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The human microbiome has emerged as a key aspect of human biology and has been 
implicated in many etiologies. Shotgun metagenomic sequencing is the most high-resolution 
approach available to study taxonomic composition and functional potential of the human 
microbiome, and an increasing amount of published data are available for re-use. These 
public data resources allow the possibility of rapid, inexpensive hypothesis testing for 
specific diseases and environmental niches, and meta-analysis across multiple related 
studies. However, several factors prevent the research community from taking full 
advantage of these public resources. Barriers include the substantial investments of time, 
computational resources, and specialized bioinformatic expertise required to convert them 
to analyzable form, and inconsistencies in annotation and formatting between individual 
studies. 
 
To overcome these challenges, we developed the curatedMetagenomicData data package 
(described at https://waldronlab.github.io/curatedMetagenomicData/) for distribution 
through the Bioconductor1 ExperimentHub platform (see Supplementary Methods). 
curatedMetagenomicData provides highly curated and uniformly processed human 
microbiome data including bacterial, fungal, archaeal, and viral taxonomic abundances, in 
addition to quantitative metabolic functional profiles and standardized per-participant 
metadata. Data resources are accessible with a minimum of bioinformatic knowledge, while 
integration with the R/Bioconductor environment allows full flexibility for biologists, 
clinicians, epidemiologists, or statisticians to perform novel analyses and methodological 
development. We produced these resources by (i) downloading the raw sequencing data, (ii) 
processing it through the MetaPhlAn22 and HUMAnN23 pipelines, (iii) manually curating 
sample and study information, (iv) creating a pipeline to document and represent the above 
results as integrative Bioconductor objects, and (v) working with the Bioconductor core 
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team to develop the ExperimentHub platform for efficient distribution. ExperimentHub is a 
novel platform for scalable distribution of experimental data to the R desktop. It allows 
distributers and downloaders to interact through a standard R software package, with 
documented convenience functions for accessing metadata through a Bioconductor-hosted 
SQL database, and bulk data through Amazon S3 buckets. Users of the data can browse per-
dataset documentation and metadata, then download any dataset, along with curated 
patient and specimen information, directly into R or from the command line with a single 
operation. To date (development version 1.3.7), we have packaged samples from multiple 
body sites profiled by the Human Microbiome Project4 and from 25 other large 
metagenomic studies. These total 5,716 samples, spanning 34 diseases and 28 countries. 
The full pipeline is summarized in Figure 1, and datasets are listed in Supplemental Table 1. 
 
We performed several analyses that are made much more straightforward and powerful by 
curatedMetagenomicData and the statistical, visualization, and microbial ecology tools 
available in R/Bioconductor. Using a random forests algorithm we used three different 
taxonomic data types (species abundance, genetic marker presence and abundance) and 
two functional abundance profiles (pathway abundance and coverage), to develop 
predictive models of diabetes, inflammatory bowel disease, cirrhosis, colorectal cancer, and 
obesity. Cross-validation prediction accuracy varied substantially for these different 
applications, but in all cases the five data types provided nearly identical accuracy (Figure 1 
example 1). Second, we performed unsupervised clustering of human gut microbiome 
profiles. In a large combined dataset (n=3667), we observed that microbial communities are 
strongly patterned by abundance of Prevotella copri and Bacteroides spp (Figure 1 example 
2), consistent with the analysis of Koren et al.5, but not with the three-enterotypes 
hypothesis of Arumugam et al.6. Third, we visualized the continuum of the 
Firmicutes/Bacteroidetes gradient in gut microbiomes as reported previously4, but these 
abundances can now be investigated for thousands of microbial species (Figure 1 example 
3). Finally, we ranked all taxa/pathway pairs by magnitude of correlation in samples. The 
highest-correlation pair shown demonstrates a strong relationship between Prevotella copri 
abundance and inosine 5 phosphate biosynthesis (Figure 1 example 4), suggesting functional 
differences along the gradient shown in example 2. These and other analyses (Supplemental 
Figures 1-5), would be very large undertakings using less curated databases such as IMG/M 
or EBI Metagenomics, but are straightforward, documented, and reproducible analyses 
using curatedMetagenomicData.   
 
