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Abstract

With the expanding use of next-gen sequencing (NGS) to diagnose the thousands of rare Mendelian 
genetic diseases, it is critical to be able to interpret individual DNA variation. We developed a general 
method to better interpret the likelihood that a rare variant is disease causing if observed in a given 
gene or genic region mapping to a described protein domain, using genome-wide information from a 
large control sample. We implemented these methods as a web tool and demonstrate application to 19 
relevant but diverse next-gen sequencing studies. Additionally, we calculate the statistical significance 
of findings involving multi-family studies with rare Mendelian disease and studies of large-scale 
complex disorders such as autism spectrum disorder.
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Background

Whole-exome sequencing has enabled the identification of causal genes responsible for causing 
hundreds of rare, Mendelian disorders in just a few years; however, there remain hundreds, if not 
thousands, more to be uncovered. The genetic basis has been determined for 4,803 of the rare diseases 
[1], whereas the number of disease phenotypes with a known or suspected Mendelian basis lies close to
6,419 based on data in Online Mendelian Inheritance in Man (OMIM) [1]. NGS studies are certain to 
uncover many disease-phenotype relationships in the near future, but for cases involving rare diseases 
with limited sample sizes, determining causality between phenotypes and novel genes, and 
distinguishing true pathogenic variants from rare benign variants remains a challenge. Often disease 
causality of a given rare variant is only clear when additional affected individuals with similar rare 
variants in the same gene are identified, which can take years to occur due to the rarity of these 
disorders. Thus, improvements in determining disease causality or likely pathogenicity would greatly 
enhance efforts to prioritize genes and gene variants for further molecular analysis, even if only a single
affected individual was identified.

Variants identified through broad based NGS technologies are typically classified as pathogenic,
likely pathogenic, variant of uncertain significance (VUS) or likely benign according to multiple 
criteria, largely based on prior knowledge about the specific variant.  Novel variants are evaluated 
individually and placed into discrete categories if they meet complex combinations of criteria, which 
include thresholds for allele frequency, segregation, number of affected unrelated individuals, and 
known functional relevance [2, 3]. For example, a variant would be deemed pathogenic if the allele 
frequency threshold falls below a given threshold and the variant segregates with a disorder in at least 
two unrelated affected families, or if other criteria are met. In brief, variants are evaluated individually 
based on variant-specific annotations.

An additional source of information that would aid in variant prioritization would be a gene-
specific annotation describing mutational burden in the overall population. To illustrate, consider a 
gene that has very few functional variants in the general population, and several unrelated patients were
found to carry distinct protein-altering, rare missense or potential loss-of-function (LOF) variants in the
given gene and within a highly conserved protein domain. Under a model for a rare Mendelian disorder
caused by highly penetrant variants, we assume that common variants cannot be considered causal, and
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rare variants in genes intolerant of mutations are deemed highly suspicious of being causal for disease 
even if no other information is known about the variants. Therefore, knowing the population-wide 
mutational burden of a given gene for rare variants would be informative.

While there are gene-ranking methods based on other parameters [4], there has been limited 
work in developing a gene-level ranking systems based on measures for intolerance to mutations in the 
general population. The Residual Variation Intolerance Score (RVIS) generates a score based on the 
frequencies of observed common coding variants compared to the total number of observed variants in 
the same gene or protein domain [5, 6]. Another ranking system, in addition to these parameters, also 
incorporates the frequency at which genes are found to be affected by rare, likely functional variants, 
and their findings suggest that disease associations to genes which frequently contain variants should 
be evaluated with extra caution [7]. Finally, the Exome Aggregation Consortium (ExAC) dataset 
provides Z scores that describe the degree to which a gene is depleted of missense and LOF variants 
compared to expected values based on the frequency of synonymous variants [8]. Although these 
methods may be useful in prioritizing variants in order to highlight those in genes that frequently 
contain variants, neither results in a score that is directly interpretable in order to calculate statistics 
about NGS findings and determine the significance of seeing a variant in a given number of affected 
individuals.

One tool that calculates a P-value of finding a true association through clinical exome 
sequencing, RD-Match [9], allows researchers to calculate the probability of finding phenotypically 
similar individuals who share variants in a gene through systems such as Matchmaker Exchange. The 
tool incorporates the probability of an individual having a rare, nonsynonymous variant in a gene by 
taking the sum of the allele frequencies of all rare (MAF < 0.1%) nonsynonymous variants annotated in
ExAC [8]. With higher MAF thresholds and large population sizes, this is problematic because an 
individual may have multiple variants in a gene that frequently contains rare variation, causing one to 
overestimate the fraction of the population carrying rare variants in the gene, hence the fixed, low MAF
threshold. Furthermore, this tool is applicable to studies in which the affected individuals are selected 
based on phenotype as well as the prior knowledge that they share rare variants in a given gene. Finally,
RD-Match does not allow researchers to customize variant filtering thresholds according to the disease 
model with regards to minor allele frequency or predicted consequence such as LOF or missense 
variant.

