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Abstract 
 

With the availability of genotyping data of very large samples, there is an increasing need for tools that can 
efficiently identify genetic relationships among all individuals in the sample. One fundamental measure of 
genetic relationship of a pair of individuals is identity by descent (IBD), chromosomal segments that are 
shared among two individuals due to common ancestry. However, the efficient identification of IBD 
segments among a large number of genotyped individuals is a challenging computational problem. Most 
existing methods are not feasible for even thousands of individuals because they are based on pairwise 
comparisons of all individuals and thus scale up quadratically with sample size. Some methods, such as 
GERMLINE, use fast dictionary lookup of short seed sequence matches to achieve a near-linear time 
efficiency. However, the number of short seed matches often scales up super-linearly in real population 
data.  

In this paper we describe a new approach for IBD detection. We take advantage of an efficient 
population genotype index, Positional BWT (PBWT), by Richard Durbin. PBWT achieves linear time 
query of perfectly identical subsequences among all samples. However, the original PBWT is not tolerant 
to genotyping errors which often interrupt long IBD segments into short fragments. We introduce a 
randomized strategy by running PBWTs over random projections of the original sequences. To boost the 
detection power we run PBWT multiple times and merge the identified IBD segments through interval tree 
algorithms. Given a target IBD segment length, RaPID adjust parameters to optimize detection power and 
accuracy.  

Simulation results proved that our tool (RaPID) achieves almost linear scaling up to sample size and 
is orders of magnitude faster than GERMLINE. At the same time, RaPID maintains a detection power and 
accuracy comparable to existing mainstream algorithms, GERMLINE and IBDseq. Running multiple times 
with various target detection lengths over the 1000 Genomes Project data, RaPID can detect population 
events at different time scales. With our tool, it is feasible to identify IBDs among hundreds of thousands 
to millions of individuals, a sample size that will become reality in a few years. 
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1.  Introduction 
 
With the recent advances in technology, enormous amounts of population genotype data are being generated 
from genome-wide SNP array or whole genome sequencing. The 1000 Genome Project [1] has already 
sequenced more than 2500 individuals. UK biobank [2] will soon release genotype data of around 500,000 
individuals. We expect databases from hundreds of thousands up to millions of genotyped data will be 
abundantly available in the near future. However, the increasing volume of genetic data does not 
automatically translate into better insight into precision medicine and population genetics. Current methods 
cannot efficiently detect genetic relationships among all individuals, therefore advanced methods are 
needed. 

A fundamental measure of the genetic relationship is identity by descent (IBD). IBD is defined as 
chromosomal segments shared among two individual chromosomes which have been passed down by a 
common ancestor. Diploid organisms have two sets of chromosomes and the sets are recombined and 
passed down to the offspring. As a result, the length of an IBD segment decreases after each generation. 
The length of an IBD segment after n generations is expected to be 1/2n Morgans because of 2n meiosis 
[3]. For example after 20 generations the expected IBD length between two related individuals is 1/40 
Morgans or 2.5 centimorgans (cM). The length of an IBD due to an ancient ancestor is expected to be even 
shorter. Short IBDs can be difficult to detect as two random short chromosome segments can have identical 
sequences – often called identical by state (IBS) – by chance. The IBD segments may also not be exactly 
the same due to the mutation events cumulated over time. 

 Identification of IBDs is of great interest and has many applications in genetics [4]. Considering the 
correlations between individuals which can be computed using IBD segments, it is essential to prevent 
false-positive signals in genome-wise association studies [5]. The IBD segments can be used to determine 
the pedigree relationship. Pedigree-based relationships can help us to correct the variance of association 
studies [6]. The detected IBDs can also be directly used in a technique called IBD mapping which detects 
signals of disease-causing variants in population samples. IBD mapping tests whether cases share more 
segments of IBDs around a possible variant than controls [7]. Analysis of IBDs in pedigree-based 
relationships is also important for linkage mapping [8]. The rate at which genes separate and recombine 
can be used to map the distance between genes. Linkage mapping is crucial for identification of the location 
of genes that cause genetic diseases.  Recent IBDs can also be used for genotype-imputation and haplotype-
phase inference [9]. Detection of ancient IBDs is useful in investigating the population structure [10, 11]. 
By looking at the number of shared IBD segments, we can learn about the overlapping genealogies and the 
number of common ancestors from which two individuals share genetic sequences [12]. IBD segments can 
also be used to compute genetic similarity and infer migration patterns [13]. 