We present the first curated integration of large-scale metagenomic data and make it 
readily usable by broad scientific communities. With overall and per-dataset 
documentation, and integration with R/Bioconductor, curatedMetagenomicData enables 
efficient hypothesis testing and development of statistical methodologies specifically for 
microbiome data. The automated pipeline developed here will enable continued expansion 
of the resource by the current team and contributing members of the community, as 
described in the supplementary Package maintenance. By allowing researchers to bring 
their own expertise to the analysis of metagenomic data without the need for extensive 
bioinformatic expertise, curatedMetagenomicData greatly expands the accessibility of 
public data for study of the human microbiome. 
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Figure 1: curatedMetagenomicData production pipeline and examples of enabled analyses. The 
high computational load pipeline (left) processes raw metagenomic sequence data to produce 
taxonomic and functional profiles, integrates these with curated sample data, then documents and 
packages these for distribution through ExperimentHub as the curatedMetagenomicData package. 
Example 1: Six different classification problems of health status were attempted using a random 
forest algorithm and cross-validation to estimate prediction accuracy. The classification problems 
range from easy (AUC > 0.9) to harder (AUC < 0.7), but five different data products (three taxonomic 
and two functional) provide nearly identical performance on each classification problem. Example 2: 
Unsupervised clustering of human gut samples shows two weakly separated clusters, one 
characterized by Bacteroides prevalence and the other characterized by Prevotella copri prevalence. 
Example 3: At the phylum level, the human gut microbiome is characterized primarily by a 
Firmicutes/Bacteroidetes gradient, with loads of other bacterial phyla, archaea, and viruses varying 
from negligible to over 50%. Example 4: Prevotella copri and inosine 5 phosphate biosynthesis are 
the most correlated species-pathway pair, suggesting functional difference along the Prevotella copri 
gradient shown in Example 2. A heatmap of top species-pathway pairs is provided as Supplemental 
Figure 4. These analyses are performed using the script provided in the vignettes/extras package 
directory. 
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Methods 
 
Available datasets 
To date (development version 1.3.7), we packaged a total of 5,716 publicly available 
shotgun metagenomic samples coming from 26 large-scale studies (see Supplemental Table 
1). All these metagenomes have been sequenced on the Illumina platform at an average 
depth of 45 M reads. 
 
Twelve of these studies were performed to assess the association of the human gut 
microbiome with different diseases. In particular, four studies were devoted to the 
characterization of the human microbiome in colorectal cancer patients: FengQ_201511 (154 
samples, 93 cases), VogtmannE_201627 (110 samples, 52 cases), YuJ_201529 (128 samples, 
75 cases), and ZellerG_201430 (199 samples, 133 cases). Heitz-BuschartA_201612 includes a 
total of 53 samples, 27 of which are associated with type 1 diabetes (T1D). 
KarlssonFH_201313 sampled on European women and includes 53 type 2 diabetes (T2D) 
patients, 49 impaired glucose tolerance individuals and 43 normal glucose tolerance 
individuals. QinJ_201220 sampled an additional T2D dataset and is composed by 170 Chinese 
T2D patients and 193 non-diabetic controls. LeChatelierE_201314 includes 123 non-obese 
and 169 obese individuals. LomanNJ_201316 includes 43 samples from patients with life-
threatening diarrhea during the 2011 outbreak of Shiga-toxigenic Escherichia coli (STEC) 
O104:H4 in Germany. NielsenHB_201417 focuses on inflammatory bowel disease (IBD) and 
comprises a total of 396 samples, 21 of which are from Crohn’s disease patients and 127 
from ulcerative colitis patients. QinN_201421 includes 123 patients affected by liver cirrhosis 
and 114 healthy controls. VincentC_201626 focused on microbiota dynamics in response to 
hospital exposures and Clostridium difficile colonization infection in a total of 229 samples. 
 