Here we describe a method, named SORVA for Significance Of Rare VAriants, for ranking 
genes based on mutational burden. In addition to incorporating information from variant allele 
frequencies, we use population-derived data to precompute an unbiased, easily interpretable score, 
which allows one to calculate the significance of observed and novel rare variants and their potential 
for being causal of disease. One may then answer the question: what is the probability of observing 
missense variants in three out of ten unrelated affected individuals, for example, given that only one in 
a thousand individuals in the general population carry a missense variant in the gene? Essentially, a 
model can be constructed to estimate the probability of drawing n unrelated families with similar 
biallelic genotypes by chance from the general population [10]. Conversely, if one has a large list of 
variants of unknown significance, the significance level may be useful in prioritizing variants within 
the same category of pathogenicity, and in improving the interpretation of variants in studies of 
Mendelian genetic disorders. This approach is useful for single individuals and small family units, but 
of course power improves with larger numbers of affected individuals.
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Results

For calculating the significance of seeing variants within a gene when sequencing multiple individuals 
affected for a rare, presumably Mendelian disorder, we first calculated the frequency of observing a 
variant in each gene in an individual within the population by using a large control dataset and 
collapsing variants in each gene. Calculations are based on data from 2504 individuals in the 1000 
Genomes Project phase 5 dataset, which contains data from individuals from five “superpopulations” 
(European, African, East Asian, South Asian, and ad-mixed American). We repeated the analysis for 
variants filtered according to various minor allele frequency and protein consequence thresholds that 
researchers may use when filtering variants. First, we filtered out common variants that met various 
minor allele frequency (MAF) thresholds used in the literature and others: 5%, 1%, 0.5%, 0.1% and 
0.05%. We then filtered rare variants according to two scenarios before collapsing variants across 
genes: 1) we included all protein-altering variants, i.e. those that cause a nonsynonymous change in the 
protein transcript or have a more deleterious consequence, and 2) we filtered for potential loss-of-
function (LOF) variants, i.e. splice site, stop codon gain and frameshift variants.

Below, we present general findings in population and molecular genetics that can be gleaned 
from the dataset, and illustrate how the dataset can be used in multiple studies, as a control group to vet
candidate genes and variants. 

Population differences

Of 18,877 genes that are in the union of the Ensembl and RefSeq gene sets, most genes contained 
heterozygous or homozygous missense variants in individuals in all populations; only 2.3% contain no 
rare variants (MAF < 5%), and 1.0% of genes have an identified variant in only a single population. 
Lowering our MAF threshold does not decrease the number of genes much. Although, filtering variants
to include only LOF variants reduces the number of genes containing variants in the dataset to 9641, or 
51.1% of genes in the dataset. (Figure 1) These results demonstrate that choosing the correct MAF 
threshold is not nearly as important as identifying the correct protein consequence threshold to use 
when filtering variants. For instance, including all missense variants when LOF variants are generally 
causal for a given disease would reduce power to detect the gene associated with the disease.

Figure 1. The proportion of genes (n=18877) mutated in individuals in various populations. A gene was 
considered mutated if at least one individual was heterozygous or homozygous for an uncommon or rare (MAF 
< 5%) protein-altering (nonsynonymous or potential loss-of-function) variant anywhere in the gene. 
Abbreviations: EUR, European. AFR, African. EAS, East Asian. SAS, South Asian. AMR, ad-mixed American.
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The number of individuals who carried a heterozygous or homozygous variant in a given gene was 
generally higher in the African population compared to other populations (Figure 2a), which is 
expected given that African individuals are observed to have up to three times as many low-frequency 
variants as those of European or East Asian origin [11], which reflects ancestral bottlenecks in non-
African populations [12]. Conversely, regarding genes for which the number of individuals with a rare 
variant in the gene differed between populations, the genes having the greatest difference between 
populations tended to diverge most in the African population. (Figure 2b) Genes whose mutational 
burden diverges most between populations are significantly enriched for a large number of biological 
functional terms, including glycoprotein, olfactory transduction and sensory perception, cell adhesion, 
various repeats, basement membrane and extracellular matrix part, cadherin, microtubule motor 
activity, Immunoglobulin and EGF-like domain. It is important to note differences between 
populations, because, in many cases, researchers would be advised to use control populations similar to
their study population. However, if a gene is associated with a severe, childhood-onset disorder in one 
population, it is likely to be associated with disease in other populations, as well, and knowledge that a 
gene frequently contains variation in African populations would be useful in prioritizing candidate 
genes even if one is  studying variation in another population. In this case, such information would 
point towards reduced likelihood for disease association.

Figure 2. Population differences between the number of individuals mutated for a gene between 
populations. (a) Each data point in the histogram represents the proportion of individuals within a population 
who are heterozygous or homozygous for an uncommon (MAF < 5%) missense variant in a given gene. (b) The 
number of individuals carrying uncommon variants in a gene differs between populations. We plotted the 
variance of the count for each gene and colored high-variance genes to denote which population differed most 
from the mean.
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Figure 3. The number of individuals heterozygous for a rare (MAF
< 0.5%) potentially LOF mutation in a gene. Each data point 
represents a single gene, mutated in the aggregate population 
(n=2504 individuals). Genes are grouped according to 
whether they are an essential gene, or are known to cause 
autosomal dominant, autosomal recessive or X-linked 
disease. Colored shapes indicate the centroids of each group. 
Abbreviations: nonsyn, nonsynonymous. LOF, loss-of-
function. AD, autosomal dominant. AR, autosomal recessive. 
XL, X-linked.

