, CjeNCTC11168 for C. jejuni,
and HPY26695 for H. pylori). We then identified core and accessory genes with ROARY (Page et al. 2015)
and used only core genes that were also present in the reference genome for analysis of PC and the SFS.
We inferred position information between polymorphic sites using the relative positions of genes in the
reference genome, not from a reference-based DNA alignment. We calculated PC (Wilson 1965) and
Tajima’s D (Tajima 1989) form core gene alignments using custom Perl scripts. All contemporaneous and
serial samples used in this study may be found in Table S3.

Simulations of longitudinal datasets. We designed a forward-in-time simulator of a Wright-
Fisher population in C++. We used this program to simulate a population of N=1000 haploid genomes for
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a burn-in time of 10N generations until the population reached mutation-drift balance. After this time, we
either took a contemporaneous or longitudinal sample of n=50 genomes. Longitudinal samples spanned
either 200 (0.2N) or 500 (0.5N) generations between the first and last sample, and we used three
different sampling schemes (Figure 2A). For scheme one, we sampled 1 genome every 4 or 10
generations until n=50, such that samples were collected across ~0.2N or ~0.5N generations,
respectively. Likewise, for scheme two, we sampled 10 genomes every 50 or 125 generations until n=50.
Lastly, for scheme three we took five samples of size 18, 14, 10, 6, and 2 that were separated by 50 or 125
generations. We note that while real bacterial populations sizes are likely much larger than the size
simulated here, our results scale to populations of arbitrary size as long as time is measured in N
generations. For the results in Figure 2, we simulated 50 kb fragments and fewer repetitions (20), but for
the analyses of purifying selection in Figure S1, we simulated 10 kb fragments and more repetitions
(1000).

Demographic model fitting. We fit both a model of constant population size and exponential
growth to the SFS of fourfold degenerate sites using fastsimcoal2? (Excoffier et al. 2013). For each sample
SFS, we ran fastsimcoal2 50 times, which uses an expectation-maximization algorithm to search
parameter space. We chose the run that produced the highest likelihood for model selection, and we used
Akaike information criterion (AIC) to evaluate which model had the higher probability of being correct
given the candidate set of models (Figure S2). To explore the effect of masking rare variants for
parameter estimation, we fit exponential growth models to simulated datasets using either the full SFS
(default) or a minimum mutation count of three (by including the “-C 3” flag in the fastsimcoal2
command; Table S2).

Acknowledgements: We would like to thank Marc Lipsitch, Hsiao-Han Chang, and Omar Cornejo for
useful discussion. We would also like to thank Michael Stanhope for providing the sampling dates of the S.
mutans isolates.
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Figure 1. Ancestral recombination graph for a longitudinal sample. The genealogies for three DNA
sequences are shown, which vary across positions due to recombination (black vs. gray lines). Shapes
represent mutations. The rightmost lineage was sampled Tiong generations later in time such that it
experienced additional mutation (black circle) and recombination (bifurcation backwards in time)
events. Coalescence only occurs when ancestral lineages are simultaneously present in the same
population (during Tcoa) and happens over a timescale proportional to population size (N).
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Figure 2. Simulated longitudinal datasets have an excess of rare variants and more evidence of
recombination. (A) We simulated three longitudinal sampling schemes with distinct structures but with
the same time spanning the first and last sample. (B) Longitudinal samples spanning 0.2N (blue) or 0.5N
(red) generations had SFS with more rare SNPs than a contemporaneous sample (black). The particular
sample structure had little effect, with light, medium, or dark blue/red corresponding to sample scheme
1, 2, or 3, respectively. (C) Mean pairwise compatibility between SNP pairs as a function of distance is
consistently lower for longitudinal samples. Here, we simulated 50 kb fragments with a population
mutation rate (2Np) and recombination rate (2Nr) of 0.01 per site and a mean homologous
recombination tract length of 1 kb. We sampled 50 individuals and calculated the mean across 20

simulations.
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Figure 3. Longitudinal samples in real bacterial datasets span relevant timescales. Pairwise
compatibility (PC) as a function of inter-SNP distance (A) and the SFS along with Tajima’s D (B) are
shown for contemporaneous (green) and longitudinal (brown) samples of the four species analyzed in
this study. Sample sizes used in analyses are shown below the species name.



