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Abstract

Understanding variation in allele frequencies across populations is a central
goal of population genetics. Classical models for the distribution of allele
frequencies, using forward simulation, coalescent theory, or the diffusion ap-
proximation, have been applied extensively for demographic inference, med-
ical study design, and evolutionary studies. Here we propose a tractable
model of ordinary differential equations for the evolution of allele frequen-
cies that is closely related to the diffusion approximation but avoids many
of its limitations and approximations. We show that the approach is typ-
ically faster, more numerically stable, and more easily generalizable than
the state-of-the-art software implementation of the diffusion approximation.
We present a number of applications to human sequence data, including de-
mographic inference with a five-population joint frequency spectrum and a
discussion of the transferability of demographic histories across populations.

1 Introduction

Understanding the role of demography and selection in shaping genetic di-
versity is a central challenge in population genetics. In recent years, genome
sequencing experiments have generated large amounts of data that can be
used to test and refine this understanding. Detailed models of human genetic
diversity have shed a new light on the origins and history of modern humans,
and have helped researchers design and interpret biomedical studies.

Present-day genomes depend on a large number of more or less ran-
domly occurring mutations, recombinations, matings, and deaths. Individ-
ual events and their genomic consequences bear limited information about
the past. We can, however, learn a lot by statistically integrating informa-
tion across entire genomes and populations. Classical work has focused on
simple summaries of genomic diversity that could be computed analytically,
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such as the number of pairwise differences between individuals, the num-
ber of segregating sites in a sample, or linkage disequilibrium [4]. In recent
years, the ability to simulate genomes and the availability of data has led to
a wide array of summaries designed to identify different evolutionary forces
[22, 24, 23]. Here we consider the allele frequency spectrum (AFS): We com-
pute the frequency of the derived allele at each site, and build a histogram
of the number of sites observed at each frequency.

The AFS is a classical measure of diversity [16] that has seen a surge
in popularity recently because of improved computational approaches to es-
timate it. Back-in-time approaches based on coalescence theory [7, 6, 14]
can be extremely efficient for neutral simulations and can handle large num-
ber of populations, but they often become cumbersome or intractable in
models with selection. Forward-in-time approaches tend to be more eas-
ily generalized to account for selection. Despite recent progress in discrete
whole-population methods [13], most current approaches are based on the
diffusion approximation initiated by Fisher and Wright in the early 1930’s
[8, 31, 4, 16]. In this approach, the evolution of the AFS is described as
a continuous process through a partial differential equation. Several simu-
lating tools based on this diffusion approximation have been implemented
and distributed to the population genetics community [12, 20, 21], among
which ∂a∂i is probably the most commonly used. In the past few years,
these numerical tools have been used widely and led to significant results
from both historical and biological points of view [12, 9, 25].

Despite these successes, computational cost and stability remains an im-
portant limitation. For instance, available software can only handle up to 4
populations simultaneously (∂a∂i can handle 3). The time needed to per-
form individual simulations can be prohibitive when many simulations must
be run, for example when performing bootstrap analysis for multiple mod-
els. Furthermore, biases inherent to Kingman’s coalescent or the diffusion
approximation, which were benign in small samples, can become important
in contemporary datasets [1].

Here, we describe a new and efficient method to simulate the AFS that
is more efficient and more numerically stable than the state-of-the-art, yet
does not require the diffusion approximation. We integrate this simulation
engine into the ∂a∂i inference framework to facilitate inference from allele
frequency distributions across a broader range of problems than was previ-
ously possible.

2 Method and material

2.1 Heterozygosity rate evolution

First consider a large population of N diploid individuals evolving under
the neutral Wright-Fisher model. Generations are discrete and individuals
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from generation k+ 1 receive alleles drawn randomly and with replacement
from the parental alleles present in generation k. Because alleles in a diploid
individual are inherited and transmitted independently in the neutral case,
we can forget about diploid individuals and think of the population as a
set of 2N haploid samples (or ploids, for short). We are interested in the
expected number φkn(i) of sites where the alternate allele is observed exactly
i times in a sample of size n at generation k. We neglect correlations between
sites and suppose that each locus is transmitted independently.

In this model, heterozygosity is proportional to φk2(1), the number of
heterozygous sites in sample of n=2 ploids. Under neutral Wright-Fisher
reproduction, this follows the classical recursion

Φk+1
2 (1) = (1− 1

2N
)Φk

2(1). (1)

The derivation of this recursion is simple: If two ploids at generation k + 1
are inherited from the same parental ploid, which happens with probability

1
2N , they are identical and do not contribute to Φk+1

2 (1). Otherwise (with
probability 1− 1

2N ) they are drawn randomly without replacement from the
previous generation. The probability that they are different is Φk

2(1), by
definition, leading to Equation (1).

2.2 Neutral case AFS

We can similarly derive a recursion equation for the neutral AFS for arbi-
trary n and i. This time we draw n ploids from the previous generation.
The probability that a given pair of ploids is still 1

2N . For simplicity, we
suppose that at most one ploid pair shares a parent at each generation. The
situation with multiple coalescent events per generation, which can occur
for large sample sizes [1], is a straightforward generalization discussed in
Section B.2.

If there is no coalescence, the n ploids at generation k + 1 are copied
from n randomly drawn ploids at generation k and the distribution of allele
frequencies does not change: Φk+1

n = Φk
n. If there is a coalescence, the n

descendants are copied from a random set of n−1 parental haplotypes. The
distribution of possible parental frequencies is described by Φk

n−1. To treat
all possible coalescence cases in a unified way, we imagine that we always
draw n parental ploids, with the understanding that one selected parental
ploid may not leave descendants. By doing this, we can express Φk+1

n as a
simple linear function of Φk

n :

Φk+1
n (i) = Φk

n(i) +
1

4N
∆̃n,iΦ

k
n,

where ∆̃n,i is a sparse linear operator describing the change in allele fre-
quency due of drift in a single generation. Its coefficients are provided in
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Supplement A. It is related to other transition matrices derived in [5, 26]
(more on these relationships in the discussion).

De novo mutations can change the allele type and therefore also affect
the allele frequency. Their effects on the ith entry of the AFS is described
by the linear operator Mi:

Φk+1
n (i) = Φk

n(i) +
1

4N
∆̃n,iΦ

k
n +MiΦ

k
n. (2)

As a first approximation and to easily compare to commonly used sim-
ulation tools, we consider the infinite-sites model [17], in which the only
mutations allowed are at previously invariant sites. Assuming that at most
one mutation per generation per site occurs in the sample, we simplify the
mutation term and write it as an additive source term: MiΦ

k
n ' nµδi=1, µ

being the mutation rate. In the infinite-sites model, we therefore have

Φk+1
n (i) = Φk

n(i) +
1

4N
∆̃n,iΦ

k
n + nµδi=1. (3)

A more general form of the mutation operator, accounting for backwards
mutations, is discussed in Appendix B.

Equation (3) is formally similar to a numerical discretization of the dif-
fusion approximation. However, it avoids two approximations: first, the
approximation of a discrete Wright-Fisher system by a continuous diffu-
sion and, second, the approximation of a continuous diffusion by a discrete
numerical partial differential equation (PDE) solver. Even though we use
discrete frequency space, we will use a continuous time approximation that
is easily simulated using classical integration schemes:

Φ̇n(i) =
1

4N
∆̃n,iΦn + nµδi=1. (4)

2.3 Modeling selection and dominance

To obtain a similar recursion equations under selection, we consider a model
of selection in which ploids are drawn uniformly from the previous genera-
tion, but are accepted with different rates depending on the fitness of the
parent. Alleles drawn from individual I are accepted with probability 1 for
genotype aa, 1 + hs for genotype aA, and 1 + s for genotype AA: s is the
selection coefficient, and h is the dominance . If a ploid is not accepted, it
must be redrawn at random from the entire population.

In this model, contrary to the neutral case, we may need to draw more
than n alleles from generation k to build φk+1

n . In what follows, we assume
that ns� 1, so that at most one allele is rejected from the sample at each
generation. This assumption is also implicit in the diffusion approximation,
but here again higher-order corrections can be computed.
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Assuming ns� 1, the recursion is (5):

Φ̇n(i) =
1

4N
∆̃n,iΦn + s∇̃h,iΦn+2 + nµδi=1, (5)

where ∇̃h,n,i is a sparse linear operator describing the change in sample allele
frequencies due to selection. It’s coefficients are given in Supplement A.

To compute φk+1
n , Equation (5) requires φkn+2, which itself requires φk−1

n+4,
and so forth. The evolution equation for φkn is not closed and cannot be
solved directly in that form.

2.4 Moment closure method

We would like to find a closed approximation to Equation (5) that would
make it possible to compute Φk+1

n (i) from Φk
n(i). To do this, we want to

approximate the larger samples AFS Φk
n+2 in terms of Φk

n. Intuitively, this
should be possible for n large enough: We don’t learn very much more
from a sample of size 102 than we do from a sample of size 100. In fact, the
number of variants to be discovered in a sample of size 20n can be estimated
accurately from a sample of size n by simple jackknife extrapolation [10].
The same kind of extrapolation - based on a jackknife method - can be
successfully adapted to the much easier moment closure problem.