We included also four datasets that investigated gut configuration in hunter-gatherer or 
non-westernized populations. BritoIL_20168 considered agrarian Fiji islanders for a total of 
312 samples, including also some samples from the oral cavity. LiuW_201615 investigated 
110 Mongolian adults. Obregon-TitoAJ_201518 sequenced 58 samples, which include 
hunter-gatherer and traditional agriculturalist communities in Peru. RampelliS_201522 
comprises 38 samples, part of which were collected from Hadza hunter-gatherers of 
Tanzania. 
 
Additional datasets were acquired entirely from healthy subjects. AsnicarF_20177 collected 
24 samples for studying vertical microbiome transmission from mothers to infants. 
RaymondF_201623 acquired 72 samples to evaluate effects of a standard antibiotic 
treatment on the microbiome. SchirmerM_201624 investigated 471 samples to link the 
microbiome to inflammatory cytokine production capacity. VatanenT_201625 considered 
222 infants in Northern Europe from birth until age three for a total of 785 samples. 
XieH_201628 investigated 250 adult twins to evaluate genetic and environmental impacts on 
the microbiome. 
 
Some datasets not strictly related to the gut microbiome are also taken into account. 
Castro-NallarE_20159 collected 32 samples from the oral cavity to investigate the 
oropharyngeal microbiome in individuals with schizophrenia. HMP4 includes 749 samples 
collected for the Human Microbiome Project from five major body sites (i.e., gastrointestinal 
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tract, nasal cavity, oral cavity, skin, and urogenital tract). Finally, three datasets focused on 
the skin microbiome. OhJ_201419 is composed by 291 samples collected from several 
different skin sites in healthy conditions. Skin samples but from patients affected by atopic 
dermatitis and psoriasis were acquired in ChngKR_201610 (78 samples) and TettAJ_2016 (97 
samples, BioProject accession number PRJNA281366), respectively. 
 
Raw data pre-processing 
Approximately 63 TB of raw sequencing data were downloaded from public repositories. All 
samples were subject to standard pre-processing as described in the SOP of the Human 
Microbiome Project4, without however the step of human DNA removal as these publicly 
available metagenomes were deposited free of reads from human DNA contamination. 
 
MetaPhlAn2 profiling and data products 
MetaPhlAn22 (v2.0) was ran on the pre-processed reads with default parameters to 
generate microbial community profiles (from kingdom- to species-level) including Bacteria, 
Archaea, microbial Eukaryotes and Viruses. These profiles were generated from ~1 M 
unique clade-specific marker genes identified from ~17,000 reference genomes (~13,500 
bacterial and archaeal, ~3,500 viral, and ~110 eukaryotic). MetaPhlAn2 has the capability of 
characterizing organisms at a finer resolution using non-aggregated marker information (“-t 
marker_pres_table" and "-t marker_ab_table" mode). Single marker-level profiles were then 
merged in samples versus markers tables removing markers there were never detected in 
any samples. 
 
Such processing resulted in three data products: i) species-level relative abundance 
(denoted as “metaphlan_bugs_list” in the package); ii) marker presence 
(“marker_presence”); and iii) marker abundance (“marker_abundance”). Species abundance 
is expressed in percentage and sum up to hundred within each sample when selecting a 
single taxonomic level. Marker presence and marker abundance assume binary and real 
values, respectively.  
 
HUMAnN2 profiling and data products 
HUMAnN23 (v0.7.1) was run on the pre-processed reads with default parameters for 
profiling the presence/absence and abundance of microbial pathways in the community. 
The mapping was done using the full UniRef90 database (~11 GB), which enabled identifying 
also protein families without functional annotations. Three main outputs were generated: 
gene family abundance, pathway abundance, and pathway coverage. The two abundance 
output files were normalized in terms of relative abundance through the 
“humann2_renorm_table” ( “--units relab” mode). 
 
In this way, three additional data products were produced: i) normalized gene family 
abundance (denoted as “genefamilies_relab” in the package); ii) normalized pathway 
abundance (“pathabundance_relab”); and iii) pathway coverage (“pathcoverage”). Features 
assume values in the range [0, 1], where the two normalized abundance profiles sum up to 1 
when excluding species-specific contributions. 
 