Table 1. Maximum likelihood estimates of exponential growth model parameters

Contemporaneous sample Longitudinal sample
Species Fold growth  Time of grqwth Fold growth  Time of grqwth
(N/N,) (N, generations) (N/N,) (N, generations)
N. gonorrhoeae 4.32 0.08 34.25 0.02
S. mutans NA* NA* 8.12 0.24

Notes: The exponential growth model involves an ancestral population of size N, that
starts growing at some point in time to contemporary size N. Models were fit to the
SFS of fourfold-degenerate sites.

*A model of constant population size fit the data better than a model of exponential
growth.
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Figure S1. Analysis of synonymous and nonsynonyous variation for longitudinal samples. Shown
are summary statistics from simulation studies of a contemporaneous sample (Con) and various
longitudinal samples spanning either 0.2N or 0.5N generations and having sample structures according to
those shown in Figure 2A (1, 2, or 3). We simulated samples collected from a neutral population (Ns=0)
or with varying degrees of purifying selection (Ns=-1, -5, or -50). We calculated Tajima’s D at both
synonymous (A) and nonsynonymous (B) sites and the ratio of nonsynonymous to synonymous diversity
(C, calculated as Watterson'’s estimator). Tajima’s D becomes more negative at synonymous and
nonsynonymous sites with longitudinal sampling bias and from purifying selection on nonsynonymous
mutations with linkage to synonymous mutations. Levels of purifying selection, as measured by ratios of
nonsynonymous to synonymous diversity (C), do not significantly differ between contemporaneous and
longitudinal samples. Here, we simulated 10 kb fragments with a population mutation rate (2Nu) and
recombination rate (2Nr) of 0.01 per site and a mean homologous recombination tract length of 1 kb. We
sampled 50 individuals and calculated the mean across 1000 simulations.
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Figure S2. Model selection using fastsimcoal2 and AIC. AIC analyses are shown for N. gonorrhoeae (A)
and S. mutans (B) samples. For each analysis, the maximum likelihood of 50 fastsimcoal2 runs is shown
(Max log1o(Lhood)), along with the components necessary for the calculating the Akaike weight (w;) for
each model (C), which may be interpreted as the probability that model i is the correct one. Here, d
represents the number of model parameters used, which was either 1 for the constant size model or 3 for
the growth model, since both an ancestral and contemporary population need to be specified, along with
the time at which population growth starts.



Table S1. Tajima’s D for contemporaneous and longitudinal samples

Species SaTDpIe Tajli)r:a’s Sasrir;zle Sample Description
N. gonorrhoeae
sample 1 -0.319 39 Contemporaneous sample from same year (2009) and city (San Diego, California)
sample 2 -0.546 39 Serial sample from San Diego of same size as contemporaneous sample
sample 3 -0.734 152 All available samples from San Diego
S. mutans
sample 1 -0.008 10 Contemporaneous sample from same year (2006) and country (UK)
sample 2 -0.579 10 Serial sample from UK of same size as contemporaneous sample
sample 3 -0.616 21 All available samples from UK
C. jejuni
sample 1 0.451 18 Contemporaneous sample from same year (2008) and sequence type (ST45)
sample 2 0.107 18 Serial sample of ST45 of same size contemporaneous sample
sample 3 -0.383 52 All available samples from ST45
H. pylori
sample 1 -0.162 11 Contemporaneous sample from same year (1986) and city (Cleveland, Ohio)
sample 2 0.041 11 Serial sample from Cleveland of same size as contemporaneous sample
sample 3 -0.315 38 All available samples with dates from Cleveland

*Calculated from the SFS of fourfold degenerate sites genome-wide

Table S2. Parameter estimates for growth model are similar when rare variants are masked

Sample spanning 0.2N generations

Sample spanning 0.5N generations

Full SES Minimum mutation Full SES Minimum mutation
count of 3 count of 3
Sampling Fold Time of Fold Time of Fold Time of Fold Time of
scheme growth growth growth growth growth growth growth growth
1 3.79 0.11 3.66 0.11 6.28 0.13 6.46 0.13
2 3.22 0.12 3.27 0.11 5.23 0.19 5.28 0.19
3 2.87 0.11 2.91 0.11 4.65 0.15 4.77 0.14

Notes: The exponential growth model involves an ancestral population of size N, that starts growing
at some point in time to contemporary size N,. Fold growth was measured as N/N,, and time of
growth is measured in N, generations. Growth models were fit as described in Methods.