Properties of known disease genes

To determine whether calculating the frequency of individuals who have a rare variant in a given gene 
in the general population may be helpful in determining which genes are more likely to cause disease, 
we compared the counts between multiple categories of genes: a) “essential” genes, defined as genes 
essential for cell survival in human cell lines, b) genes in which variants are known to cause autosomal 
dominant disorders, c) genes in which variants are known to cause autosomal recessive disorders, d) 
genes in which variants are known to cause X-linked disorders, and e) all other genes. As expected, 
fewer individuals carry rare, protein-altering or LOF variants in genes known to cause Mendelian 
disorders compared to other genes, and genes associated with X-linked disorders tend to be least 
tolerant of mutations (Figure 3; Additional file 1). Although frequency counts overlapped between gene
categories for every variant filtering threshold, clusters were most differentiated when plotting the 
proportion of individuals who are heterozygous for rare LOF variants in a gene. Furthermore, the 
differentiation between clusters increased as the MAF threshold became more stringent, as the datasets 
became enriched for deleterious variants that can only subsist at a low allele frequency in a population 
due to selective pressure. (Additional file 1)

Previous research suggests that 2.0% of adults of European ancestry and 1.1% of adults of 
African ancestry can be expected to have actionable highly penetrant pathogenic (including novel 
expected pathogenic) or likely pathogenic single-nucleotide variants (SNVs) in 112 medically 
actionable genes [2]. We find that a larger proportion of 1000 Genomes Project individuals—5.8% of 
European individuals and 3.3% of African individuals—are heterozygous or homozygous for extremely
rare (MAF < 0.0005) LOF variants in these 112 genes, highlighting the large number of benign variants
that are found in the population at low allele frequencies and should be filtered out by manual curation.

Depletion of variants in regions mapping to specific protein domains

It has been suggested previously that collapsing variants by protein domain could lead to improved 
gene-based intolerance scoring systems, as certain regions of the gene could be much more constrained 
than others [5]. We incorporated data for 322,772 protein domains from Interpro [13] and calculated the
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Figure 4. Depletion of rare, heterozygous LOF variants in regions mapping to protein domains. We plotted 
scaled protein domain depletion scores for each domain mapping within a gene; high scaled scores indicate that 
a protein domain is depleted of rare (MAF < 0.5%) mutations compared to the rest of the gene. Darkened points 
above the red dashed line represent protein domains that are significantly depleted of mutations after correcting 
for the number of genes remaining after filtering. Larger points indicate protein domains with a greater length in 
proportion to the transcript length. Points are colored if the protein domain is within a gene that is an essential 
human gene or is causal for a Mendelian disorder. Abbreviations: AD, autosomal dominant. AR, autosomal 
recessive. XL, X-linked.

average number of individuals who have a variant in any given type of protein domain (Additional file 
2), after filtering for rare (MAF < 0.5%), heterozygous LOF variants. Protein domains that are highly 
constrained, well covered during exome sequencing and rarely contain variants despite their large size 
include the Family A G protein-coupled receptor-like protein domain (Superfamily: SSF81321), which 
is found in 660 genes and has a mean length of 965 base pairs; none of the 2,504 individuals carry rare 
variants in the region mapping to this protein domain. Other highly constrained protein domains that 
occur throughout the human genome include Glutamic acid-rich region profile (PfScan: PS50313), 
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Proline-rich region profile (PfScan:PS50099), Immunoglobulin (Superfamily: SSF48726), and 
Cysteine-rich region profile (PfScan: PS50311). (Additional file 2) If an NGS study finds that affected 
individuals have rare variants in variation intolerant protein domains such as those listed, the variants 
would become highly suspicious of being causal.

We also calculated whether specific genes contain protein domains that are significantly 
depleted of variation, given the frequency of variants in the gene overall. Filtering out protein domains 
in genes with no variants and those with missing information reduced the dataset to 67,138 protein 
domains in 7,004 genes. The number of rare (MAF < 0.5%), heterozygous LOF variants per individual 
in a protein domain are significantly lower than expected for 77 protein domains in 26 genes after 
correcting for multiple testing by the number of genes. (Figure 4) Functional enrichment analysis in 
DAVID revealed that the most significant biological functions in the gene list were related to tubulin-
tyrosine ligase activity (P=0.015), and G-protein coupled receptor, rhodopsin-like superfamily 
(P=0.05). Depletion values for all protein domains may be found in Additional file 3. Information about
whether a protein domain is significantly depleted of variation despite being in a gene with frequently 
observed variation may be useful in distinguishing between pathogenic and benign rare variants within 
genes containing regions under different degrees of evolutionary constraint.

Significance of findings in multi-family studies of rare genetic disorders

Below, we present methods for multiple study designs to calculate the significance of observing a given
variant in a given gene. In the simplest case, a study involving a single family, calculating the P-value 
is relatively simple. Consider a case of a severe, pediatric-onset Mendelian disorder, in which both 
parents and the affected child are sequenced to identify the causal variant. If only de novo variants are 
identified within a putative gene, one can easily estimate the probability of at least one de novo 
mutation occurring in a gene by random chance; one could multiply the per-base mutation rate by the 
length of the gene transcript and make adjustments to account for CpG content related variation in 
mutation rates (Additional file 4).

In studies that identify both de novo and inherited variants in more complex family structures, 
calculating the significance of a variant is more complex. First, we generalize the equation for 
calculating the significance of observing a de novo mutation in a gene for studies involving multiple 
families. The P-value of observing independent de novo events in the same gene in s out of n 
individuals is

if multiple families are sequenced. Consider the following example.

Clinical exome sequencing (CES) in four independent families identified de novo nonsense 
mutations in KAT6A in all probands displaying significant developmental delay, microcephaly, and 
dysmorphism [14]. De novo nonsense mutations arising in this gene in all four individuals is highly 
unlikely by chance (P = 2.66 × 10  -12), and the statistical findings would support KAT6A as highly 
suspicious for causing the disorder. Further experiments and the identification of multiple other 
affected individuals by a separate study [15] confirmed this result.