Several methods have been proposed for IBD detection. The proposed methods mostly rely on pairwise 
comparison of all individuals. One of the classical IBD detection tools is PLINK [14]. PLINK computes 
for each pair of individuals an IBS score and uses a hidden Markov Model (HMM) method to find IBDs. 
The hidden IBD state is estimated by the computed IBS sharing and genome-wide level of relatedness. 
PLINK is slow because even the first step of computing all IBS scores requires 𝑂(𝑛$) operations for 𝑛 
samples. Beagle IBD [3] computes the ratio of the probability of IBD based on a genotyping error model 
and the probability of IBS based on haplotype frequencies. Beagle IBD is still computationally expensive 
and cannot be applied to all pairs of SNPs data without extensive computational resources. FastIBD [15] 
accounts for haplotype frequencies and uncertain haplotype phase. Although FastIBD is reported to be 1000 
times faster than Beagle IBD method on a single core of an Intel Xeon E5620 running at 2.4 GHz, its 
running time is still a bottleneck for very large populations. PARENTE [16] first divides the entire sequence  
into fixed sized windows and then computes the likelihood ratio for the entire window. This approach 
provides faster IBD detection (~10 times faster than FastIBD) but it is still not fast enough for large 
populations. The new version of PARENTE (PARENTE2) [17] also employs a window-based approach, 
but  the windows contain non-consecutive, and randomly selected markers. PARENTE2 also aggregates 
multiple haplotypic models to estimate the likelihood in order to increase accuracy. Using PARENTE2 with 
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a filter called SpeeDB [18] resulted in ~10 pairs/second. Consider a population with ~10,000 individual, 
PARENTE2 will require ~50 million comparisons or 58 days. IBDseq [19] uses a probabilistic model based 
on allele frequencies and expected error rate accounting for genotyping errors but its running time is a major 
bottleneck when applying this algorithm for large populations. In general, pairwise comparison of all 
individuals and their allele sites is not scalable for hundreds of thousands of individuals and millions of 
variant sites.  

One of the fastest IBD detection methods is GERMLINE [20]. GERMLINE avoids pairwise 
comparison by adopting a seed-and-extension approach. It first builds a dictionary of short subsequences 
(words) in all individuals, and then find all exact matches of words, seeds, by hash table lookup. The 
detected seed matches are then extended and merged allowing mismatches. The overall assumption of 
GERMLINE is that the number of seed matches between an individual and others is constant and thus the 
running time of GERMLINE grows linearly with the number of samples. However, population genotype 
sequence is not a random sequence. Some short sequences (haplotypes) may persist in a large number of 
individuals and thus GERMLINE may deviate from its idealized linear behavior. 

  
Table 1. Comparison of different tools for searching for identical segments 

Problem Pairwise comparison Seed and extension Global index 
Sequence comparison Smith-Waterman BLAST BLAT/BWA 

IBD search PLINK/IBDseq GERMLINE RaPID  
 
An analogy to IBD detection can be drawn with the DNA sequence search (see Table 1). In order to 

search for DNA sequences in a large reference genome, instead of performing the time-consuming sequence 
alignment (Smith-Watermann algorithm [21]), keyword-based search approaches like BLAST [22] have 
proved to be more efficient. With the increasing number of queries and references, new methods using more 
efficient data structures and algorithms such as BWA [23] have been applied. For IBD detection, methods 
that are based on enumerating all pairwise comparisons of the individuals in a population are not scalable 
for large populations. Among existing methods, GERMLINE is the only one that prevents all pair 
comparison. However, it does not necessarily grow linearly and it depends on the total number of seed 
matches which may grow with the relatedness among the individuals within the population. The time 
complexity of GERMLINE mainly depends on the expected number of matches.  

Rather than the bottom-up seed-and-extension approach, building a top-down global index containing 
all pairwise matches larger than a given length seems more attractive. Such an index was not available until 
Richard Durbin invented the Positional Burrows-Wheeler transform (PBWT) [24]. Like BWT [25], PBWT 
facilitates a very fast and efficient exact matching approach among segments at same positions across the 
entire sample. Because of this trick, PBWT does not require pairwise comparison of all individuals and 
scales up linearly with the sample size. However, the major drawback of the PBWT algorithm is that it 
cannot tolerate genotyping or phasing errors. Long continuous matches (IBD segments) may have been 
interrupted by genotyping or phasing error or in rare cases by single mutations. As a result, direct 
application of PBWT will fail to detect those IBD segments. 