Creation of curatedMetagenomicData 
To create the curatedMetagenomicData package, processed data, in the form of tab-
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delimited files, from the MetaPhlAn2 and HUMAnN2 pipelines and patient-level metadata 
are compressed into a single archive file per dataset. Then from within the R/Bioconductor 
environment a single function is used to process the compressed archive, create 
documentation, and add to curatedMetagenomicData, with internal intermediate steps as 
follows. First, patient-specific metadata is read in using the readr package (https://CRAN.R-
project.org/package=readr), filtered using the dplyr (https://CRAN.R-
project.org/package=dplyr) and magrittr (https://CRAN.R-project.org/package=magrittr) 
packages, and coerced to the appropriate format. Study-level metadata is then created by 
querying PubMed using the RISmed package (https://CRAN.R-project.org/package=RISmed), 
which collects citation information of published studies that can then be coerced to the 
appropriate format. Finally, patient-level sample data is read in (again using the readr 
package), merged, standardized, and used to create Bioconductor ExpressionSet objects34 
featuring the patient and study-level metadata. Within each study, processed data is 
separated into six data products, as highlighted above, and further separated by bodysite so 
as to allow for efficient search and data transfer. 
 
Once data from the MetaPhlAn2 and HUMAnN2 pipelines have been processed into 
Bioconductor ExpressionSet objects, documentation, package metadata, and upload to 
ExperimentHub are accomplished using developer functions available in 
curatedMetagenomicData. Documentation is automatically produced from the 
ExpressionSet objects using roxygen2 (https://CRAN.R-project.org/package=roxygen2), 
although this may change in the future. Package metadata is also produced from the 
ExpressionSet objects and used in the creation of ExperimentHub records, with further 
details concerning ExperimentHub below. Finally, a convenience function is provided to 
write a shell script to upload all data to ExperimentHub, such that the error-prone process 
of working with Amazon Web Services (AWS) Command Line Interface (CLI) is trivial. 
 
Bioconductor object classes 
curatedMetagenomicData data objects are represented using the Bioconductor 
ExpressionSet S4 class34. This class links numeric microbiome data with subject information 
and whole-experiment level data, while maintaining correct alignment between numeric 
microbiome data subject data during subset operations. The following ExpressionSet slots 
are populated in each data product: 

● experimentData: “MIAME” class object providing study-level information - Pubmed 
ID, authors, title, abstract, sequencing technology, etc. Extracted using 
experimentData(object). 

● phenoData: “AnnotatedDataFrame” class object providing specimen-level 
information - subject IDs, disease, body site, number of reads, etc. Extracted using 
pData(object) or phenoData(object). 

● assayData: matrix class object providing taxonomic or pathway abundances. 
Extracted using exprs(object). 

 
ExpressionSet objects can be analyzed for differential abundance using popular 
Bioconductor packages for RNA-seq such as limma, edgeR, and DESeq2. For MetaPhlAn2 
abundances, however, it is more convenient to convert these to phyloseq objects for 
analysis with the phyloseq Bioconductor package for phylogenetics, using the 
ExpressionSet2phyloseq function from curatedMetagenomicData. Phyloseq objects 
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additionally represent taxonomy and phylogenetic distances, and enable straightforward 
calculation of alpha and beta diversity measures, ordination plots, and other phylogenetic-
specific analyses. 
 
ExperimentHub 
curatedMetagenomicData datasets are distributed through ExperimentHub, a new 
Bioconductor software package we developed to provide programmatic access to 
experimental data files stored in the Amazon Web Services (AWS) cloud.  All data (referred 
to as “resources”) in ExperimentHub have undergone some level of curation and are 
provided as R/Bioconductor data structures instead of in raw format. Data sets are generally 
a collation of different sources combined by disease or cohort or data used in a published 
experiment or short courses. 
 
The two primary components of ExperimentHub are the data files and the metadata 
describing them. Files are stored in AWS S3 buckets and the metadata in a database on the 
ExperimentHub server. The database version is reflected in the “snapshot date” which is 
updated whenever the database is modified. Users interacting with ExperimentHub can 
select a specific snapshot date which, along with the version of R / Bioconductor, modifies 
which resources are exposed. 
 