If inherited variants are also observed in a gene, calculating the statistical significance of 
findings requires incorporating information about the number of individuals who carry a variant in the 
particular gene in the general population. The frequencies of the number of individuals who contain 
rare variants in a given gene or protein domain for various filtering thresholds may be queried through 
our online database called SORVA (https://sorva.genome.ucla.edu). (Additional file 5) Researchers can 
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select the variant filtering thresholds identical to those used in hard filtering variants in a given study. 
Minor allele frequency thresholds range from 5%, useful for studies involving more common, complex 
disorders where less stringent filtering criteria are used, to 0.05% for studies involving extremely rare 
disorders. Then, knowing the expected number of individuals who carry a variant in the gene or protein
domain in question, one can calculate the significance (α < 0.05) of seeing the observed number of 
singletons (variants observed in a single individual), doubletons (variants observed in two individuals 
within a single family) or more complex cases as follows.

Let fhom be the fraction of individuals in the general population with a homozygous variant in a 
gene or protein domain. Then, the P-value of seeing k families with a homozygous variant, out of n 
total families with identical relatedness is

where r is the coefficient of relationship[16] or the fraction of the genome shared between affected 
family members and BinomCDF denotes the binomial cumulative distribution function.

If the affected individuals are heterozygous for the putative variants, the P-value is

where fboth is the probability of an individual having either a heterozygous or homozygous variant in the
gene of interest.

If multiple families and unrelated individuals had been sequenced with different degrees of 
relatedness, the P-value can be obtained by multiplying the probabilities calculated for families 
grouped by relationship coefficients. To illustrate, consider that we have sequenced 5 singletons 
(unrelated individuals), three doubletons sharing ½ of their genomes (e.g. siblings concordant for 
disease status), and a tripleton sharing 1/16 of their genome (e.g. certain distantly related individuals). 
After variant filtering, we note that the distantly related individuals and four unrelated patients carry 
rare variants in the same gene, and we calculate the significance of seeing rare damaging variants in 
four singletons and one tripleton as

 
given the family structures of the individuals we had sequenced.

The a priori probability p can be queried from the SORVA dataset online, and standalone 
computer software for obtaining p and calculating the P-value based on the methods described herein is
also available on our website.

Significance of findings in large-scale studies of complex disorders

In complex disorders where most of the genes contributing to risk remain unknown, our dataset may be
used to provide additional evidence supporting novel gene findings and provides a simple method to 
calculate the significance of observing variants in a given gene in a large-scale study. As an example, 
several large-scale whole-exome sequencing (WES) studies have been carried out to-date in trios and 
quads to elucidate causal genes underlying autism spectrum disorders (ASD) [17–22]. However, genes 
identified as containing de novo variants rarely overlap between studies, raising the question of how 
many genes are truly causal and how likely genes are to be identified as associated with autism by 
chance in these studies as well as others. We assessed the number of individuals carrying rare 
(MAF<0.1%), heterozygous LOF variants in 1145 genes cumulatively associated with ASD by more 
than a dozen studies, meta-analyses and reviews [20, 23–41]. There was no significant difference 

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2017. ; https://doi.org/10.1101/103218doi: bioRxiv preprint 

https://doi.org/10.1101/103218
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. Histogram of the number of individuals with rare LOF variants in putative autism genes. The 
distribution of the number of individuals with a rare variant (MAF < 0.1%) in all genes is nearly identical to the 
distribution for putative autism genes (N=1145) and high-confidence autism genes (N=109) (dashed lines), 
suggesting that the genes may have been associated with autism by chance. Genes that frequently contain rare 
LOF variants in the population (red shaded region) are unlikely to be causal for ASD.

between the distribution of values and that of all genes, and assuming that truly causal genes are more 
intolerant of rare LOF variants, our findings support the hypothesis that many genes could have been 
randomly associated with the disorder. (Figure 5, Additional file 6) Furthermore, there are 19 putative 
autism genes in which >0.5% of individuals carry rare, LOF variants. These genes are likely to be false 
positives, because no single gene contributes to a large proportion of autism cases. Our results highlight
the need to perform statistical validation of findings involving genes associated with complex 
disorders.

Appropriately, several WES studies on ASD calculate the significance of their findings. For example, 
Sanders et al. demonstrate in a study which identifies de novo coding mutations in 928 individuals that 
finding two independent de novo mutations in a single gene is highly unlikely by chance, and this 
occurring is viewed as evidence for association between ASD and the gene SCN2A (sodium channel, 
voltage-gated, type II, α subunit) [21]. Neale et al. also consider the probability of seeing two 
independent de novo mutations in a single gene when evaluating their findings [18]. Iossifov et al. 
(2012) demonstrates that disrupted genes are significantly enriched for FRMP-associated function; 
however, they also highlight several individual non-FRMP-associated genes based on their plausibility 
to cause an ASD phenotype but make no attempt at applying statistics when considering these. In fact, 
de novo mutations in genes may have arisen in these genes by chance and are not causal [17].

To validate our methods, we validated findings by O'Roak et al. (2012) [20], who reported de novo 
variants as well as inherited LOF variants in ASD cases. In a targeted sequencing study of 44 candidate
genes in 2,446 ASD probands, the authors found that six individual genes (CHD8, GRIN2B, DYRK1A, 
PTEN, TBR1, and TBL1XR1) had evidence of mutation burden for de novo variants, for which they 
calculated the P-value using simulations. Applying our methods, we find that more cases carry de novo 
and inherited variants than expected by chance in 5 out of the 6 genes. (Table 1). The gene TBL1XR1, 
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which was borderline significant in the original study, was not significant using our calculations. 
Furthermore, one additional gene was found to be significant using our method, due to the fact that our 
method also incorporates information about inherited variants: given that 0.08 % of individuals in the 
population have a rare (MAF <= 0.05) loss-of-function (LOF) variant in the gene ADNP, the 
significance of seeing de novo variants in 2 individuals and additional variants in 1 individual out of a 
total of 2,446 sequenced singleton individuals is significant after correcting for multiple testing (P = 
5.15 × 10-4). To summarize, our methods approximate P-values obtained using more complex and 
computationally intensive methods such as simulations, with the advantage that it incorporates 
information about both inherited and de novo variation, and the fact that it incorporates precomputed 
population level data makes our methods easy to apply to calculating the statistical significance of 
observing rare variants in a given gene.