N. gonorrhoeae

Contemporaneous sample

Strain name
8289 2#74
8727 5#56
8289 2#68
8289 2#20
8727 5#58
8289 2#72
8727 5#68
8727 5#48
8727 5#74
9716_3#90
8727 8#24
8289 2#76
8727 8#66
15335 _5#85
8727 _8#20
8289 2#28
8727 5#70
8727 8#18
8727 _8#64
8727 5#66
8289 2#30
8727 8#54
8289 2#78
8727 5#64
8727 8#34
8727 8#38
8727 _5#62
8727 5#52
8289 2#70
8289 2#32
8727 8#36
8289 2#22
8289 2#26
8289 2#67
8289 2#69
8289 2#71
8289 2#73
8289 2#75
8289 2#77

Collection Date
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009

Table S3. Collection dates of strains used in contemporaneous and longitudinal samples.

Longitudinal sample

Strain name
17150 _8#82
17176_1#85
17225 3#34
17150 _8#17
17150 _8#21
17150_8#19
17150_8#32
17150_8#58
17225 2#15
17225 2#14
17150 _8#61
15335 _44#28
15335 _4#29
15335 _4#30
15335 _5#24
15335 _5#66
15335 _4#69
15335 _5#67
15335 _6#1
8289 2#74
8727 5#56
8289 2#68
15335 _5#85
8727 5#54
8727 _5#43
8727 _5#45
8727 _8#96
15335 _6#16
15335 _3#74
15335 _6#67
15335_4#93
15335 _2#60
16043 _2#23
15335 24#2
15335 _2#64
15335 _2#75
15335 _2#68
15335 _7#67
15335 7#1

Collection date
2000
2001
2002
2002
2002
2002
2003
2004
2004
2004
2004
2005
2005
2005
2005
2007
2007
2007
2007
2009
2009
2009
2009
2010
2010
2010
2010
2011
2011
2011
2011
2012
2012
2012
2012
2013
2013
2013
2013



S. mutans

Contemporaneous sample Longitudinal sample
Strain name Collection Date Strain name Collection date
Al19 2006 N3209 1979
A9 2006 N29 1991
G123 2006 NFSM1 1994
M21 2006 N34 1997
M2A 2006 N66 1997
ST1 2006 NLML1 2001
ST6 2006 NLML4 2001
T4 2006 NLML8 2002
U138 2006 Al19 2006
W6 2006 A9 2006
C. jejuni
Contemporaneous sample Longitudinal sample
Strain name Collection Date Strain name Collection date
1702 2008 112 2004
1722 2008 114 2004
1723 2008 1775 2005
1727 2008 1776 2005
1733 2008 39 2005
1737 2008 1771 2006
1738 2008 45 2006
1740 2008 1800 2007
288 2008 1817 2007
309 2008 405 2007
312 2008 1702 2008
321 2008 1722 2008
324 2008 1723 2008
378 2008 342 2009
406 2008 371 2009
416 2008 382 2009
429 2008 434 2011
472 2008 5006 2015
H. pylori
Contemporaneous sample Longitudinal sample
Strain name Collection Date Strain name Collection date
HpA_14 6/6/1986 HpA_8 4/28/1986
HpA_16 6/18/1986 HpA_27 12/1/1986
HpA_17 6/18/1986 HpP_11 6/9/1987
HpA_20 10/10/1986 HpP_16 12/17/1987
HpA_26 12/1/1986 HpH_4 9/20/88
HpA 27 12/1/1986 HpH_27 3/23/1989
HpA_4 4/18/1986 HpP_26 11/9/1989
HpA_5 4/23/1986 HpP_30 6/28/1990

HpA_6 5/2/1986 HpP_41 4/12/1991



HpA_8 4/28/1986 HpP_62 3/13/1996
HpP_ 8 4/28/1986 HpP_74 3/6/1997