In this work, we considered a 3rd order jackknife to express entries of the
higher order spectra Φn+1 and Φn+2 as linear combinations of 3 entries of Φn.
Higher order jackknives would increase accuracy at the cost of computational
complexity and stability. Since jackknives provide a linear approximation,
we can write Φn+2 ' Jn→n+2Φn where Jn→n+2 is a linear operator whose
coefficients are provided in Appendix D. Under this approximation, the
selection term becomes s∇̃h,iΦk

n+2 ' s∇h,iJn→n+2Φn = s∇̂h,n,iΦn, where

we defined ∇̂h,n,i = ∇̃h,n,iJn→n+2 as the closure version of the selection
operator. The resulting system is a closed and linear system of ordinary
linear differential equations which can be solved using standard methods:

Φ̇n(i) =
1

4N
∆̃n,iΦn + s∇̂h,n,iΦn + nµδi=1. (6)

2.5 Multiple populations and migrations

In practice, we often want to study the distribution of allele frequencies
across multiple populations where mating is more common within than
across populations. In such a case, we consider the multidimensional AFS
Φn(i) where n is a vector of sample sizes of the different populations. Thus,
Φn1,··· ,np(i1, · · · , ip) is the number of variants that are found i1 times in
population 1, i2 times in population 2, and so forth.

Using the same method as for the single population case, we can derive
a system of ordinary equations for the joint AFS Φn (see C.2). Because of
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migration, however, the evolution of Φn depends on Φñ for ñ 6= n: When
creating ni ploids in population i and nj in population j, we may occasion-
ally draw ni+1 ploids from i and nj−1 from j (the case of strong migration,
where we are likely the probability of drawing multiple migrants per gener-
ation, is discussed below). Thus evolution equations for Φn′ is coupled for
all n′ such that n′j + n′k = nj + nk. Under weak migration, we can use a
jackknife to write uncoupled approximations to these equations. A simple
way of achieving this is to write the evolution equation for Φn in terms of
the slightly larger AFS Φn̂ with n̂j = n + ej and ej a unit vector with a
unit value for the jth population. We then have

Φ̇n(i) =

p∑
j=1

[
1

4Nj
∆̃nj ,ijΦn + sj∇̂j;hj ,nj ,ijΦn

+
∑
k 6=j

mjkMjkΦn̂j
+ njuδi=ej

]
,

(7)

where ∆̃nj ,ij is the drift operator and ∇̂j;hj ,nj ,ij is the selection operator for
population j, Mjk is the linear migration operator from populations j to
population k, and the migration rate mjk is the proportion of ploids in pop-
ulation k whose parent was in population j. Parameters for the migration
operator Mjk are provided in Appendix A.

We can then use a jackknife approximation as above to write

Φn̂j
' Jn̂j→nΦn,

where the sparse linear operator Jn̂j→n is a jackknife operator (The code
distributed with this article uses a uses a slightly more complex jackknife
formulation described in Appendix D). We can obtain a closed version of the
migration operator, M̂jk = MjkJn̂j→n, leading to a closed-form evolution
equation for Φn:

Φ̇n(i) =

p∑
j=1

[
1

4Nj
∆̃nj ,ijΦn + sj∇̂hj ,nj ,ijΦn

+
∑
k 6=j

mjkM̂jkΦn + njuδi=ej

]
.

(8)

So far, we supposed that migration was weak enough that the expected
number of migrants per generation in our sample was less than 1. However,
many populations have received many migrants over few generations. This
is the case, for example, in many populations from the Americas.

In such cases, we compute the resulting AFS directly without using the
jackknife approximation. Because migration is a stochastic process, the
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number of migrant lineages varies across loci. A given sample of 10 ploids
may derive 100% ancestry from population 1 at one locus, and 100% from
population 2 at another. In the independent-sites model and two-way ad-
mixture, the distribution of lineages that trace back to one population is
binomial: The expected frequency spectrum is an integral over the possi-
ble numbers of migrating lineages. To generate n admixed lineages, we can
therefore need as many as n lineages from each of the source populations.
We explain in Section B.3 how the number of source population lineages can
be chosen to maximize computational efficiency.

2.6 Connections with the diffusion approximation

One of the standard approaches to simulate AFS evolution relies on a con-
tinuous approximation to the Wright-Fisher process. This approximation
leads to an advection-diffusion equation describing the evolution of the al-
lele frequencies density φ(x, t) (i.e. the expected proportion of alternate
ploids at frequency x ∈ [0, 1] in the population and at time t).

φ̇(x, t) ' 1

4N
∆x(1− x)φ(x, t)

− s∇ · (h+ (1− 2h)x)x(1− x)φ(x, t)

+ 2Nuδ(x− 1

2N
).

(9)

The most widely used tool based on this diffusion approximation is ∂a∂i
which numerically approximates the distribution φ with finite differences.
The AFS entries are then computed via the integral:

Φn(i) =

∫ 1

0

(
n

i

)
xi(1− x)n−iφdx.

The AFS entries can be seen as moments of the distribution φ computed in a
non-canonical basis of polynomials. The idea of deriving evolution equations
for the classical moments µk =

∫ 1
0 x

kφdx was proposed by Evans, Shvets
and Slatkin [5]. However, the computation of the AFS from the moments
µk raises numerical instabilities as the formula involves alternating sums.
A closed system of ordinary differential equations directly for the neutral
Φn(i) is evoked by the authors but deemed too complex to be of practical
importance. The case with selection, lacking even a closed expression, is
therefore even more daunting.

In fact, we show in Appendix C that by computing a moment equation
for the diffusion equation, we obtain precisely Equation (5), which is not
more complex than the original diffusion equation and is, as we will see,
more numerically stable. The lack of closure of the evolution equation when
selection is present is easily addressed by a jackknife procedure for the weak
selective values consistent with the diffusion approximation.
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2.7 Implementation and performance

We developed a python library, called Moments, to simulate multidimen-
sional AFS and infer demographic history using the method described above.
From the user perspective, the library is very similar to ∂a∂i, since we reused
the ∂a∂i software architecture, including the user interface and data han-
dling methods. We added a number of new convenience features, described
in Appendix F, but the most important difference is performance.

Whereas ∂a∂i could model up to three populations and Multipop [20] up
to four, Moments can handle models with up to 5 populations with selection,
migrations and population splits. The run-time is still exponential in the
number of populations, so the direct computation of large sample sizes for
more than three populations remains challenging.

To provide a fair comparison between Moments and ∂a∂i for a compara-
ble problem size, we need to consider both accuracy and computation time.
∂a∂i users can chose the number of grid points used for solving the diffusion
equation. A large number of points results in slower but more accurate in-
tegration. We used the recommended strategy in ∂a∂i, namely using three
different grid sizes and performing Richardson extrapolation.

Moments also presents a tradeoff between speed and accuracy because
the moment closure approximation improves with increasing n. Moments
can therefore be made more accurate by computing the AFS for n′ larger
than the desired n, and subsampling to n after the integration. For the
simulations below, we simply integrated with the desired n.

Table 1 shows comparisons between the two methods on a few test cases.
A more extensive set of test cases ranging from the analytically solvable equi-
librium case to the numerically exacting is provided in the supplementary
material E.

In the case of neutral equilibrium with constant population size, we
can compare our computations to the exact solution. For more complex
cases, where analytical results are unavailable, we use ∂a∂i with a very fine
frequency grid and use the spectrum thus obtained as a reference to compare
our method and ∂a∂i. Generating the ‘truth’ set with ∂a∂i can induce a bias
in favor of ∂a∂i. We consider several configurations with up to 3 dimensions
including selection, migration and non constant populations sizes. We used
30 samples per population.

The first 5 cases are simple integrations starting from a null spectrum: a
single population without selection until the equilibrium is reached, two iso-
lated populations under selection and three populations with selection and
migrations. The sixth model is the demographic model of Out of Africa ex-
pansion described in [9]. Details of the models, and additional benchmarks,
are provided in Appendix E.

We used different metrics to compare the simulations such as the execu-
tion time and the mean relative error εr compared to the ‘true spectrum’.
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We also considered the difference in likelihood ∆LL = log(L(truth, truth))−
log(L(truth, test)), where L(x, y) is the probability to observe the AFS x as-
suming that the expected AFS is y, ‘truth’ is the AFS computed with third
order Richardson extrapolations using fine grids — 30, 35 and 40 times the
sample size for 1D and 2D cases and 5, 6 and 8 times the sample size for 3D
simulations — in ∂a∂i, and ‘test’ is the AFS computed using each software
with regular settings.

Finally, an issue with ∂a∂i in large sample sizes is that the AFS occa-
sionally returns impossible negative allele frequencies. For each test case we
therefore also counted the number of negative AFS entries.

Demographic model method exec time (s) mean(εr) ∆ LL < 0 entries
Neutral equilibrium 1D ∂a∂i 3.64e-02 1.25e-02 1.47e-05 0

Moments 1.54e-03 9.74e-03 4.64e-05 0
Selection 2D, ∂a∂i 1.68e-01 1.25e-02 2.85e-03 0
T = 1.0 Moments 2.12e-02 9.11e-04 -1.39e-03 0
Selection 2D, ∂a∂i 6.20e-01 5.45e-03 9.26e-03 0
T = 5.0 Moments 7.50e-02 9.18e-04 -6.54e-03 0
Selection, migration 3D, ∂a∂i 8.24e+01 4.19e-02 6.16e-04 0
T = 1.0 Moments 5.02e+00 1.46e-02 1.73e-04 0
Selection, migration 3D, ∂a∂i 4.00e+02 4.23e-02 3.35e-03 12
T = 5.0 Moments 2.50e+01 1.36e-02 2.83e-04 0
Out of Africa 3D ∂a∂i 5.65e+00 1.53e+02 2.52e-04 0

Moments 4.10e+00 1.57e-02 8.14e-05 0

Table 1: Performance comparisons between ∂a∂i and Moments on several
scenarios (30 samples per population). The full bench is provided in Ap-
pendix E. For ∂a∂i simulations we used Richardson extrapolation to im-
prove convergence. The time T provided is the simulation time in genetic
units.