Table 1. Validation of mutational burden findings in autism genes

Number of  indivs with variant

Gene
LOF / de

novo
Nonsyn /
de novo Inh / LOF P

ADCY5 0 2 1 1

ADNP 2 0 1 5.2 × 10-4

CHD8 8 1 0 1.3 × 10-11

DYRK1A 3 0 1 2.4 × 10-6

GRIN2B 3 1 0 1.2 × 10-4

LAMC3 0 2 4 0.773

PTEN 1 2 1 0.04*

SBF1 0 2 1 1

SETD2 1 1 2 0.298

SGSM3 0 2 2 1

TBL1XR1† 1 1 0 0.151

TBR1 2 1 0 2.5 × 10-4

UBE3C 0 2 1 1

In a targeted sequencing study of 44 candidate autism genes in 2446 individuals [20], 12 genes contained both 
recurring de novo variants and inherited LOF variants in multiple individuals, or had evidence of excess 
mutation burden of de novo variants. Gene names that are in bold were statistically significant in the original 
study. P-values calculated using our methods validate findings by O'Roak et. al (2012) for 5 out of 6 genes. *P-
value was significant if we included nonsynonymous variants. Inherited nonsynonymous variants were not 
reported in the original study, hence the P-value is conservative. †Borderline significant in the original study. 
Abbreviations: nonsyn, nonsynonymous variant or single amino acid deletion; LOF, loss-of-function variant; 
Inh, inherited.

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2017. ; https://doi.org/10.1101/103218doi: bioRxiv preprint 

https://doi.org/10.1101/103218
http://creativecommons.org/licenses/by-nc-nd/4.0/


Applications in predictive genomics

If a genetic disease is associated with the presence of variants in a given gene, information about the 
variants in the gene in affected individuals and in population controls can be used to more accurately 
assess the probability that a person will develop a disease given their genotype.

Consider a randomly chosen person from the general population who is undergoing prenatal genetic 
testing. Define A as the event that their child will be born with a disease, and B as the event that the 
child carries a rare, LOF variant in a given gene associated with the disease. For many heterogeneic 
Mendelian disorders, studies of large cohorts provide information regarding the relative contribution of 
individual causative genes and the genotype–phenotype correlations, giving us the conditional 
probability P(B|A). The term P(A) can be defined as the disease incidence, and the value of P(B), or the
proportion of individuals carrying a rare, LOF variant in the gene, can be queried from our dataset. 
Then, according to Bayes' theorem

we can calculate that the probability that the child will have the disorder. The following example 
illustrates such an application.

Consider that prenatal testing identified that a fetus is compound heterozygous for novel 
variants in the gene POMGNT1, which suggests a possible phenotype of congenital muscular dystrophy
(CMD). It is known that 53% of patients with CMD have homozygous or compound heterozygous 
variants in one of six known CMD genes, 10% have homozygous or compound heterozygous variants 
in POMGNT1, and the incidence of CMD is estimated to be 1:21,500 [42, 43]. Since most mutations 
observed in affected individuals are novel and are not found in healthy population controls, we will 
assume a low MAF threshold of 0.1% for variant filtering. At this threshold, 2 out of 2504 individuals 
(0.08 %) in our dataset have a rare protein-altering variant in the gene POMGNT1, therefore 
P(B)=0.0008, and we calculate that the positive predictive value (PPV), the probability that the child 
will have the disease given a positive test result, is roughly 1.0%. Using this method, sensitivity, the 
probability P(B|A), is quite low (10%); whereas specificity is high (1-P(B) = 99.9%). If we aggregate 
data for all known CMD genes, we can increase sensitivity to 53% with a negligible decrease in 
specificity, due to the fact that the other CMD genes contains very few, in any variants in our dataset. 
This example highlights that sensitivity greatly depends on the proportion of cases that can be 
explained by variants in a given set of genes. This type of analysis thus has implications for 
interpretation of broad NGS-based prenatal testing and can be extrapolated as well to preconception 
testing and risk to potential children.

It is important to note that the extreme numbers involved—the very low prevalence of a disorder and in
many cases, the fact that no individual on the 1000 Genomes Project dataset had been observed with 
variants in a gene, i.e. the lack of previous false-positive results—make it difficult to compute the PPV. 
A previous study suggests that the latter “zero numerator” problem can be solved using a Bayesian 
approach that incorporates a prior distribution describing the initial uncertainty about the false-positive 
rate [44]. Alternatively, the number of rare LOF variants observed in a gene has been published as part 
of the ExAC dataset, which contains information about 60,706 individuals [8]. Although only nonsense
or splice site variants were included in the LOF classification, and they only include values for a single 
MAF threshold of 0.1%, the number can be used a rough estimate for f. Furthermore, if even the ExAC 
count is zero, we can assume that f is less than 1/60706, or 3/60706 if we are being conservative.
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To summarize, for monogenic disorders and disorders where there exist detailed phenotype-genotype 
correlation data, our dataset will provide the denominator in the equation to calculate the probability 
that an individual with a rare variant in a known disease gene will have a rare genetic disorder. As 
further research uncovers novel gene-disease associations, and as we increase the size of the public 
dataset from which P(B) values can be calculated, we can update expected false-positive rates and 
calculating PPVs will become increasingly accurate. As illustrated, our methods will be be useful for 
applications in predictive genomics, including prenatal testing and testing for late-onset genetic 
disorders.