In this work, we present a novel approach to find candidate IBD segments based on PBWT. We 
designed a randomized algorithm that first produces multiple low-resolution PBWTs on random subsets of 
markers, and then combines the results efficiently using interval tree data structure. Multiple PBWT runs 
are needed because a single run of PBWT on randomly selected markers usually will have low power and 
accuracy. A statistical framework is developed to guide the choice of hyperparameters of PBWT. We will 
present the algorithm in details, followed by simulations to benchmark RaPID against existing methods. 
Finally, we present an analysis of the 1000 Genomes Project data and show that it can reveal relatedness 
inside populations and also may provide insight into population history. 
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2. Methods  
 

2.1   PBWT 
  
PBWT [24] provides a fast method for finding all matches with a length greater than 𝑙, where 𝑙 is the length 
of the match in terms of the number of variant sites. Given a panel of 𝑀 sequences with 𝑁 variant sites, it 
can compute all matches with the minimum length of  𝑙 in 𝑂 𝑚𝑎𝑥 𝑀𝑁, 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑎𝑡𝑐ℎ𝑒𝑠  time. The 
PBWT algorithm can also find all maximal matches in	𝑂(𝑀𝑁). A sequence 𝑠	has a maximal match in 
𝑘9, 𝑘$ 		to 𝑥:(i-th sequence in the panel) if the match 𝑥:[𝑘9, 𝑘$] == 	𝑠[𝑘9, 𝑘$]	cannot be extended and there 

is no longer match in the panel that includes	[𝑘9, 𝑘$]. The basic idea of PBWT is to sort the sequences by 
their reversed prefix at each position. The algorithm sweeps through the list of variant sites and keeps the 
starting positions of the matches between neighboring prefixes. The algorithm can be used to find IBD 
segments in large cohorts very efficiently in terms of time and space. However, as pointed out by Durbin, 
PBWT searches for exact matches and it does not account for genotyping or phasing errors. One may use 
shorter matches as seed and extend the matches, similar to the approach adopted by GERMLINE. But 
choosing an appropriate length as seed is not trivial. In particular, short seeds will result in many matches 
and the running time will increase dramatically. 
 
2.2.   Random Projection PBWT 
 
In order to tolerate genotyping errors, instead of building PBWT on the original set of markers, we construct 
a scale-down lower-resolution PBWT using a hash function 𝑦 = 𝑓(𝒙) that translates a long bit-string vector 
𝒙 = (𝑥9, 𝑥$, … , 𝑥A) into a single bit 𝑦.  Specifically, we divide the allele sites into windows of the same 
length, either in terms of number of allele sites or genetic distance (e.g., cM). The hash function	𝑓 computes 
a representative value for a set of SNPs. The simplest hash function is just a bit at a randomly chosen 
position in a window. We could also use 𝑦 = ⌊ 9

A
𝑥:: + 0.5⌋. To make it more informative, we may put 

more emphasis onto rare variants, e.g. 𝑦 = 𝑠𝑖𝑔𝑛(𝒂 ∙ (𝒘⨀𝒙)), where 𝒂 and 𝒘 are vectors of same size as 
𝒙, 𝑎:’s are random sign variables (either -1 or +1), 𝑤:’s are nonnegative marker weights, ∙ is the dot product, 
and ⨀ the element-wise product. This hash function is essentially a random projection. In this work, we 
chose the random bit approach for its simplicity. Figure 1 shows a schematic description of a simple 

example with the window size of the length 10. Note that this downsampling projection allows tolerance of 
errors, but may decrease the specificity of identifying true IBDs. 

To make the approach more specific, we propose to run the random projection PBWT algorithm 
multiple times, each time with a different set of randomly selected variant sites. The intuition is that, because 
genotyping error rate is presumably low (<0.01), the variant sites with genotyping errors will only be chosen 
with a low probability, and thus a true IBD segment pair will have high probability to be identified in 
multiple runs. On the other hand, one non-IBD segment pair may be selected in some runs by pure chance, 
but they will not have high probability to be selected multiple times. 