On these several examples, Moments performs better than ∂a∂i for most
metrics. In the more general set of benchmarks provided in Appendix E, we
find a few instances where ∂a∂i outperforms moments. Overall, we find that
Moments is particularly efficient for integrations over long time periods, and
is generally much more robust to negative entries.

For 4 and 5 populations models, we could not compare Moments to ∂a∂i,
since ∂a∂i does not allow for such high-dimensional simulations.

3 Application to data

3.1 3 populations Out of Africa

We used our method to update the Out of Africa expansion model described
in [9, 12]. These models are used in a wide variety of medical and evolution-
ary applications.

We used autosomal synonymous sequence data from the publicly avail-
able Thousand Genome Project (1000G) [3, 27]. We first computed the joint
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AFS for three populations: Yoruba individuals in Ibadan, Nigeria (YRI);
Utah residents with northern and western European ancestry (CEU); and
Han Chinese from Beijin (CHB). We restricted our analysis to 80 ploids
for each population and fit the same 13-parameter demographic model as
in [12, 9]. However, whereas previous studies had access to capture data
for a subset of the exome, here we had access to the entire high-coverage
exome data. Moreover, we updated the mutation coefficient and the gener-
ation time to more realistic values: respectively µ = 1.44 × 10−8 [11] and
Tg = 29y [28]. The best-fit model is represented in Figure 1.

Figure 1: Out of Africa expansion.

We used a Powell optimizer to find maximum likelihood parameters
(see Appendix F). Confidence intervals were obtained using recently in-
troduced approaches for uncertainty estimation for composite likelihood [2].
Maximum-likelihood parameters are presented in Table 3.1.

3.2 Validation with different trios of populations

Because of data and computational limitations, most previous studies have
only considered a single triple of populations for estimating an Out-Of-
Africa model. We wondered whether other populations would yield con-
sistent results. Here we inferred the parameters with three different trios
incorporating data from Luhya from Kenia (LWK), British (GBR) and Kinh
Vietnamese (KHV) populations in addition to the three original populations
we used. Inference results are presented in Table 3.2.

The inference is robust to permutation of European and Asian popula-
tions, in the sense that inferred parameters across triplets are consistent with
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Parameter Estimate 95% CI

NA 11273 -
NAF 23721 23033 - 24409
NB 3104 2882 - 3326
NEU0 2271 2091 - 2452
rEU (%) 0.196 0.189 - 0.203
NAS0 924 864 - 984
rAS(%) 0.309 0.30 - 0.318
mAF−B(×10−5) 15.8 14.7 - 16.8
mAF−EU (×10−5) 1.10 0.99 - 1.22
mAF−AS(×10−5) 0.48 0.42 - 0.55
mEU−AS(×10−5) 4.19 3.86 - 4.51
TAF (kya) 312 259 - 365
TB(kya) 125 110 - 139
TEU−AS(kya) 42.3 40.6 - 44.0

Table 2: Parameters estimates inferred with the likelihood approach. For the
mutation rate and the generation time, we used respectively: µ = 1.44×10−8

[11] and Tg = 29y [28]. We used 80 samples per population, performed the
inference in genetic units, and scaled the parameters so that NA matches
the point estimate from [9]. Confidence intervals are obtained by bootstrap
over genic regions. Parameters are defined in Reference (??)

the confidence intervals obtained in the YRI-CEU-CHB triplet. However,
changing the African population from YRI to LWK changes parameters
beyond the confidence intervals. This is because the reported confidence
intervals take into account the finite nature of the genome, but not the vari-
ation across populations. Parameters inferred from different triplets are not
wildly different, reflecting the shared or similar histories of some of the pop-
ulations, but quantitative details can vary substantially. Perhaps the most
interesting difference is the more recent inferred split between between LWK
and Eurasians, compared to the split between YRI and Eurasians, support-
ing the idea that the YRI-Eurasian split time at 120 thousand years ago
represents structure that persisted in Africa over tens of thousands of years
before the Out-of-Africa event. This naturally begs for more detailed mod-
elling of the relationships between African populations in the 1000 Genome
project, but this requires a more thorough discussion of the historical and
archeological context, and is outside the scope of this manuscript.

3.3 Out of Africa model with 4 and 5 populations

As moments handles up to five populations, we can go further and simulate
more complex models than the Out of Africa model described in [12]. In
this Section, we consider a model of Out of Africa expansion with four pop-
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Parameter YRI-GBR-CHB YRI-GBR-KHV LWK-CEU-CHB

NA 11273 11273 11273
NAF 24486 23908 29034
NB 3034 2986 2746
NEU0 2587 2485 2141
rEU (%) 0.17 0.17 0.21
NAS0 958 951 859
rAS(%) 0.30 0.30 0.33
mAF -B(×10−5) 15.6 16.0 17.7
mAF -EU (×10−5) 1.00 1.02 1.50
mAF -AS(×10−5) 0.48 0.60 0.63
mEU -AS(×10−5) 3.99 4.46 4.43
TAF (kya) 349 313 218
TB(kya) 121 120 99
TEU -AS(kya) 44 43 40

Table 3: Parameters estimates inferred for the Out of Africa with different
trios of african, european and asian populations from the 1000 Genomes
dataset. For the mutation rate and the generation time, we used respec-
tively: µ = 1.44 × 10−8 [11] and Tg = 29y [28]. We used 80 samples per
population. We performed the inference in genetic units, and scaled the
parameters so that NA matches the point estimate from [9].

ulations as we added a second asian population, the Japanese from Tokyo
(JPT). The model is very similar to the original one described in Section
3.1 but we add a split in the Asian population resulting in the Chinese and
Japanese populations (see Figure 2 and Table 3.3). We fixed the param-
eters inferred above in the three populations model and inferred the new
parameters induced by the Asian split.

We also considered a model with five populations by adding a third Asian
population, the Kinh Vietnamese (KHV). We fixed the parameters inferred
from the four populations model and inferred the new parameters (see table
3.3) introduced by the split which gives rise to the KHV population.

4 Discussion

We described a new approach to simulate the evolution of allele frequency
distributions over time. On a practical level, this approach can be used wher-
ever the diffusion approximation was applicable, in which case it typically
provides faster, more accurate, and more robust solutions. Our software
implementation will provide an easy transition to ∂a∂i users: data handling
and ancillary methods for momentsare largely copied from open-source code
from ∂a∂i, model specification is simplified, and the number of adjustable
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Figure 2: Out of Africa expansion model with four populations.

Parameter Estimate

NA 11293
NAF 23721
NB 2831
NEU0 2512
rEU (%) 0.16
NAS0 1019
rAS(%) 0.26
NJP0 4384
rJP (%) 1.29
mAF−B(×10−5) 16.8
mAF−EU (×10−5) 1.14
mAF−AS(×10−5) 0.56
mEU−AS(×10−5) 4.75
mCH−JP (×10−5) 3.3
TAF (kya) 357
TB(kya) 119
TEU−AS(kya) 46
TCH−JP (kya) 9

Table 4: Parameters estimates inferred with the likelihood approach for the
4 populations model. We used 30 samples per population.

parameters is reduced.
On a theoretical level, we proposed an exact and numerically robust so-
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Parameter Estimate

NA 11293
NAF 23721
NB 2831
NEU0 2512
rEU (%) 0.16
NAS0 1019
rAS(%) 0.26
NKHV 0 2356
rKHV (%) 17.4
NJP0 4384
rJP (%) 1.29
mAF−B(×10−5) 16.8
mAF−EU (×10−5) 1.14
mAF−AS(×10−5) 0.56
mEU−AS(×10−5) 4.75
mCH−KHV (×10−5) 21.3
mCH−JP (×10−5) 3.3
TAF (kya) 357
TB(kya) 119
TEU−AS(kya) 46
TCH−KHV (kya) 9.8
TCH−JP (kya) 9

Table 5: Parameters estimates inferred with the likelihood approach for the
5 populations model. We used 30 samples per population.

lution to the discrete Wright-Fisher model. Even though its derivation is
simple, we are not aware that such an approach has been used before. The
exact approach is not practical under selection (where the moment equa-
tions does not close) and under migration (where the equations close only in
a high-dimensional space). We bypass both difficulties by using a jackknife
extrapolation inspired by capture-recapture models that is increasingly ac-
curate for large sample size. This provides a simple, closed equation for
the evolution of the allele frequency distribution that bypasses the diffusion
approximation.

The applications of our solver to data from the 1000 Genomes project
largely recapitulate and refine worldwide models of genetic diversity. Within
Asia, we found that the best model involved a split between Han Chinese,
Japanese, and Kinh Vietnamese approximately 9000 years ago. Importantly,
we found the choice of a ‘representative’ population in Out-of-Africa models
can substantially affect the inferred parameters, even ones not directly in-
volving the population. Unsurprisingly, the choice of the African population
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has the largest impact on the inferred demography, emphasizing that pre-
vious OOA models may be applicable to many Eurasian populations, but
not to other African populations. Building models including more than one
African population will likely provide much more information about Human
ancestry both in Africa and across the world.