Comparison to other gene ranking methods

We applied our method to calculate the significance of several previous studies' findings [45–72]. In all 
studies where the Mendelian disorder was found to be caused by inherited disease variants (N=21) [45–
62, 70–72], findings were confirmed to be significant using our methods, and in 15 out of 21 studies, P-
values were highly significant (P< 0.0001). (Table 2, Additional file 7) In many studies, initial exome 
sequencing in a limited number of individuals is followed by sequencing of only the putative causal 
gene in a large number of individuals. In one such study, the P-value resulting from the initial exome 
sequencing is significant enough to suggest causality, and the follow-up sequencing essentially serves 
to establish the proportion of cases in which the phenotype is attributed to variants in the gene [55]. In 
others studies, however, the initial sequencing merely identifies potential candidate genes, and follow-
up sequencing is required to achieve genome-wide significance [53, 56, 70–72]. In these cases, the second
round of sequencing is not corrected for multiple testing, because only a single gene is interpreted 
during follow-up sequencing.  (Additional file 7)

The rankings of frequencies at which a gene contains rare, deleterious variants is comparable to 
previously published gene ranking methods for prioritizing variants. The list of genes sorted and ranked
according to the number of individuals carrying rare (MAF < 0.5%) heterozygous, loss-of-function 
variants correlates well with genes ranked based on Z scores calculated from the ExAC dataset 
consisting of exome sequencing data from 60,706 individuals (ρ = 0.485) [8, 73]. Z scores describe the 
deviation of observed variant counts per gene from expectation, indicating transcripts that are more 
intolerant of variation. Despite the fact that 48.8% of genes contain no data (i.e., they contain no 
variants under these filtering thresholds), ExAC rankings correlate more closely with SORVA rankings 
than rankings based on RVIS [5] (ρ = 0.374) and FLAGS [7] (ρ = 0.279) methods.

Discussion

We demonstrate the utility of using mutational burden data to aid in prioritizing variants in silico and 
quantifying the significance of seeing a variant within a gene. We have shown this using examples from
previous studies encompassing multiple NGS study designs and disease inheritance models. 

Although there was some variation between the frequency of individuals with a rare variant in a given 
gene between populations, and selecting a comparable population to a study would be ideal when 
calculating variant significance, this restriction is not necessary. To illustrate, if individuals in the 
African population frequently carry LOF variants in a gene but this does not hold true for another 
population that more closely matches the study population, one may nevertheless consider the gene to 
be less likely to cause a rare Mendelian disorder.

A limitation of this method of ranking genes is that genes are prioritized on the basis of their 
likelihood of being involved in disease in general rather than in the specific disease of interest [4]. On 
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the other hand, this can be viewed as a benefit in the sense that results are unbiased and do not depend 
on previously existing annotations, which would bias rankings to prefer known and well-studied genes. 
This bias is a known issue in the interpretation of clinical variants [74]. To illustrate, Bell et al. 
discovered that an unexpected proportion (27%) of literature-annotated disease variants in recessive 
disease-causing genes were incorrect [75], and Piton et al. estimated that 25% of X-linked intellectual 
disability genes are incorrect or require further review based on allele frequency estimates that have 
become more accurate with the availability of large-scale sequencing datasets [76]. Disease genes that 
are incorrectly annotated as disease-causing may explain the lack of difference between the average 
number of individuals carrying variants in genes causal for autosomal dominant and autosomal 
recessive genes. One would expect decreased counts for autosomal dominant disease genes due to 
stronger purifying selection among deleterious variants that arise in these genes, where a single variant 
may be sufficient to cause disease [77]. Another possibility is that the sample size may be too small to 
include a sufficient number of individuals who are carriers for rare, deleterious variants in recessive 
disease genes.

Future improvements to our methods would include increasing the amount of genetic 
information from unaffected individuals. Our results suggest that for most applications, low MAF 
thresholds should be used to achieve power to detect genes associated with disease; however, at 
thresholds of MAF < 0.0005, most genes will lack any data; e.g. there will be no individuals observed 
who are carriers of LOF variants. The SORVA dataset is useful in its current state with data from a 
relatively small number of individuals, but increasing the population size by several orders of 
magnitude will increase the utility of the application. The recently approved Precision Medicine 
Initiative will fund sequencing and data collection from 1 million or more Americans and make the data
accessible to qualified researchers, and the methods described in this manuscript could be applied to 
this larger dataset and contribute towards the aim of this initiative to generate knowledge applicable to 
the whole range of health and disease [78].

Additional improvements would include incorporating additional information regarding specific 
categories of variants, such as the degree to which stop codon gain (also know as nonsense) variants in 
a gene are constrained to the end of the gene. Knowing whether an essential gene is highly intolerant of
nonsense mutations in only certain regions of the gene would allow one to lower the priority of 
nonsense variants in mutationally tolerant regions when evaluating variants in silico. For example, Li et
al. exclude stop-gain variants occurring in the terminal gene exon and those that do not affect all 
transcripts of a gene when evaluating deleterious LOF mutations in a large cohort of individuals [79]. 
The limitation to providing individual-level mutational burden counts at such a high level of granularity
is that researchers will be restricted to following the same methods of filtering and annotating variants. 
This would be problematic because, by default, many commonly-used software pipelines do not 
annotate variants with the information about the proportion of transcript truncated [80–85]. Selecting 
variant filtering thresholds in SORVA that are identical to those used in one's study is essential in 
having comparable data with which to calculate variant significance. For this reason, we also did not 
filter missense variants based on annotations from commonly tools such as SIFT [86], PolyPhen-2 [87],
and CADD [88], which provide an interpretation of mutation impacts.