Figure 1. A simple example of using window size of the length 10. An allele site is selected at random for each window. 
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Specifically, we can model these probabilities as binomial distributions with relevant parameters. The 
parameters of RaPID are:	 𝑟, 𝑤, 𝑐 , where 𝑟 denotes the number of runs, 𝑤 the window size and 𝑐 (≤ 𝑟) is 
the minimum number of times that a match should be found in order to be considered. We run random 
projection 𝑟 times, with each window containing 𝑤 SNPs, and then run PBWT and consider any returned 
match with > 𝑙 SNPs as a “hit”. The number of hits follows a binomial distribution for both true IBDs and 
non-IBDs. For a true IBD segment pair with identical original sequence, we assume error rate of 𝜀(≪ 1), 

including both mutation and genotyping error rate, the binomial probability in each run is	 1 − 𝜀
U
V ≈ 𝑒X

UY
V, 

or 𝑋[~binomial r, 𝑒Xef g .  For a random pair of segments, the probability of having a 𝑙/𝑤-window hit 

is 𝜌
U
V, where 𝜌 is the probability that a randomly chosen pair of chromosomes would share the projected 

sequencing in a window, or  𝑋j~binomial r, 𝜌
U
V .	The success of random projection PBWT relies on the 

choice of a parameter c, such that the power Pr(𝑋[ ≥ 𝑐) is high, while the expected number of false 
positives m

$ Pr(𝑋j ≥ 𝑐) is low. Note that 𝜌 is a population genetics parameter determined by haplotype 
frequency, which varies from region to region.	𝜀	is determined mainly by genotype error rate as mutation 
rates is typically much lower. 𝜀 is in the range of 0.001-0.01.  

An efficient strategy to choose the parameters is to estimate the number of runs and minimum number 
of passes so that a large range of subsampling size will result in high true positive and low false positive 
probabilities. It is often reasonable to set	𝑐 ≈ n

$
 , where binomial probability density distribution is far away 

from the boundary cases (𝑐 = 0 or 𝑐 = 1). The value of 𝑟 should be large enough to show clear separation 
between true positives and false positvies, and at the same time small enough to limit the running time. 
Figure 2a shows the true/false positives with growing 𝑟 for a population with a random haplotype matching 
probability of 0.99%. 

Figure 2b (right) shows the true/false positive probabilities based on the binomial distribution of 
finding true and non-IBDs. As shown in the figure, the window size should set larger as we search for larger 
IBDs if 𝑟 and 𝑐 remains constant.  For 1.5 cM, the optimal window size would be between 50 and 90, while 
for 5 cM the window size should be set between 200 and 300. 	

 

Figure 2. (a) Expected true/false positive rates of RaPID based on the binomial cumulative distribution function for detecting IBD 
segments with growing r among 4000 haplotypes with genotype error rate of 0.0025 and probability of random match of haplotypes 
of 0.99. (b) Expected true/false positive rates of RaPID based on the binomial cumulative distribution function (r = 80) for detecting 
IBD segments with different lengths among 4000 haplotypes. Blue vertical lines show the selected window size in our simulations. 

(b) (a) 
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Each run of PBWT algorithm will produce a list of the matches that exceed a given length. The length 
is defined in terms of consecutive variant sites. Assuming the variant sites are distributed equally across the 
chromosomes, then the average number of variant sites to gain the minimum length can be computed easily 
by		⌊𝑙 ∗ [

pqn_estuvq
⌋, where 𝑙	is the minimum IBD length in Mbps or cM and 𝑇 denotes the total number of 

variant sites in the chromosome. 𝑐ℎ𝑟_𝑙𝑒𝑛𝑔𝑡ℎ denotes the length of the chromosome in Mbps or cM. If the 
variant sites are not distributed equally, then the reported IBD segments will not necessarily correspond to 
the desired minimum length and some segments will be missed. In order to prevent missing IBD segments, 
the actual minimum number of variant sites to cover the minimum length given in cM or Mbps can be 
computed.  For the first allele site, the minimum number of consecutive allele sites is computed to gain the 
minimum length in cM or Mbps. The minimum number and the covered length can then be used for the 
next allele site. The distance of the first and the second sites is subtracted from the covered length and more 
sites from the right side are added to get the minimum length. We loop over all allele sites and the minimum 
number of SNPs starting from each site is computed. The minimum value is then considered as the 
minimum length in terms of SNPs. Finally, the variant sites at the beginning and end of reported IBD 
segments can be mapped into their corresponding genomic locations to filter the IBD segments shorter than 
the desired length.  
 