Coalescent models are now extremely efficient at modelling neutral evo-
lution, including with very large number of populations [14, 15]. One of
the greatest advantages of forward approaches is the ability to handle a
broader range of evolutionary scenarios. The moment approach proposed
here broadens the range of scenarios where the allele frequency distribution
can be modelled directly, including reversible mutations and selection. We
expect that this will facilitate in particular the modelling of evolution over
very long time-scales.
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A Coefficients of the discrete operators

In this section we first present the full form of the discrete drift, selec-
tion, and migration operators involved in equation (7) in the simplest model
where selection, migration, and drift are treated linearly, and then present
an outline of the derivation.

Remember that the ODE for an AFS in p populations, with Nj diploid
individuals in population j and nj sequenced ploids per population, is

Φ̇n(i) =

p∑
j=1

[
1

4Nj
∆̃nj ,ijΦn + sj∇̃hj ,nj ,ijΦn+2ej

+
∑
k 6=j

mjkMjkΦn̂j
+ njuδi=ej

]
,

(10)

where n̂j = n + ej is the parental sample size required to reach sample size
n after migration from j to k, and ej is the jth vector of the canonical basis
of Rp, ej(i) = δij .

The drift operator ∆̃nj ,ij has the form

∆̃nj ,ijΦn(i) = [(ij − 1)(nj − ij + 1)Φn(i− ej)− 2ij(nj − ij)Φn(i)

+(nj − ij − 1)(ij + 1)Φn(i + ej)] ,
(11)

and is closely related to transition matrices derived in [5, 26]. The selection
operator ∇̃hj ,nj ,ij is defined by

∇̃hj ,nj ,ijΦn+2ej(i) =
hj

nj + 1

[
ij(nj + 1− ij)Φn+ej(i)

− (nj − ij)(ij + 1)Φn+ej(i + ej)
]

+
(1− 2hj)(ij + 1)

(nj + 1)(nj + 2)

[
ij(nj + 1− ij)Φn+2ej(i + ej)

− (nj − ij)(ij + 2)Φn+2ej(i + 2ej)
]

(12)

and the migration operator Mjk is

MjkΦn̂ =
1

nj + 1

(
(ij + 1)(nk − ik + 1)Φn̂(i + ej − ek)

− (ij + 1)(nk − ik)Φn̂(i + ej)
)

+ (nj − ij)(ik + 1)Φn̂(i + ej)− ik(nj − ij)Φn̂(i).

(13)
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A.1 Derivation for the drift operator

For simplicity, we derive the drift and selection operators in one dimension,
since the multi-dimension case is a straightforward generalization with a
heavier notation burden. The probability of observing a single two-way
coalescence in a sample of size n is

Pn,N (1→ 2) =
1

2N

(
n

2

)(
1− 1

2N

)n−2

(1− Pn−2,N−1) , (14)

where 1
2N is the probability that a given pair of lineages coalesces,

(
n
2

)
is

the number of distinct pairs of lineages that can coalesce, (1 − 1/2N)n−2

is the probability that there is no additional coalescence to the same ploid,
and 1−Pn−2,N−1 is the probability that none of the remaining n−2 lineage
coalesce to the remaining N − 1 ancestors. If we only keep leading order
terms in 1

N , we find the classical large-population limit

Pn,N (1→ 2) =
1

2N

(
n

2

)
.

Given a single two-way coalescence, we then want to compute the frequency
distribution in the offspring given the distribution in the parental generation.
We imagine that the n descendent ploids are copied from n parental ploids,
with one parental ploid drawn twice, and one parental ploid never drawn.
Since the n parental ploids were drawn independently, their expected allele
frequency distribution corresponds to the expected frequency in the parental
generation. To compute the change in expected allele frequency between
parental and offspring generation, we must compute the probability of allele
frequency changes between parents and offsprings.

The probability of observing a transition from parental frequency i + 1
to descendent frequency i after a two-way coalescence is the probability that
the twice-selected ploid carries the reference genotype (which we represent
as ), and the unselected ploid is non-reference (which we represent as ):

P 1→2(i+ 1, i) =
(i+ 1)(n− i− 1)

n(n− 1)
δ0≤i≤n−1.

Similarly, the gain of an alternate ploid results from event and has
probability

P 1→2(i− 1, i) =
(i− 1)(n− i+ 1)

n(n− 1)
δ1≤i≤n.

The probability of transitioning from i alternate ploids to i− 1 (via ) or
i+ 1 (via ) is

P 1→2(i, ∗) ≡ P 1→2(i, i− 1) + P 1→2(i, i+ 1) = 2
i(n− i)
n(n− 1)

.
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We can finally compute the drift operator for a single two-way coalescence:

1

4N
∆̃1→2
n,i Φn(i) =Pn,N (1→ 2)

×
(

Φn(i− 1)P 1→2(i− 1, i) + Φn(i+ 1)P 1→2(i+ 1, i)

− Φn(i)P 1→2(i, ∗)
)
,

(15)

which simplifies to Equation (11).

A.2 Derivation of the selection operator

Here we derive a one-dimensional version of Equation (12). The derivation is
elementary but a bit cumbersome. See Appendix C for a different derivation
that relies on the diffusion approximation.

We consider the action of selection on a single transmission, when a
new ploid is drawn from a diploid individual. We derive the results in
the context of negative selection (s < 0 and sh < 0) where we can think
of selection as eliminating a proportion of the neutral transmissions. A
transmission is eliminated by selection with probability −sh if the parent
is a heterozygote, and with probability −s if the parent is an alternate

homozygote. For bookkeeping, we write the state of the parent as ,
with the empty circle representing a reference allele, solid circle representing
the alternate allele, and the vertical line representing the putative initial
selected ploid. When selection acts, this ploid is replaced by a new ploid,
taken at random from the parental population. Since we assume that at
most one selective event occurs per generation, we do not need to know
the diploid state of this replacement ploid. In the selective event labeled as

, the transmission of an alternate allele from a homozygous ancestor
was eliminated and replaced by transmission from a reference allele. To
generate n descendent ploids with one selective event, there have been a
total of n+ 2 relevant ploids: the n selected initially, the diploid companion
of the rejected ploid and the replacement ploid. We want to compute the
change in allele frequency caused by the selection process relative to the
neutral transmission of the n selected ploids. We write S (i + 1 → i)

for the probability that the n initial parental ploids included i+ 1 alternate

alleles, but the offspring ploids include i because of selective process .
This is proportional to the number Φn+2(i + 2) of loci having the required
i + 2 alternate alleles in a sample of size n + 2, the probability of selecting

the correct triplet of ploids (namely the hypergeometric
(i+2

2 )(n−i
1 )

(n+2
3 )

for the

correct choice of three ploids times 1
3 for the correct order), the probability

that the selection event occurs for one transmission (−s), and the number
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of transmissions where selection can act (n). Putting all these together, we
get

S (i+ 1→ i) = −ns
3

(
Φn+2(i+ 2)

(
i+2

2

)(
n−i

1

)(
n+2

3

) )
,

S (i+ 1→ i) = −nsh
3

(
Φn+2(i+ 1)

(
i+1

1

)(
n−i+1

2

)(
n+2

3

) )
,

S (i− 1→ i) = −nsh
3

(
Φn+2(i+ 1)

(
i+1

2

)(
n−i+1

1

)(
n+2

3

) )
,

S (i→ i− 1) = −ns
3

(
Φn+2(i+ 1)

(
i+1

2

)(
n−i+1

1

)(
n+2

3

) )
,

S (i→ i− 1) = −nsh
3

(
Φn+2(i)

(
i
1

)(
n−i+2

2

)(
n+2

3

) )
,

S (i→ i+ 1) = −nsh
3

(
Φn+2(i+ 2)

(
i+2

2

)(
n−i

1

)(
n+2

3

) )
.

(16)

The first three terms, of the form S·(· → i), describe increases to the num-
ber of alleles at frequency i. The last three terms, of the form S·(i → ·),
contribute to a decrease relative to the neutral case: Their contribution to
the evolution equation will have opposite signs.

Under an additive model, the diploid companion to the selected allele
plays no role and the evolution should only depend on Φn+1 rather than
Φn+2. To make this explicit, we collect terms into an additive term, propor-
tional to h, and a dominance term, proportional to (1− 2h). The coefficient
of the dominance term can be obtained by setting h = 0 in the list of con-
tributions from Equation (16). The dominance term reads

(1− 2h)

(
S (i+ 1→ i)− S (i→ i− 1)

)
.

The additive term contains the remaining terms

S (i+ 1→ i) + S (i− 1→ i)− S (i→ i− 1)

− S (i→ i+ 1) + 2h

(
S (i+ 1→ i)− S (i→ i− 1)

)
= S (i+ 1→ i)− S (i− 1→ i)

− S (i→ i− 1) + S (i→ i+ 1).