Conclusions
Our methods provide a score for prioritizing variants within a gene that is unbiased and directly 
interpretable. Restricted by the sample size of our dataset, we provide limited population-level data, 
and adding more data will greatly improve the utility of our method. However, even in its current state, 
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SORVA is useful for vetting candidate genes from NGS studies and allows researchers to calculate the 
significance of seeing a variant in a given gene or protein domain, which is an important step towards 
developing a quantitative, statistics-based approach for presenting clinical findings.

Methods

Given the number of technical controls who have a potentially damaging variant anywhere in a gene, 
we calculated the significance (α < 0.05) of seeing the observed number of singletons (variants 
observed in a single individual), doubletons (variants observed in two individuals within a single 
family) and/or tripletons in cases. Specifically, let p be the a priori probability that an individual has a 
heterozygous mutation in a gene. Then, the probability of seeing N or fewer 
singleton/doubleton/tripleton (i = 1, 2 or 3, respectively) families with a heterozygous variant, out of n 
total families of identical relatedness, where r is the fraction of the genome shared between affected 
family members is

and the significance of seeing rare damaging mutations in, for example, x number of singletons and y 
number of doubletons where individuals share ¼ of their genome is calculated as

 

given the family structures of the individuals we had sequenced.

Datasets

Genomic data and allele frequencies for calculating a priori probabilities of observing a variant within a
gene were obtained from the 1000 Genomes Project (phase 3 variant set) [11]. This variant set contains 
2504 individuals from 26 populations in Africa (AFR), East Asia (EAS), Europe (EUR), South Asia 
(SAS), and the Americas (AMR). 

Bioinformatics pipeline

Genomic annotations were assigned to each variation using SNP & Variation Suite (SVS) v8.1 [80] with
the following parameters: gene set Ensembl release 75 [89], human genome version GRCh37.p13.  
Variants were filtered for coding mutations that result in a change in the amino acid sequence (e.g. 
missense, nonsense and frameshift mutations), or mutations that reside within a splice site junction 
(intronic distance of 2 base pairs). Biallelic data was recoded based on an additive model to correct for 
MAF of variants on the X chromosome for male samples, using a script in SVS. Variants were then 
filtered for minor allele frequency thresholds of MAF < 5%, < 1%, < 0.5%, < 0.1% and < 0.05%, based
on allelic frequency within the dataset. For each filtered list of variants, we collapsed variants by gene 
and performed the following two scenarios: 1) an individual was counted as having a rare variant in a 
gene if the variant mapped to any transcript of a gene; 2) we counted the number of variants in a given 
gene per individual, i.e. if an individual carried two rare mutations within a gene, they were counted 
twice. In a separate analysis, we collapsed variants by protein domains obtained from Interpro [13] 
using the Ensembl API [82]. Finally, we repeated each analysis using a subset of the 1000 Genomes 
Project data grouped according to superpopulation. Variant collapsing methods were performed using a 
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custom Python script run by SVS, and an individual was counted as having a rare variant in a gene if 
the variant mapped to any transcript of a gene.

In addition to replicating the analysis for gene versus protein domain, for each population, and for each 
MAF threshold, we also repeated the calculations for multiple categories of predicted variant 
consequence on the protein transcript. The two categories were 1) nonsynonymous variants or those 
predicted to be more severe by Ensembl [89], briefly nonsynonymous or LOF variants, and 2) potential
LOF variants (includes splice site, protein truncation stop codon gain mutations, and frameshift indels).

Comparison of gene ranking methods

Genic mutational intolerance scores were obtained from three previous studies and included the 
Residual Variation Intolerance Score (RVIS) [5], scores from Shyr et al. 2014 (FLAGS) [7] and Z 
scores based on the ExAC dataset [73, 90]. We considered 16,302 genes that were found in all three 
datasets, as well as ours, and ranked genes based on scores obtained using each method. Spearman's 
rho test [91, 92] was used to measure the size and statistical significance of the association between the 
rankings obtained from ExAC and those obtained by RVIS, FLAGS and SORVA methods. This test 
measures the strength and direction of association between two ranked variables.

Comparison of disease gene categories 

To determine whether our results show concordance with studies identifying essential genes critical for 
the survival of a human, we compared the number of individuals with rare, deleterious mutations 
between gene lists containing essential human genes, those known to cause Mendelian diseases, and 
control genes, defined as genes not included in either category. We considered genes to be essential 
human genes if they were determined as such in at least one of the following two studies. The first 
essential human gene set is defined as 'core' essential genes that are required for fitness of cells from 
both the HAP1 and KBM7 cell lines, determined through extensive mutagenesis in near-haploid human
cells (N=1734) [93]. The second essential human gene set consists of genes essential to four screened 
cell lines, KBM7, K562, Raji and Jiyoye, determined using the CRISPR system. From the latter set, we
selected genes with an adjusted P-value CRISPR score< 0.4025 for each cell line (N=1878) [94].

To identify genes known to cause Mendelian disease, we parsed data from Online Mendelian 
Inheritance in Man (OMIM) [1] and identified phenotype descriptions with known molecular basis. We
parsed the genotype description field for the gene name and the following phrases: ' caused by 
heterozygous/homozygous mutation', 'autosomal recessive', 'autosomal dominant', 'X-linked', ' on 
chromosome X', and categorized genes as autosomal recessive (AR) (N=655), autosomal dominant 
(AD) (N=785), and X-linked (XL) (N=126) accordingly.