2.3   Merging of PBWT Runs 
 
In order to prevent false positives, only those hits are considered as true that occur at least 𝑐 times. However, 
it is very unlikely that the starting and ending positions of two different hits from different runs are exactly 
the same. Instead of checking the exact starting and ending positions, we consider the overlap between two 
hits or intervals. The outputs of different runs should also be merged together even if the value 𝑐 is set to 1 
to remove redundant hits from different runs. 

Each output of the PBWT run contains the indices of two haplotypes 𝑘9, 𝑘$ , starting and ending 
positions of the match. To filter and merge the intervals efficiently, interval trees are used. An interval tree 
can be constructed in 𝑂(𝑡 𝑙𝑜𝑔 𝑡) for t intervals and queried in 𝑂 ℎ + 𝑙𝑜𝑔 𝑡 , 	where h is the number of 
overlapping intervals. The large number of exact matches during each run requires an efficient method to 
merge the results. In order to compare the outputs, we sort the hits from each run by their indices using 
Counting Sort. It has time and space complexity of	𝑂 𝑛 + 𝑘 , where n is the number of entries and k the 
maximum key value. Counting sort is highly time- and space-efficient for sorting hits. Note that the 
maximum key value is the total number of individuals or haplotypes while the number of hits is usually 
larger than the total number of haplotypes. 

While merging the outputs of multiple runs, memory usage is crucial, since each output may contain 
millions of entries. We used pointers to extract the hits simultaneously from different runs that are stored 
in separate files. Assume the outputs are sorted based on 𝑘9and 𝑘$	and 𝑘9 < 	𝑘$. For each PBWT output i, 
a pointer variable 𝑝: is used to point to the current hit that is being processed. A global variable 𝑚	contains 
the minimum value of (𝑘9 , 𝑘$) pair. 𝑅: denotes the results of the  𝑖-th output of PBWT. 𝑅:[𝑝:] is added to 
the current interval tree and a set 𝑆, as long as 𝑅:[𝑝:]  is equal to 𝑚	 and  𝑝: is increased by 1. If none of the  
𝑝:   variables changes then each element in 𝑆 is searched in the interval tree. A hit is stored if the number of 
overlapped intervals exceeds the given threshold 𝑐. The remaining hits are then discarded and the variable 
𝑚 is updated. Figure 3 illustrates the pseudo-code for merging the outputs of multiple PBWT runs. The 
procedure mergePBWTs gets a set of PBWT outputs sorted by their indices and the parameter 𝑐. It computes 
the hits that occur at least 𝑐 times out of 𝑟 different PBWT runs. 
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3. Results 

 
To benchmark the detection power, accuracy, and efficiency of our tool, we compared it with GERMLINE 
and IBDseq. PARENTE2 was not included in our bench-marking mainly due to the required large memory. 
We were not able to run PARENTE2 on our simulated data of 2000 individuals on a PC with 128GB 
memory. We ran PARENTE2 on 10% of our simulated population and it used ~10 GB of memory. The 
running time was also significantly worse than GERMLINE and our method. It took 5,480 seconds for 10% 
of the simulated data. PARENTE2 scales linearly with the chromosome length, but scales quadratically 
with the population size. As a results we may expect approximately 548,000 seconds or 152 hours to run 
the program on our entire simulated data. The major advantage of PARENTE2 over GERMLINE and our 
approach is that it does not require phased genotypes. We also applied RaPID on a large simulated 
population with 50k individuals. Finally, we applied RaPID on real data from the 1000 Genome project 
data.  

  
3.1   Simulation 

 
To compare with existing tools, we generated 4000 haplotypes of the length 10 Mbps and their ancestry 
trees using macs simulator [26], assuming a population with a history similar to that of the current 
Europeans with a mutation rate of 1.3x 10-8 and a constant recombination rate (1 cM per 1 Mbps) [19]. To 
simulate the genotyping error in the generated haplotypes, we inserted an error rate of 0.0025 for each 
haplotype as in [19], corresponding to genotyping quality of 26 in standard VCF files. The true IBDs were 
determined as [19]: we sampled the ancestry trees at every 5 kbps and if the most recent common ancestor 
of a pair of individuals remains constant, the corresponding segment of the pair was considered as true IBD. 
These were achieved by using the Dendropy python library. To validate the capability of our tool in 
handling very large sample sizes, we also generated 100k haplotypes of length 10 Mbps with a mutation 
and recombination rate of 0.001 to benchmark the performance of RaPID for very large cohorts.  
 