(17)

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 25, 2017. ; https://doi.org/10.1101/103275doi: bioRxiv preprint 

https://doi.org/10.1101/103275
http://creativecommons.org/licenses/by/4.0/


We combine the first and last term using the downsampling formula

Φn+1(i) =
i+ 1

n+ 2
Φn+2(i+ 1) +

n− i+ 2

n+ 2
Φn+2(i),

and similarly combine the middle two terms using

Φn+1(i+ 1) =
i+ 2

n+ 2
Φn+2(i+ 2) +

n− i+ 1

n+ 2
Φn+2(i+ 1)

to reach Equation (12).

A.3 Derivation of the migration operator

We derive the migration operator for populations j and k, with mjk the
probability that a ploid in population k has a parent from population j. We
consider a sample of nj ploids from population 1 and nk from population
k and suppose that the migration rate is small enough that at most one
migration occurs per site per generation.

In this case there are only two ploids involved in the migration, the
replaced and the replacement ploids, and two possible configurations that
result in changes in the allele frequency, and , where circles represent
ploids: a dark circle represents an alternate allele, and the ploid on the left is
the migrant replacing the ploid to the right. If M ((ij , ik−1)→ (ij , ik)) is

the rate of increase of the number of loci with alternate allele counts (ij , ik)

because of process , we have two rates of increase:

M ((ij + 1, ik − 1)→ (ij , ik)) = mjknk

×
(
ij + 1

nj + 1

nk − ik + 1

nk
Φn̂(ij + 1, ik − 1)

)
M ((ij , ik + 1)→ (ij , ik)) = mjknk

(
nj − ij
nj + 1

ik + 1

nk
Φn̂(ij , ik + 1)

)
,

(18)

and two corresponding rates of decrease:

M ((ij + 1, ik)→ (ij , ik + 1)) = mjknk

(
ij + 1

nj + 1

nk − ik
nk

Φn̂(ij + 1, ik)

)
,

M ((ij , ik)→ (ij , ik − 1)) = mjknk

(
nj − ij
nj + 1

ik
nk

Φn̂(ij , ik)

)
.

(19)
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We can combine these to get the transition rate due to migration:

MjkΦn̂ =
1

nj + 1

(
(ij + 1)(nk − ik + 1)Φn̂(ij + 1, ik − 1)

− (ij + 1)(nk − ik)Φn̂(ij + 1, ik)

+ (nj − ij)(ik + 1)Φn̂(ij , ik + 1)

− (nj − ij)ikΦn̂(ij , ik)
)
.

(20)

The code in moments uses a slightly different equation that can be de-
rived from this by the application of the downsampling formulas, namely

MjkΦn̂ =
nk(ij + 1)

nj + 1

(
Φn+ej−ek(i + ej − ek)− Φn+ej−ek(i + ej)

)
− ikΦn(i) + (ik + 1)Φn(i + ek),

(21)

This makes it possible to only use the jackknife on the first two terms.

B Generalized forms of the operators

B.1 Finite genome model for mutations

To facilitate comparison with previous work, we focused in this work on the
infinite-sites model, assuming that mutations occur at previously invariant
loci and neglecting back mutations. However, finite genome and back muta-
tions are easily accommodated by the present model. In this case, the single
population mutation term MiΦn is:

MiΦn =[u(n− i+ 1)Φn(i− 1)− viΦn(i)]δi>0

+ [v(i+ 1)Φn(i+ 1)− u(n− i)Φn(i)]δi<n,

where u and v are the forward and backward mutation rates.

B.2 Drift with multiple coalescences

The standard diffusion approximation and Kingman’s coalescent model ne-
glect the possibility that multiple coalescences may occur during the same
generation in the history of a sample. We used a similar approximation to
compute the drift operator in Appendix A. Even though multiple coales-
cences are indeed rare for small sample sizes and large populations, they can
have a measurable effect for large sample sizes [14].

Here we consider the next-order correction to the drift operator by ac-
counting for three-way and double two-way coalescences (Figure 3), each
contributing corrections of order 1

N2 .
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• • • • • • •

• • • • • • •generation k

generation k + 1

three-way coalescence (1→ 3)

• • • • • • •

• • • • • • •generation k

generation k + 1

double two-way coalescence (1→ 2)2

Figure 3: Multiple coalescences.

We can decompose the drift operator ∆n,i in contributions from two-way,
three-way, and double two-way coalescence

∆̃n,i = ∆̃1→2
n,i + ∆̃1→3

n,i + ∆̃
(1→2)2

n,i .

The computation of individual terms, outlined below, is cumbersome but
elementary. The key result is that the rate of change in Φn(i) is a linear
combination of the Φn(j) with j ranging from i− 2 to i+ 2.

B.2.1 Single two-way coalescent

The two-way coalescent contribution is also described by Equation (15), but
if we consider multiple coalescences we must also account for corrections to
Pn,N (1→ 2) of order 1

N2 , i.e.,

Pn,N (1→ 2) =
1

2N

(
n

2

)(
1− n− 2

2N
− 1

2N

(
n− 2

2

))
+O

(
1

N3

)
.

B.2.2 Single three-way coalescent

Similarly, the probability of a three-way coalescent is, to leading order in N ,
is

Pn(1→ 3) =

(
n
3

)
4N2

+O

(
1

N3

)
,

and we must now compute 5 transition probabilities.
For example the transition probability from i+ 2 to i is,

P 1→3(i+ 2, i) =
1

3
Hn,i+2,3(2) =

1

3

(
n−(i+2)

1

)(
i+2

2

)(
n
3

) .
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Here Hn,k,j(i) =
(ji)(

n−j
j−i)

(nj)
is the hypergeometric distribution with j trials and

i successes, sampling from a finite population of size n with k successes. To
derive this result, we note that a triple coalescence can create a transition
from i + 2 to i if it involves three parental ploids: one (reference) chosen
three times, and two (alternate) never chosen: . The probability of this
happening is the product of the probability of drawing two alternate ploids
in a sample of three (i.e., Hn,i+2,3(2)), times the probability that we picked
the reference allele to coalesce (i.e., 1/3).

Similarly, we have contributions from , , and

P 1→3(i+ 1, i) =
2

3

(
n−(i+1)

1

)(
i+1

2

)(
n
3

) ,

P 1→3(i− 1, i) =
2

3

(
n−(i−1)

1

)(
i−1

2

)(
n
3

) ,

P 1→3(i− 2, i) =
1

3

(
n−(i−2)

1

)(
i−2

2

)(
n
3

) .

Finally we want the probability of changing from ancestral frequency i to
any other offspring frequency. Because the only way to maintain the number
of reference ploids under a triple coalescence is to pick either three reference
ploids ( ) or three non-reference ploids ( ), we have

P 1→3(i, ∗) ≡P 1→3(i, i− 2) + P 1→3(i, i− 1) + P 1→3(i, i+ 1) + P 1→3(i, i+ 2)

=1−Hn,i+2,3(0)−Hn,i+2,3(3)

=1−
(
i
3

)
+
(
n−i

3

)(
n
3

) .

(22)

We finally have the corresponding drift operator

1

4N
∆̃1→3
n,i Φn(i) = Pn(1→ 3)

∑
j∈i−2,i−1,i+1,i+2

P 1→3(j, i)Φn(j)−P 1→3(i, ∗)Φn(i)

B.2.3 Double two-way coalescent

The probability of drawing a double coalescence is

Pn((1→ 2)2) =
3

4N2

(
n

4

)
+O

(
1

N3

)
.

Here we need to consider four parental ploids with two coalescences and
two not selected. We have a term corresponding to

P (1→2)2(i+ 2, i) =
Hn,i+2,4(2)(

4
2

) .
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Similarly, and contribute to

P (1→2)2(i+ 1, i) =
Hn,i+1,4(1)

2
+
Hn,i+1,4(3)

2
.

We then have the complementary contributions and to

P (1→2)2(i− 1, i) =
Hn,i−1,4(1)

2
+
Hn,i−1,4(3)

2

and for

P (1→2)2(i− 2, i) =
Hn,i+2,4(2)(

4
2

) .

There are now three possibilities for not changing the allele frequency,
namely ; ; and , so that the probability of changing from
frequency i given a double two-way coalescence is

P (1→2)2(i, ∗) = 1−Hn,i,4(0)− 2Hn,i,4(2)

3
−Hn,i,4(4).

The drift operator is therefore

1

4N
∆̃

(1→2)2

n,i Φn(i) = Pn((1→ 2)2)(− P (1→2)2(i, ∗)Φn(i)

+
∑

j∈i−2,i−1,i+1,i+2

P (1→2)2(j, i)Φn(j)).

(23)

Changes to Φn(i) caused by drift are a simple linear function of the
Φn(j) for j ∈ i− 2, ..., i+ 2. This operator is sparse for large n and easy to
compute numerically. Higher-order corrections in 1

N would simply involve
more terms and a progressively denser linear operator.

B.3 Strong migration and admixture

To compute the frequency spectrum φk+1
n1,n2

after admixture, we need to
consider the origin of n1 + n2 lineages. Under strong recent bidirectional
migration, there are loci at which all n1 + n2 lineages come from popula-
tion 1, and other loci at which all lineages come from population 2. Thus
φk+1
n1,n2

depends on the set {φkñ} for all ñ containing n1 + n2 lineages. This

information is contained in the frequency spectrum φkn1+n2,n1+n2
.

Specifically, we can write

φk+1
n1,n2

(i, j) =
∑
IJ

P (I, J → i, j)φkn1+n2,n1+n2
(I, J),

where P (I, J → i, j) is the probability of observing alternate allele counts
(i, j) when each allele is drawn independently and without replacement
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from the two ancestral samples with frequency (I, J). The direct compu-
tation of P (I, J → i, j), summing over the possible inheritance patterns,
is straightforward but computationally demanding for large sample sizes or
high-dimensional applications.