ExperimentHub resources are accessed by invoking ExperimentHub() to create an 
'ExperimentHub' object, e.g., hub <- ExperimentHub(). This call downloads the database of 
metadata from the ExperimentHub server and caches it locally. The 'hub' of metadata can 
be searched with the query() function and subset by numerical index or 'EH' identifier. Once 
a resource is identified, the double-bracket method ('[[') will initiate the download. 
Downloaded resources are cached locally enabling fast repeated access to the data. When a 
resource is loaded in an R session, the accompanying software package is also loaded 
ensuring all documentation and helper functions are readily available. A second option for 
accessing the data is to invoke the resource name as a function, e.g., data123(). In this 
approach, the creation and searching of the 'hub' is not exposed to the user and does not 
require knowledge of ExperimentHub objects. 
 
Resources are added to ExperimentHub by creating a software package according to the 
guidelines in the ExperimentHubData vignette 
(https://bioconductor.org/packages/release/bioc/vignettes/ExperimentHubData/inst/doc/E
xperimentHubData.html). The software package includes man pages and a vignette 
documenting expected use as well as functions to create the resource metadata. If desired, 
the author may include additional functions for resource discovery and manipulation.  Data 
are stored separately in AWS and are not part of the software package; this separation 
enables lightweight installation of the package regardless of the size of the data.  
 
Accessing curatedMetagenomicData objects in R 
Within the R/Bioconductor environment there are two distinct methods for accessing data, 
depending on the needs of the end-user. In the case that a specific dataset is desired and its 
name is known, then convenience functions have been provided for all datasets and calling 
the function will retrieve the dataset from ExperimentHub. Otherwise, if no specific dataset 
is desired, it is possible to search through all datasets and return those matching a pattern 
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(e.g., all datasets from the stool bodysite). This method also features wildcard search to 
allow for powerful selection and can return either a list of references to the datasets or 
download the datasets from ExperimentHub. The later search method is of particular use in 
conducting cross validation studies using curatedMetagenomicData, as it provides for highly 
specific filtering conditions. 
 
Accessing curatedMetagenomicData from the command line 
A convenience command-line interface is provided for users who do not want to use the R 
or Bioconductor framework for the analysis. The command-line program is invoked with the 
names of one or more datasets with optional wildcard expansion, and provides flags for 
including specimen information in addition to microbiome data, and for returning relative 
abundances or counts. Datasets are written to disk as tab-separated value plain text files.  
 
Examples of enabled downstream tasks: supervised classification analysis 
We considered six different classification problems of health status to evaluate capabilities 
of disease classification from gut microbial profiling (see Example 1 of Figure 1 and 
Supplemental Figure 1). In KarlssonFH_2013, we discriminated between “healthy” and 
“T2D” subjects. We took into account 96 samples after excluding impaired glucose tolerance 
individuals. In LeChatlierE_2013, we discriminated between “lean” (BMI ≤ 25 kg m -2) and 
“obese” (BMI ≥ 30 kg m -2) subjects for a total of 265 samples. Individuals having an 
intermediate BMI (i.e., > 25 and < 30 kg m -2) were excluded. NielsenHB_2014 was 
composed by a total of 396 samples, in which the “diseased” class included inflammatory 
bowel disease (IBD) patients affected by both “Crohn's disease” and “ulcerative colitis”. In 
QinJ_2012 we considered a total of 344 samples and discriminated between “healthy” and 
“T2D” individuals. In QinN_2014, all the 237 available samples (subdivided into “healthy” 
and affected by “liver cirrhosis” subjects) were taken into account. Finally, in ZellerG_2014 
we removed the individuals affected by “large adenoma”, which resulted in a total of 184 
samples. “Cancer” patients were discriminated from “healthy” subjects, which included also 
persons affected by “small adenoma”. 
 