Calculating depletion of variants in protein domains

We performed two analyses: first, we calculated whether protein domains in a gene were depleted of 
variation compared to the rest of the gene, and second, we calculated whether there were any types of 
protein domains that were depleted of variation in general across the entire genome.

First, for each protein domain mapping within a gene, we calculated whether domains were 
depleted of variation compared to the rest of the gene. Depletion was calculated as: (number of variants
per individual in protein domain / number of variants per individual in gene × length of protein 
domain / length of transcript). A value of 1 is expected by chance, and a small value indicates protein 
domains most intolerant towards mutations. We then calculated the P-value of obtaining such a 
depletion score using the binomial cumulative density function, under the assumption that each site is 
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equally likely to be mutated. This P-value is then "PHRED-scaled" by expressing the rank in order of 
magnitude terms rather than the precise rank itself. High scaled scores indicate that a protein domain is 
depleted of rare (MAF < 0.5%) mutations compared to the rest of the gene, hence protein domains with
high scores tend to be enriched for highly mutated genes. We filtered out genes with no observed 
mutations and protein domains that span more than 50% of the length of the transcript, resulting in 
7,828 genes remaining.

 Next, we calculated whether there were any types of protein domains that were depleted of 
variation in general across the entire genome. We weighted each gene with instances of the protein 
domain equally. In other words, if a gene had multiple instances of a protein domain, we first calculated
the mean number of heterozygous rare (MAF <=0.5%) LOF variants observed (in the entire dataset of 
2,504 individuals) in either protein domain within the gene. Next, we calculated the mean and variance 
of the means for each gene.

To determine whether a protein domain was well covered by sequencing, we calculated the mean 
coverage of an instance of a protein domain in the 1000 Genomes Project sample HG00096. We 
calculated depth of coverage from phase 3 exome alignment data using GATK and custom code, which 
is available at https://github.com/alizrrao/DepthOfCoveragePerInterval.
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Additional Files

Table 2. Statistical significance of variants found to be causal in selected previous studies. 
Applying our methods to previous NGS findings, in which researchers filtered variants using various 
criteria, would have statistically validated findings in silico. See Additional file 7 for more details. †The
parameter f denotes the proportion of individuals in the 1000 Genomes Project dataset who have a rare 
variant at least as severe as the identified variants. &We used a threshold of MAF < 0.1% for studies 
with no specific MAF threshold. A MAF threshold labeled exclusion refers to studies where variants 
were not filtered for a given threshold and variants were excluded based on their presence in public 
databases such as dbSNP. *Follow-up Sanger sequencing identified mutations in 2 out of 3 exome-
negative cases. ^Follow-up sequencing of the given gene identified further mutations in multiple 
additional cases. Abbreviations: MAF, minor allele frequency; AD, autosomal dominant; AR, 
autosomal recessive; XL, X-linked; nonsyn, nonsynonymous variant; LOF, loss-of-function variant; 
Het, heterozygous; Hom, homozygous; CHet/Hom, compound heterozygous or homozygous.

Additional file 1: Number of individuals carrying a rare variant in a gene under various filtering 
thresholds. Each data point represents a single gene which contains a variant in the aggregate 
population (n=2504 individuals). Calculations were repeated using multiple variant filtering thresholds 
to determine the scenario that most differentiates between essential genes, those known to cause 
autosomal dominant, autosomal recessive or X-linked disease, and other genes. We varied filters for 
type of variant (‘LOF or missense’ or ‘LOF only’), zygosity (Het or Hom) and MAF threshold. Colored
shapes indicate the centroids of each group of genes. Abbreviations: LOF, loss-of-function; nonsyn, 
nonsynonymous or LOF; het, heterozygous; hom, homozygous; ess, essential; AD, autosomal 
dominant; AR, autosomal recessive; XL, X-linked.

Additional file 2: Mean number of individuals mutated for different types of protein domains. We
calculated the mean number of individuals (out of 2504 individuals) who carried mutations in a given 
type of protein domains, averaging per gene.

Additional file 3: Variant depletion scores for all protein domain in every gene. For each instance 
of a protein domain in a gene, we calculated variant depletion scores to identify regions within a gene 
that may be under differing degrees of evolutionary constraint.

Additional file 4: Supplementary methods. Includes derivation of equations and math used for 
calculating the significance of finding rare variants in a given gene.

Additional file 5: Screenshot of an example query run on SORVA. Users can select variant filtering 
thresholds such as population, MAF cutoff, zygosity and whether to consider only LOF variants or 
missense variants, as well. Output includes the number of individuals who carry a rare variant in the 
gene and in any protein domain that maps to the gene.

Additional file 6: List of candidate autism genes. Genes listed were used to produce Figure 5.

Additional file 7: Calculating P-values for findings from previous whole-exome or targeted 
sequencing studies. The parameter f denotes the proportion of individuals in the 1000 Genomes 
Project dataset who have a rare variant at least as severe as the identified variants. A MAF threshold 
labeled exclusion refers to studies that did not filter by a given threshold and excluded variants based 
on their presence in public databases such as dbSNP; in such cases, results were calculated using a 
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MAF threshold of 0.1%. Abbreviations: MAF, minor allele frequency; AD, autosomal dominant; AR, 
autosomal recessive; XL, X-linked; nonsyn, nonsynonymous variant; LOF, loss-of-function variant; 
Het, heterozygous; Hom, homozygous; CHet/Hom, compound heterozygous or homozygous.
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