Instead, we used a dynamic programming approach that is a bit technical
but allows for important speedups. The general idea is that we perform mi-
grations one ploid at a time, rather than simultaneously, allowing successive
migrants to replace previous ones. The end result is not quite the distribu-
tion that we want, because the bulk replacement process does not allow for
replacement among migrants. However, we can easily compute and correct
for this difference. The main benefit of this approach is that we avoid having
to perform multiple integrals over the possible migrant configurations.

To simulate one-way admixture from population 1 into population 2 at
rate m12, we therefore first allow one lineage at a time from population 1 to
migrate into population 2. We sequentially compute the spectra ψR resulting
from R = 0, 1, 2, . . . , ν migrating lineages, with ν chosen so that all plausible
migrant numbers are covered (details below). The ψR do not correspond to
the correct frequency distribution, because the number of migrant alleles
per site does not have the correct distribution: Our goal is then to choose a
linear combination

∑
R wRψR such that∑

R

wRψR ' φk+1
n1,n2

. (24)

In the standard infinite-sites model, the number of replaced lineages
in the admixed sample follows the binomial distribution B(n,m12). We
can therefore write the frequency spectrum φk+1

n1,n2
as the sum φk+1

n1,n2
=∑n

j=1B(n2,m12)jξj , where ξj is the frequency spectrum that would result
if exactly j lineages were replaced through migration.

To identify the set of wR that satisfy Equation (24), we also express ψR
as a linear combination of the ξj . The probability ΓjR of observing j net
replacements afterR sequential replacements is easily computed numerically.
This leaves us with ψR =

∑
j ΓjRξj . If we express both sides of Equation

(24) in terms of the ξj , we find

∑
j

∑
R

ΓjRwRξj '
n∑
j=1

B(n2,m12)jξj .

We would then like to choose the wR such that the coefficients are equal:

ν∑
R=1

ΓjRwR = B(n2,m12)j . (25)

Provided that ν is large enough, this linear problem admits solutions for
wR. Unfortunately, exact solutions to this equation are prone to strong
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oscillations in the wR, which lead to numerical instabilities. Rather than
seeking exact but oscillating solutions to Equation (25), we seek non-negative
solutions that minimize the squared error

∑
j(
∑ν

R=1 ΓjRwR−B(n2,m12)j)
2

using the active set method implemented in the scipy.optimize.nnls routine.
Assuming that we found a solution with an acceptably small error, we finally
use Equation (24) to compute the frequency spectrum.

To choose ν, we note that ν sequential replacements give an average of
approximately n(1 − eν/n) net replacements once multiple replacements of
the same lineage have been accounted for (e.g., [?]). We find that we get
accurate results if we have enough net replaced lineages to cover most likely
cases in binomial sampling: n2(1− e−ν/n) > m12n2 + 2

√
n2m12(1−m12).

C ODEs on the moments

C.1 One dimensional case

In this section, we show how the system of ordinary differential equations
(7) derived in the main text can also be derived by integration by parts from
the diffusion approximation to the Wright-Fisher process. Under the diffu-
sion approximation, the evolution of the single-population allele frequencies
density φ(x, t) follows (e.g., [12]):

φ̇(x, t) ' 1

4N

∂2

∂x2
x(1− x)φ(x, t)

− s ∂
∂x

(h+ (1− 2h)x)x(1− x)φ(x, t)

+ 2Nuδ(x− 1

2N
).

(26)

The first term of the right hand side is a diffusion term modeling the
effect of genetic drift and the second term is a transport term that accounts
for selection. Finally, the source term 2Nuδ(x − 1

2N ) models the mutation
process under the infinite site assumption.
We are interested in the moment-like statistics Φn(i), obtained projecting
the allele frequencies density φ on the weight functions defined by wn,i(x) =(
n
i

)
xi(1− x)n−i:

Φn(i) =

∫ 1

0
wn,i(x)φdx.

The time derivative of Φn(i) is given by:

Φ̇n(i) =

∫ 1

0
wn,iφ̇dx.

The delta function source term in Equation (26) is integrated easily. The
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leading-order term in 1
N is simply nuδi=1: this is the rate at which mutations

appear on n lineages over one generations:

Φ̇n(i) = nuδi=1 +
1

4N

∫ 1

0
wi

∂2

∂x2
(x(1− x)φ(x, t)) dx

− s
∫ 1

0
wi

∂

∂x
((h+ (1− 2h)x)x(1− x)φ(x, t)) dx.

(27)

drift term: We want to rewrite the drift term of equation (27) in terms
of the moments Φn(i). To this end, we integrate by parts:

1

4N

∫ 1

0
wi

∂2

∂x2
(x(1− x)φ(x, t)) dx =

1

4N

[
wi

∂

∂x
(x(1− x)φ(x, t))

]1

0

− 1

4N

∫ 1

0

∂wi
∂x

∂

∂x
(x(1− x)φ(x, t)) dx.

As wi(0) = wi(1) = 0 we assume that the first term is 0. We can integrate
by parts the second term:

1

4N

∫ 1

0
wi

∂2

∂x2
(x(1− x)φ(x, t)) dx = − 1

4N

∫ 1

0

∂wi
∂x

∂

∂x
(x(1− x)φ(x, t)) dx

= − 1

4N

[
∂wi
∂x
× x(1− x)φ(x, t)

]1

0

+
1

4N

∫ 1

0

∂2wi
∂x2

x(1− x)φ(x, t)dx.

As we consider a finite genome, φ(0, t) and φ(1, t) are finite and, once again,
the term in square brackets is zero. Moreover, we have:

∂2wi
∂x2

=

(
n

i

)[
i
[
(i− 1)xi−1(i− x)n−i − (n− i)x(1− x)n−i−1

]
− (n− i)

[
ixi−1(1− x)n−i−1 − (n− i− 1)x(1− x)n−i−2

] ]
.

Thus,

drift term =
1

4N

∫ 1

0

∂2wi
∂x2

x(1− x)φ(x, t)dx

=
1

4N

[ ∫ 1

0

(
n

i

)
i(i− 1)xi(i− x)n−i+1φ(x, t)dx

−
∫ 1

0

(
n

i

)
i(n− i)xi+1(1− x)n−iφ(x, t)dx

−
∫ 1

0

(
n

i

)
(n− i)ixi(1− x)n−iφ(x, t)dx

+

∫ 1

0

(
n

i

)
(n− i)(n− i− 1)xi+1(1− x)n−i−1φ(x, t)dx

]
.

29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 25, 2017. ; https://doi.org/10.1101/103275doi: bioRxiv preprint 

https://doi.org/10.1101/103275
http://creativecommons.org/licenses/by/4.0/


Rearranging this expression, we can write it in terms of the Φn(i):

drift term =
1

4N
[(i− 1)(n− i+ 1)Φn(i− 1)δi≥2

−2i(n− i)Φn(i)δ1≤i≤n−1 + (n− i− 1)(i+ 1)Φn(i+ 1)δi≤n−2] ,

which corresponds to the one-dimensional version of equation (11).

selection term: Here again, we integrate by parts the selection term:

− s
∫ 1

0
wi

∂

∂x
((h+ (1− 2h)x)x(1− x)φ(x, t)) dx

= −s [wi (h+ (1− 2h)x)x(1− x)φ(x, t)]10

+ s

∫ 1

0

∂wi
∂x

(h+ (1− 2h)x)x(1− x)φ(x, t)dx.

We can again assume that the term in square brackets is zero, we rear-
range the other integral term in order to write it in terms of the Φn(i). We
finally get:

selection term =
sh

n+ 1
[i(n+ 1− i)Φn+1(i)− (n− i)(i+ 1)Φn+1(i+ 1)]

+
s(1− 2h)(i+ 1)

(n+ 1)(n+ 2)

[
i(n+ 1− i)Φn+2(i+ 1)

− (n− i)(i+ 2)Φn+2(i+ 2)
]
,

which corresponds to the one-dimensional version of equation (12).
Bringing these expressions together, we get a system of ordinary differ-

ential equations on the Φn(i):

Φ̇n(i) =nuδi=1 +
1

4N
[(i− 1)(n− i+ 1)Φn(i− 1)δi≥2

−2i(n− i)Φn(i)δ1≤i≤n−1 + (n− i− 1)(i+ 1)Φn(i+ 1)δi≤n−2]

+
sh

n+ 1
[i(n+ 1− i)Φn+1(i)− (n− i)(i+ 1)Φn+1(i+ 1)]

+
s(1− 2h)(i+ 1)

(n+ 1)(n+ 2)

[
i(n+ 1− i)Φn+2(i+ 1)

− (n− i)(i+ 2)Φn+2(i+ 2)
]

(28)

This is the one-dimensional equivalent to equation (10).
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C.2 Extension to multiple dimensions

The diffusion model can be generalized to multiple population studies. The
drift, selection and mutation terms are directly derived from the unidimen-
sional case. We just need to add the effect of the migrations between the
populations. The equation on the joint frequency spectrum is:

∂φ(x, t)

∂t
'

p∑
j=1

[
1

4Nj

∂2

∂x2
j

(
xj(1− xj)φ(x, t)

)
− sj

∂

∂xj

(
(hj + (1− 2hj)xj)xj(1− xj)φ(x, t)

)
−
∑
k 6=j

mjk
∂

∂xk

(
(xj − xk)φ(x, t)

)
+ 2Njuδ(xj −

1

2Nj
)Πk 6=jδ(xk)

]
.