We compared five different data products, three taxonomic (i.e., relative abundance, 
marker presence, and marker abundance) and two functional (i.e., normalized pathway 
abundance and pathway coverage). We subset relative abundance profiles to consider only 
species-level features, while the whole set of available features were taken into account for 
the other four data products. 
 
The classification problems were attempted using the random forest algorithm through the 
R packages “randomForest” and “caret”. Original features were preprocessed (“preProc”) by 
centering (“center”), scaling (“scale”) and removal of zero-variance predictors (“zv”) 
procedures. Prediction accuracies were estimated using a 10-fold cross-validation approach 
(“method=repeatedcv” and “number=10” in the “trainControl” function). The two main 
parameters of the classifier were set in this way: i) the number of trees (“ntree”) was set to 
500; ii) the number of variables randomly sampled as candidates at each split (“mtry”) were 
estimated through grid search. Area under the curve (AUC) values (Figure 1) were computed 
through the “auc” function in the R package “pROC”. The scatterplot matrix (Figure 1) was 
generated through the R package “gclus”, which provided possibility to i) rearrange the 
variables so that those with higher correlations are closer to the principal diagonal and ii) 
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color the cells to reflect the value of the correlations. The “pROC” package was also adopted 
to plot the receiver operating characteristic (ROC) curves (Supplemental Figure 1) using the 
“roc” function. 
 
Examples of enabled downstream tasks: unsupervised clustering analysis 
To assess the presence of discrete clustering in the data (see Example 2 of Figure 1 and 
Supplemental Figure 3), we merged taxonomic abundance data from all gut samples 
(excluding newborns), on which we calculated three distance measures using the R package 
“phyloseq”: the Bray-Curtis distance metric, the Jenson-Shannon divergence (JSD), and the 
square root of the Jenson-Shannon divergence (root-JSD). We then performed clustering 
against each of the three distance measures by partitioning around medoids using the R 
package “cluster”. We determined the optimal number of clusters based on the prediction 
strength (PS) using the R package “fpc”, and silhouette index (SI) using the R package 
“cluster”. We used a threshold of ≥ 0.90 for PS, and ≥ 0.75 for SI, to indicate strong 
clustering5. We additionally calculated the Calinski-Harabasz (CH) statistic for comparison to 
PS and SI, using the R package “fpc”.  
 
Package maintenance 
We set up the curatedMetagenomicData to be scalable to the growing size of metagenomic 
datasets being produced and we plan to expand to over 10K total samples by the end of 
2017, with dedicated personnel for the addition of processed metagenomic datasets. The 
curatedMetagenomicData pipeline directly uses output of the publicly available MetaPhlAn2 
and HUMAnN2 packages, in a documented subdirectory structure for data “handoff” to our 
pipeline for incremental dataset addition to curatedMetagenomicData in ExperimentHub 
(https://github.com/waldronlab/curatedMetagenomicData/wiki). 
Authors welcome the addition of new datasets provided they can be or already have been 
run through the MetaPhlAn2 and HUMAnN2 pipelines. Please contact the maintainer if you 
have a shotgun metagenomic dataset that would be of interest to the Bioconductor 
community. 
 
Availability and support 
The curatedMetagenomicData package can be installed with a single command from an R 
installation with the current Bioconductor release or development version installed 
(BiocInstaller::biocLite("curatedMetagenomicData")). The package is described at 
https://waldronlab.github.io/curatedMetagenomicData/, including information on 
installation, datasets to be added in the near future, and example analyses. Requests for 
help should be raised at https://support.bioconductor.org with the tag 
curatedMetagenomicData. Bugs in code or curation should be reported using the issue 
tracker at https://github.com/waldronlab/curatedMetagenomicData/issues. Instructions for 
adding datasets or re-using parts or all of the pipeline for other purposes are provided on 
the wiki at https://github.com/waldronlab/curatedMetagenomicData/wiki. 
 
Reproducible analysis 
All analyses presented in this manuscript are reproducible by the script PaperFigures.Rmd at 
https://github.com/waldronlab/curatedMetagenomicData/tree/master/vignettes/extras. 
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Licensing 
The curatedMetagenomicData package is licensed under the permissive Artistic 2.0 license. 
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