3.2   Benchmarking 
 
In order to evaluate the correctness of detected IBDs, we computed accuracy and power of RaPID, 
GERMLINE and IBDSeq for simulated data of 2000 individuals. Accuracy is defined as the percentage of 

Procedure		mergePBWTs	(R,	c)					//R		is	the	set	of	PBWT	outputs	and	c	the	minimum	number	of	occurrences	 	 	
1:	 for		i	=	0		to		r	-1		do		p[i]	=	0		 	//initialize	the	pointers	for	r	PBWT	outputs	
2:	 T,	S,	L		=	null	 	 	 	//initialize	interval	tree	T,	the	set	S	and	the	output	L	 	
3:		 n	=	(+∞	,	+∞)		 	 	//initialize	n		with	the	largest	index	pair	
4:	 m	=	min

�����
(𝑅�𝑖, 𝑝[𝑖]�. indices)	 	//store	the	smallest	index	pair		

5:	 while	(m	!=	n)	
6.	 	 n	=	m	
7:	 	 for		i	=	0		to		r	-1			do																										
8:	 	 	 while	(R[p[i]].indices	==	m	AND	p[i]	<	length(R[i]))	
9:	 	 	 	 T.insertNode	(R	[i,p[i]])	
10:		 	 	 S.insert	(R	[i,p[i]])	
11:		 	 	 p[i]	++		 	//go	to	the	next	hit	
12:		 for		s		in	S			do	
13:		 	 H	=	T.search	(s)	 	//search	for	overlapping	hits	with	s		in	the	interval	tree	
14:		 	 if		length	(H)	≥c		then	
15:		 	 	 L.append	(s);	S.removeAll	(H)	
16:		 T	=	null;		S	=	null	
17:		 m	=	min

�����
(𝑅�𝑖, 𝑝[𝑖]�. indices	when	𝑝[𝑖] 	< 	length(𝑅[𝑖]))			

18:	return	L	

Figure 3. Pseudo-code for merging the results of multiple PBWT outputs. 	
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correctly detected IBDs with at least 50% overlap among the total number of reported IBDs. Power is 
defined as the average proporotion of correctly detected IBD segments.  Subsequently, we demonstrate the 
efficiency of RaPID regarding the running time with increasing number of haplotypes. 
 
3.2.1   Accuracy and Power 
 
The parameters of RaPID were set as described in the method section. We set the number of runs r=80 and 
the minimum number of passes c=40. The window size was then estimated based on the probability 
distributions of true/false positives. The window sizes were set to 75, 105, 125, 160, 185, 215, 235 and 265 
to detect IBDs with a minimum length of 1.5 to 5 cM, respectively. Accuracy and power of RaPID, 
GERMLINE and IBDseq are shown in Figure 4. RaPID can achieve higher accuracy than GERMLINE and 
comparable results to IBDseq for shorter IBDs. GERMLINE is able to find most of the IBDs, however for 
shorter IBDs the results are not accurate. The accuracy of all methods increases by increasing the minimum 
length of IBD. Since the probability of very long identical segments by chance decreases, we also expect 
higher accuracy value for longer IBD segments.  
 

 
3.2.2   Running Time 
 
IBD detection tools that require pairwise comparison of all haplotypes are generally not scalable for large 
number of haplotypes. Both IBDseq and PARENTE2 perform pairwise comparison for genotype data. As 
a results, they are very slow compared to GERMLINE and RaPID. Table 2 shows the running time of 
different methods for 2000 individual with a chromosome length of 10 Mbps. In our experiments, the 
running time for RaPID was more than 100 times less than that of GERMLINE for detecting IBDs with a 
minimum length of 3 cM and almost 25 times less for IBDs with a minimum length of 1.5 cM. The running 
time of RaPID can be impacted by the selected parameters. The minimum length of IBDs and the level of 
heterogeneity in the sample are the most important factors in determining the running time of RaPID. 

We also compared how the running times of RaPID, GERMLINE and IBDseq grow with increasing 
population size to find IBDs with a minimum length of 1.5 cM. To compare the growth of running time, 
the tools were run on increasingly larger sets of haplotypes up to 4000. We set the minimum length for 
GERMLINE to 1.5 cM (-min_m =1.5). As depicted in Figure 5, RaPID grows linearly with the increasing 
number of samples, while GERMLINE shows a super linear behavior.  
  