(29)

Now x is a vector: x = [x1, · · · , xp] ∈ [0; 1]p. It is the same for the parame-
ters s and h and Nj is the reference population size for population j. The

term −
∑p

j=1

∑
k 6=jmjk

∂
∂xk

(
(xj − xk)φ(x, t)

)
accounts for the migrations

where mjk is the proportion of individuals in population k whose parents
were born in population j.
We are interested in the multi dimensional statistics generalizing the Φn(i):

Φn(i) =

∫ p∏
j=1

(
nj
ij

)
xij(1− xj)nj−ijdxjφ(x),

where n and i are vectors. The calculations are a bit more tedious but we
can do the same as for the single population case: integrating by parts each
term and writing it in terms of the Φn(i), we recover Equation (10).

D Jackknife approximation for moment closure

The evolution equations for Φn involves higher order terms, such as Φn+1

or Φn+2, which leads to a moment closure problem. To tackle this, we use
a jackknife approach to approximate higher-order terms as linear functions
of Φn:

Φn+1(i) '
∑
ki∈Ii

πkiΦn(ki),

where Ii is a set of indices chosen so that the frequency ki/n is close to the
target frequency i/(n+ 1).
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Given a set Ii, we choose the coefficients πki so that the jackknife is exact
for a given parameterized family of functions Φn+1.

The ‘order’ of the jackknife refers to the number of terms in Ii: the
more terms, the more general the family of functions can be, but the more
numerically unstable the jackknife becomes.

We focus here on the order 3 jackknife for the terms Φn+1(i) and we will
use the following approximation:

∀i ∈ [1;n],Φn+1(i) = αiΦn(i′ − 1) + βiΦn(i′) + γiΦn(i′ + 1),

where the index i′ is chosen so that the frequency i′

n is as close as possible
to i

n+1 and to satisfy the following boundary conditions:

i′ − 1 ≥ 1,

i′ + 1 ≤ n− 1.

We choose the approximation so that the interpolation is exact for quadratic
allele frequency distribution:

φ(x) = a+ bx+ cx2.

Even though this seems like a drastic approximation, the jackknife only
requires the quadratic approximation to hold locally: the parameters a, b,
and c will be chosen independently for each value of i.

The moments become:

Φn(i) =

∫ 1

0

(
n

i

)
xi(1− x)n−i

[
a+ bx+ cx2

]
dx.

The integral can be performed analytically to yield:

Φn(i) =
a(n+ 2)(n+ 3) + (i+ 1)(c(i+ 2) + b(n+ 3))

(n+ 1)(n+ 2)(n+ 3)
. (30)

We then look for the jackknife coefficients αi, βi and γi that cancel the
approximation error:

Φn+1(i)− αiΦn(i′ − 1)− βiΦn(i′)− γiΦn(i′ + 1) = 0.

We replace the Φ by their expressions under Equation (30):

a(n+ 3)(n+ 4) + (i+ 1)(c(i+ 2) + b(n+ 4))

(n+ 4)

−αi
a(n+ 2)(n+ 3) + i′(c(i′ + 1) + b(n+ 3))

(n+ 1)

−βi
a(n+ 2)(n+ 3) + (i′ + 1)(c(i′ + 2) + b(n+ 3))

(n+ 1)

−γi
a(n+ 2)(n+ 3) + (i′ + 2)(c(i′ + 3) + b(n+ 3))

(n+ 1)
= 0.
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This equation should hold for all values of (a, b, c), so we can use the
particular values (1, 0, 0), (0, 1, 0) and (0, 0, 1) and write the corresponding
system of equations:

αi + βi + γi =
(n+ 1)

n+ 2
,

αii
′ + βi(i

′ + 1) + γi(i
′ + 2) =

(n+ 1)(i+ 1)

n+ 3
,

αii
′(i′ + 1) + βi(i

′ + 1)(i′ + 2) + γi(i
′ + 2)(i′ + 3) =

(n+ 1)(i+ 1)(i+ 2))

n+ 4
.

We can compute the jackknife coefficients αi, βi and γi by solving the
previous linear system. We finally get:

αi =
Qα

2(n+ 2)(n+ 3)(n+ 4)
,

βi =
Qβ

(n+ 2)(n+ 3)(n+ 4)
,

γi =
Qγ

2(n+ 2)(n+ 3)(n+ 4)
.

with

Qα = (n+ 1)
[
4 + i2(6 + 5n+ n2)− i(14 + 9n+ n2)

− (n+ 4)(2i(n+ 2)− n− 5)i′ + (n2 + 7n+ 12)i′2
]

Qβ = (n+ 1)
[
(i+ 1)(n+ 2)(i(n+ 3)− n− 6)− 2(n+ 4)(i(n+ 2)− 1)i′

+ (n2 + 7n+ 12)i′2
]

Qγ = (n+ 1)
[
(i+ 1)(n+ 2)(i(n+ 3)− 2)− (n+ 4)(2i(n+ 2) + n+ 1)i′

+ (n2 + 7n+ 12)i′2
]

The same strategy is used to approximate Φn+2(i) as a linear combination
of the Φn entries. We use the same formulation for multidimensional simu-
lations as the moment closure problem can be addressed separately in each
dimension. For instance, in the 2-dimensional case, the selection in the first
population will involve the higher order term Φn1+1,n2(i1, i2) that we will
approximate as follows:

Φn1+1,n2(i1, i2) = αΦn1,n2(i′1 − 1, i2) + βΦn1,n2(i′1, i2) + γΦn1,n2(i′1 + 1, i2).

E Benchmarks

In this section we present an extensive set of test cases to compare com-
putational performances of Moments and ∂a∂i in terms of speed and ac-
curacy. Refer to paragraph 2.7 for more details about the metrics used for
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the comparisons. The results on test cases with 30, 80 and 200 ploids are
respectively given in Tables 6, 7 and 8. A more explicit description of the
test cases is given in Table 9. Unless otherwise specified, populations sizes
grow linearly: N(t) = 1 + 0.01t with t the time in genetic units. For the
exponential growth, we used the function N(t) = 10t. When dealing with
several populations, we used the same selection and migration parameters as
well as the same population growth functions for all the populations, except
for the Out-of-Africa model.

F Additional features

Moments is based on ∂a∂i’s interface but incorporates a new computation
engine based on the method described in this paper. In addition, we added
a few convenience features and optimizations. We developed a model plot-
ting module that returns a schematic representation of a given demographic
model. This is not only convenient for presenting results, but also proved
very useful in troubleshooting. Figure 1 has been generated with this mod-
ule. Moreover, it is now possible to directly import data and extract the
allele frequency spectrum from a vcf file and to generate bootstrapped fre-
quency spectra from the original data set. Finally, we implemented the Pow-
ell method for likelihood optimization, which we found to be more robust
than the gradient and simplex methods used previously in ∂a∂i, consistent
with the findings of [6].
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Demographic model method exec time (s) mean(εr) ∆ LL < 0 entries
Neutral equilibrium 1D ∂a∂i 3.64e-02 1.25e-02 1.47e-05 0

Moments 1.54e-03 9.74e-03 4.64e-05 0
Neutral 1D, ∂a∂i 3.59e-02 3.71e-03 4.15e-06 0
T = 1.0 Moments 1.20e-03 1.44e-02 3.24e-04 0
Neutral 1D, ∂a∂i 1.42e-01 2.50e-03 1.17e-05 0
T = 5.0 Moments 4.63e-03 2.82e-04 4.78e-08 0
Selection 1D, ∂a∂i 3.70e-02 6.50e-03 1.13e-06 0
T = 1.0 Moments 8.22e-03 1.45e-02 3.68e-04 0
Selection 1D, ∂a∂i 1.48e-01 5.62e-03 3.42e-06 0
T = 5.0 Moments 3.88e-02 9.23e-04 5.51e-07 0
Neutral equilibrium 2D ∂a∂i 2.76e-01 1.25e-02 3.06e-03 0

Moments 4.16e-02 9.74e-03 9.29e-05 0
Selection 2D, ∂a∂i 1.68e-01 1.25e-02 2.85e-03 0
T = 1.0 Moments 2.12e-02 9.11e-04 -1.39e-03 0
Selection 2D, ∂a∂i 6.20e-01 5.45e-03 9.26e-03 0
T = 5.0 Moments 7.50e-02 9.18e-04 -6.54e-03 0
Selection 2D, ∂a∂i 1.68e-01 5.45e-03 4.72e-04 0
T = 1.0, neutral fs0 Moments 1.70e-02 1.73e-02 2.57e-04 0
Selection, migration 2D, ∂a∂i 9.33e-01 8.13e-03 9.96e-05 0
T = 1.0 Moments 2.20e-01 3.71e-03 2.11e-05 0
Selection, migration 2D, ∂a∂i 4.44e+00 8.37e-03 4.07e-04 0
T = 5.0 Moments 9.95e-01 2.53e-03 2.07e-05 0
Selection, migration 2D, ∂a∂i 9.14e-01 5.22e-03 1.33e-04 0
T = 1.0, neutral fs0 Moments 2.18e-01 1.49e-03 1.49e-05 0
Fast growth 2D, ∂a∂i 9.61e-01 2.61e-01 7.06e-04 16
T = 1.0 Moments 2.20e-01 6.29e-02 7.96e-04 0
YRI-CEU 2D ∂a∂i 1.30e-01 3.64e-03 3.43e-05 0