Figure 4. Accuracy and Power of GERMLINE, IBDseq and RaPID with the increasing length of IBD among 2000 individuals. 
Results are binned by segment size: bins are extended 0.2 cM on the right side for 1.5 and 2 cM; and 1 cM for x axis values > 2. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103325doi: bioRxiv preprint 

https://doi.org/10.1101/103325
http://creativecommons.org/licenses/by-nc/4.0/


8 
	

 
Table 2. Running time for finding IBDs in the simulated data containing 2000 individuals using different methods 

Method Size (cM) Accuracy Power Running Time  
RaPID 1.5 0.86 0.62 23 seconds 

3 0.97 0.79 5 seconds 
GERMLINE 1.5 0.63 0.65 8.72 minutes 

3 0.96 0.75   
IBDseq 1.5 0.96 0.34 12.08 hours 

3 1.0 0.54   
PARENTE2 - - - 6 days* 

*The running time for PARENTE2 is estimated based on a run on 10% of the simulated data. 
 

 
 
3.3   Applying RaPID on 100,000 haplotypes 
 
In order to verify the ability of RaPID to detect IBDs in a large cohort, we applied it on 100k simulated 
haplotypes. RaPID was applied to detect the IBDs with the minimum length of 1.5 Mbps among all of the 
haplotypes. The program returned the results within 10 minutes. Since extracting all of the true IBDs based 
on the ancestry tree generated by the simulator was not feasible in a reasonable time, we compared only the 
true IBDs that were shared between the first 100 haplotypes and the whole population. The power of RaPID 
was 100% and the accuracy 65% for IBDs with a minimum length of 1.5 cM. RaPID is the only tool that 
can handle hundreds of thousands of individuals in a reasonable time on a single CPU. Based on our 
experiments, we estimate that RaPID can handle 1 million haplotypes of the same length within few hours. 
 
3.4   Applying RaPID on the 1000 Genome Project Data 
 
To demonstrate the utility of RaPID for real data, we applied it on the 1000 Genome Project data [1]. The 
1000 Genome Project provides the largest publicly available catalogue of human variation and genotype 
data. The phase 3 data set includes 2504 individuals from 26 populations. The execution time for RaPID 
was around 2 hours for detecting IBDs with a minimum length of 1.5 cM and 1 hour for IBDs with a 
minimum  length of 5 cM for all 22 autosomal chromosomes. We downloaded the phased genotype data 

 

Figure 5. Comparison of running time of GERMLINE, IBDseq and RaPID with increasing number of haplotypes for IBDs 
with a minimum length of 1.5 cM. 
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(in VCF format) of the 1000 Genome project†. We then extracted the bi-allelic sites and applied RaPID on 
the phased data of the autosomal chromosomes. We computed the kinship based on the length of shared 
IBD segments.  The kinship coefficients were computed by summing the lengths of the autosomal IBD 
segments and dividing by four times the length of the autosomal chromosomes, as did in ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/supporting/ibd_by_pair/20150129_IBD_segment_
methods.pdf. Figure 6 shows the computed kinship among the populations based on the detected IBDs with 
a minimum length of 1.5 and 5 cM in logarithmic scale. Recently, Fedorova et al [27] have analyzed the 
phase 1 data using rare variant clusters (RVC) to study the genetic relationships among different 
populations. The detected relationships among different populations using RaPID were congruent to 
Fedorova et al’s discovery.  

As expected, within-population kinship is always higher than the between-population kinship. In Asia, 
Chinese Dai in Xishuangbanna (CDX) and Japanese people (JPT) have the highest within-population 
kinship. In Europe, the highest kinship value is observed among Finnish people. In Africa, LWK (Luhya in 
Webuye, Kenya) has the highest within-population kinship value. In America, Puerto Ricans have the 
highest kinship. In South Asia, Gujarati Indians (GIH) have the highest kinship. ITU (Indian Telgu from 
UK) and STU (Sir Lanken Tamil from UK) have the highest kinship values among South Asian populations.  