Moments 1.89e-01 8.25e-03 1.49e-04 0
Neutral equilibrium 3D ∂a∂i 1.58e+01 1.25e-02 9.14e-03 0

Moments 4.69e-01 9.74e-03 1.39e-04 0
Selection 3D, ∂a∂i 6.58e+00 7.37e-01 1.77e-03 0
T = 1.0 Moments 1.21e-01 4.44e-05 -5.32e-02 0
Selection 3D, ∂a∂i 2.70e+01 7.38e-01 6.16e-03 0
T = 5.0 Moments 5.75e-01 8.82e-06 -1.74e-01 0
Selection 3D, ∂a∂i 6.28e+00 3.62e-03 1.77e-03 0
T = 1.0, neutral fs0 Moments 1.18e-01 2.16e-02 1.49e-03 0
Selection, migration 3D, ∂a∂i 8.24e+01 4.19e-02 6.16e-04 0
T = 1.0 Moments 5.02e+00 1.46e-02 1.73e-04 0
Selection, migration 3D, ∂a∂i 4.00e+02 4.23e-02 3.35e-03 12
T = 5.0 Moments 2.50e+01 1.36e-02 2.83e-04 0
Selection, migration 3D, ∂a∂i 7.80e+01 2.98e-02 5.90e-04 3
T = 1.0 , neutral fs0 Moments 5.01e+00 4.07e-03 8.63e-05 0
Fast growth 3D, ∂a∂i 7.89e+01 3.48e+02 3.08e-01 7021
T = 1.0 Moments 5.01e+00 7.07e-02 3.74e-03 0
Out of Africa 3D ∂a∂i 5.65e+00 3.11e-02 2.52e-04 0

Moments 4.10e+00 1.57e-02 8.14e-05 0

Table 6: Performance comparisons between ∂a∂i and Moments on sev-
eral scenarios (30 samples per population). For ∂a∂i simulations we used
Richardson extrapolation to improve convergence. The time T provided is
the simulation time in genetic units.
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Demographic model method exec time (s) mean(εr) ∆ LL < 0 entries
Neutral equilibrium 1D ∂a∂i 6.91e-02 1.05e-02 5.44e-05 0

Moments 1.96e-03 1.01e-02 7.79e-05 0
Neutral 1D, ∂a∂i 5.33e-02 4.07e-04 1.06e-07 0
T = 1.0 Moments 1.42e-03 1.87e-02 5.77e-03 0
Neutral 1D, ∂a∂i 1.61e-01 2.69e-04 2.46e-07 0
T = 5.0 Moments 4.87e-03 4.63e-04 1.20e-05 0
Selection 1D, ∂a∂i 5.25e-02 7.23e-04 4.88e-08 0
T = 1.0 Moments 8.68e-03 1.87e-02 5.88e-03 0
Selection 1D, ∂a∂i 1.70e-01 6.21e-04 9.79e-08 0
T = 5.0 Moments 3.56e-02 5.09e-04 1.34e-05 0
Neutral equilibrium 2D ∂a∂i 1.40e+00 1.04e-02 4.01e-03 15

Moments 8.86e-02 1.01e-02 1.56e-04 0
Selection 2D, ∂a∂i 7.66e-01 1.04e-02 3.56e-03 0
T = 1.0 Moments 2.48e-02 4.62e-04 1.01e-02 0
Selection 2D, ∂a∂i 2.35e+00 4.53e-04 9.05e-03 0
T = 5.0 Moments 1.07e-01 6.75e-04 -3.93e-03 0
Selection, migration 2D, ∂a∂i 3.52e+00 1.53e-03 1.62e-06 0
T = 1.0 Moments 2.43e+00 2.46e-03 5.53e-06 0
Selection, migration 2D, ∂a∂i 1.61e+01 5.35e-03 6.25e-06 0
T = 5.0 Moments 1.08e+01 4.68e-03 4.66e-06 0
Fast growth 2D, ∂a∂i 3.56e+00 9.59e-02 2.59e-05 133
T = 1.0 Moments 5.06e+00 6.13e-02 3.54e-05 0
YRI-CEU 2D ∂a∂i 6.04e-01 1.06e-03 1.12e-06 0

Moments 1.63e+00 9.73e-03 2.14e-04 0
Neutral equilibrium 3D ∂a∂i 1.95e+02 1.04e-02 1.19e-02 113549

Moments 4.35e+00 1.01e-02 2.34e-04 0
Selection 3D, ∂a∂i 7.97e+01 9.15e-01 6.45e-03 0
T = 1.0 Moments 9.63e-01 8.71e-06 -7.99e-03 0
Selection 3D, ∂a∂i 2.82e+02 9.63e-01 1.69e-02 0
T = 5.0 Moments 4.83e+00 1.25e-06 -6.29e-02 0
Selection, migration 3D, ∂a∂i 8.37e+02 6.41e-03 9.26e-06 126
T = 1.0 Moments 1.62e+02 4.46e-03 2.74e-04 0
Fast growth 3D, ∂a∂i 8.31e+02 1.76e-01 5.01e-05 62559
T = 1.0 Moments 1.59e+02 2.09e-02 2.50e-04 0
Out of Africa 3D ∂a∂i 5.74e+01 5.90e-03 6.93e-06 102

Moments 1.06e+02 1.86e-02 1.29e-04 0

Table 7: Performance comparisons between ∂a∂i and Moments on sev-
eral scenarios (80 samples per population). For ∂a∂i simulations we used
Richardson extrapolation to improve convergence. The time T provided is
the simulation time in genetic units.
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Demographic model method exec time (s) mean(εr) ∆ LL < 0 entries
Neutral equilibrium 1D ∂a∂i 1.15e-01 1.03e-02 6.78e-05 0

Moments 3.20e-03 1.06e-02 9.62e-04 0
Neutral 1D, ∂a∂i 1.16e-01 3.58e-05 4.41e-09 0
T = 1.0 Moments 1.81e-03 2.04e-02 3.08e-02 0
Neutral 1D, ∂a∂i 3.38e-01 2.35e-05 6.49e-09 0
T = 5.0 Moments 7.83e-03 8.32e-04 6.73e-04 0
Selection 1D, ∂a∂i 1.08e-01 6.45e-05 3.64e-09 0
T = 1.0 Moments 1.50e-02 2.05e-02 3.17e-02 0
Selection 1D, ∂a∂i 2.69e-01 5.53e-05 4.71e-09 0
T = 5.0 Moments 4.02e-02 8.41e-04 7.41e-04 0
Neutral equilibrium 2D ∂a∂i 8.37 1.02e-02 4.80e-03 13934

Moments 3.51e-01 1.06e-02 1.92e-03 0
Selection 2D, ∂a∂i 4.69e+00 1.02e-02 4.06e-03 0
T = 1.0 Moments 5.08e-02 2.04e-04 6.16e-02 0
Selection 2D, ∂a∂i 1.29e+01 8.72e-04 8.91e-03 0
T = 5.0 Moments 2.27e-01 1.77e-03 -2.42e-03 0
Selection, migration 2D, ∂a∂i 1.84e+01 1.52e-03 4.71e-07 0
T = 1.0 Moments 3.31e+01 3.67e-03 1.74e-05 0
Selection, migration 2D, ∂a∂i 8.24e+01 8.23e-03 4.89e-06 18
T = 5.0 Moments 1.58e+02 8.68e-03 1.14e-05 0
Fast growth 2D, ∂a∂i 1.84e+01 1.56e-02 5.12e-06 1318
T = 1.0 Moments 6.65e+02 6.11e-02 2.01e-05 0
YRI-CEU 2D ∂a∂i 3.67e+00 3.41e-03 2.50e-06 0

Moments 1.54e+01 1.27e-02 2.53e-04 0
Neutral equilibrium 3D ∂a∂i 3.71e+03 1.02e-02 1.42e-02 6325463

Moments 4.38e+01 1.06e-02 2.89e-03 0

Table 8: Performance comparisons between ∂a∂i and Moments on sev-
eral scenarios (200 samples per population). For ∂a∂i simulations we used
Richardson extrapolation to improve convergence. The time T provided is
the simulation time in genetic units.

Demographic model Description
Neutral equilibrium kD k constant size population(s),

neutral simulation up to equilibrium (T=5.0)
Neutral kD k growing population(s), neutral simulation.
Selection kD k growing population(s) with selection: Ns = 1 and h = 0.7.
Selection kD, k growing population(s) starting at equilibrium with selection:
neutral fs0 Ns = 1 and h = 0.7.
Selection, migration kD k growing populations with selection and migrations:

Ns = 1, h = 0.7 and m = 2.0.
Selection, migration kD, k growing populations starting at equilibrium,
neutral fs0 with selection and migrations: Ns = 1, h = 0.7 and m = 2.0.
Fast growth kD k exponentially growing populations with selection and migrations:

Ns = 1, h = 0.7 and m = 2.0.
YRI-CEU 2 populations Out of Africa expansion model, test case given in ∂a∂i.
Out of Africa 3D 3 populations Out of Africa expansion model as described in [9, 12]

Table 9: Test cases descriptions.
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