While most of the detected IBDs with a minimum length of 5 cM are within the same population, there 
are also some shared IBD segments between the populations from the same continent. However, some 
populations do not share any or only very few IBD segments within their corresponding continents. At 5 
cM level, Japanese people are almost separated from other populations in Asia. The lowest kinship value 

among Europeans is between Finnish and Italian populations (TSI). According to [27]  the lowest number 
of shared RVC is also observed among Finish and South European populations. The highest kinship among 
																																																													
†	ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/	

 

Figure 6. Kinship (in log scale) among 26 populations from the 1000 Genome Project based on the detected IBDs with a minimum 
length of 1.5 (left) and 5 cM (right). Maximum kinship value for 5 cM is 0.0017 and for 1.5 cM is 0.0037 East Asian (in red): 
Han Chinese in Beijing (CHB), Japanese in Tokyo (JPT), Southern Han Chinese (CHS), Chinese Dai in Xishuangbanna (CDX), 
Kinh in Ho Chi Minh City (KHV) European (in green): Utah Residents (CEU), Toscani in Italy (TSI), Finnish (FIN), British in 
England and Scotland (GBR), Iberian Population in Spain (IBS) African (in blue): Yoruba in Ibadan (YRI), Luhya in Webuye 
Kenya (LWK), Gambian (GWD), Mende in Sierra Leon (MSL), Esan in Nigeria (ESN), Americans of African Ancestry in SW 
USA (ASW), African Caribbeans in Barbados (ACB) Ad Mixed American (in magenta): Mexican from LA (MXL), Puerto 
Ricans (PUR), Colombians from Medellin (CLM), Peruvians from Lima (PEL) South Asian (in black): Gujarati Indian from 
Houston (GIH), Punjabi from Lahore (PJL), Bengali from Bangladesh (BEB), Sri Lankan Tamil from the UK (STU), Indian 
Telugu from the UK (ITU). 
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Europeans is between people from Utah (CEU) and Britain (GBR). The highest number of RVC among 
European populations was also reported to be between CEU and GBR [27]. The highest kinship among 
African population is between ESN (Easn in Nigera) and YRI (Yoruba in Ibdadan, Nigera). Furthermore, 
the kinship values at 5 cM reveal that American populations are related to the Iberian population in Spain 
(IBS).	 

Shorter IBD segments reveal more ancient relationships among different populations. Inter-continental 
kinship values based on the computed IBDs with a minimum length of 1.5 cM are also low, but they may 
still reveal interesting ancient relatedness. Finnish people have the highest kinship values with East Asian 
people compared to the other European populations. The kinship values among Asian and African people 
are close to zero. American populations share IBD segments with Asian populations. Among American 
populations, Peruvians (PEL) are the most related population to Asian people followed by Mexicans 
(MXL). Bangali people from Bangladesh (BEB) are the most related population to East Asian people, 
especially South Eastern people, compared to the other populations from South Asia.		
	
4. Discussions 

 
In this paper, we present a fast method to detect IBD segments of a given length in very large cohorts and 
investigate the relatedness in large panels which may not be feasible using current methods. The proposed 
method RaPID searches for consecutive haplotype matches allowing genotyping error. Based on our 
experiments, it can detect IBDs with a minimum length of more than 1 cM very efficiently while 
maintaining comparable accuracy and power to GERMLINE and IBDseq. RaPID can handle hundreds of 
thousands or millions of individuals in a reasonable time by taking advantage of the underlying population 
structure and targeting the IBD segments of the given length. Therefore, RaPID is currently the only IBD 
detection method for large biobank-scale population genotype data.  

In our analysis of the phased data of the 1000 Genome project, the detected IBDs with a minimum 
length of 5 cM were almost from the same population. More IBD segments with a minimum length of 1.5 
cM were detected including IBDs within the same super population (or continent). A few inter-continental 
IBD segments were also detected at 1.5 cM level. By tuning the target IBD segment length, RaPID can 
reveal population history events in different time scale. 

While we presented the proof-of-concept version of RaPID, there are potential improvements for 
future works. We will extend RaPID for unphased genotype data. Current RaPID is based on phased data, 
since it is based on the PBWT index for haplotypes. We can first phase genotype data by computational 
methods. Because the high efficiency of RaPID, we can run RaPID over multiple alternative phasing results 
of the same genotype data so that our method is tolerant to phasing errors.  

Another potential extension is to improve the detection of very short IBD segments. Identifying IBD 
with length below 1 cM is a difficult problem because the distinction between true positives and false 
positives can be blurred. Our results revealed that short IBD segments are actually very informative for 
ancient population events. Because RaPID can be optimized to identify IBD segments of a certain length 
range, our tools can be more sensitive in identifying shorter IBDs. 

  
Availability 
 
The most recent version of RaPID is freely available at https://github.com/ZhiGroup/RaPID. Detailed 
information of parameters used in the benchmarking and the application to the 1000 Genome Project Data 
and the corresponding version are available at http://genome.ucf.edu/RaPID. 
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