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ABSTRACT

Brain decoding techniques are particularly efficient at deciphering weak and distributed neural patterns. Brain decoding has
primarily been used in cognitive neurosciences to predict differences between pairs of stimuli (e.g. faces vs. houses), but how
distinct brain/perceptual states can be decoded following the presentation of continuous sensory stimuli is unclear. Here, we
developed a novel approach to decode brain activity recorded with magnetoencephalography while participants discriminated
the coherence of two intermingled clouds of dots. Seven levels of visual motion coherence were tested and participants
reported the colour of the most coherent cloud. The decoding approach was formulated as a ranked-classification problem,
in which the model was evaluated by its capacity to predict the order of a pair of trials, each tested with two distinct visual
motion coherence levels. Two brain states were decoded as a function of the degree of visual motion coherence. Importantly,
perceptual motion coherence thresholds were found to match the decoder boundaries in a fully data-driven way. The algorithm
revealed the earliest categorization in hMT+, followed by V1/V2, IPS, and vlPFC.

Introduction
In natural environments, coherent motion is a vital sensory cue that helps the brain individuate objects in the world. Seminal
neurophysiological work has described neurons in the middle temporal (MT) lobe of monkeys that were selective to the
coherence1 and the direction2 of visual motion. During a perceptual classification task, direction-selectivity can be decoded
from the activity of neural populations in MT3, 4. As visual motion processing relies on neural population codes, it is amenable
to non-invasive functional human brain imaging such as fMRI or magnetoencephalography (MEG). Supervised learning
techniques such as Multivariate Pattern Analysis (MVPA) are increasingly successful at characterizing where and when the
neural analysis of stimuli such as visual orientation, motion direction or object classification is being realized5–13.

In one of the earliest fMRI studies using MVPA, the direction of motion was successfully decoded from hMT+ (human
analog of MT) activity14) but also, and surprisingly, from visual cortices V1, V2, V3 and V415. The successful decoding of
visual motion in V1, V3 and hMT+ has since been reported several times5, 15–18. Visual motion decoding in lower visual areas
has been functionally interpreted as an indication of feature-based attention when required by the task15 and as an effect of
top-down modulation of early visual areas for conscious perception16. However, whether brain decoding using MVPA captures
the selectivity of neural populations has been a subject of debate on the interpretational weigh given to decoding11, 19–21.
Relevant to the current study, recent fMRI work has suggested that the sources of decoding in early visual areas may reflect the
perceptual priors and biases of motion direction computation22.

To disambiguate the functional role of different brain regions in motion selectivity, characterizing the temporal unfolding
of pattern classification within and across visual regions could be helpful. Here, we thus exploited the temporal sensitivity
of MEG to find the latency at which sufficient information had been integrated to reach a stable classification boundary23–25.
36 participants were recorded with MEG while performing a visual motion coherence discrimination task in which two
intermingled populations of visual dots (red and green random-dot-kinematograms) moved randomly on the screen until one
of them moved more coherently than the other26 (Fig. 1-A). Participants were asked to report which of the two populations
became most coherent over time. Seven motion coherence levels were tested and a novel multivariate decoding approach
combining ridge regression and a ranking metric was developed. Contrary to classical decoding approaches based on binary
classifiers such as support vector machines (SVM), a single decoder was estimated for all coherence levels, allowing robust
parameter estimation despite high dimensional data. The ranking metric allowed taking into account the fact that visual motion
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coherence was an ordered variable27, 28. This novel decoder was applied to brain activity recorded at the sensor level and to
cortically-constrained source estimates. Using this decoding technique, we report the categorization of two separate brain states
as a function of the degree of visual motion coherence. The categorization boundary matched participants’ behavioral outcomes.
Our results suggest that incorporating such decoding methods may be suitable to address questions relevant to predictive coding
and perceptual decision-making.

Methods
Participants
Thirty-six participants took part in the study (16 females, mean 22.1 +/- 2.2 y.o.). All were right-handed, had normal hearing
and normal or corrected-to-normal vision. Prior to the experiment, all participants gave a written informed consent.All methods
were carried out in accordance with relevant guidelines and regulations and by a named NeuroSpin (Gif-sur-Yvette, France).The
study was conducted in agreement with the Declaration of Helsinki (2008) and was approved by the Ethics Committee on
Human Research at Neurospin (Gif-sur-Yvette, France).

Experimental design
The MEG session consisted of twelve experimental blocks alternating between rest and task 26. Here, we solely focused on
the main experimental task blocks in which participants’ performance on a visual motion coherence task was being assessed.
During the task, one trial started with the presentation of a fixation cross followed by two intermixed clouds of dots or Random
Dot Kinematograms (RDKs) (red and green) whose motion was fully incoherent. After a variable interval of 0.3 to 0.6 s, one of
the two RDKs became more coherent than the other (Fig. 1-A). Participant had to determine by button press which of the red or
green RDKs became more coherent. Seven possible levels of visual motion coherence were tested (15%, 25%, 35%, 45%, 55%,
75%, or 95%), randomly assigned to a colour and to a direction. Each participant was tested with 28 trials per visual coherence
level.

Visual stimuli
The red and green RDKs were individually calibrated to isoluminance. To prevent local tracking of dots, a white fixation cross
was located at the center of a 4° gray disk mask. RDKs were presented within an annulus of 4°-15° of visual angle. Dots had a
radius of 0.2°. The flow of RDKs was 16.7 dots per deg2 × sec with a speed of 10°/s. During the first 0.3 to 0.6 s of a given trial,
both RDKs were incoherent (0% of coherent motion). The duration of the incoherent phase was pseudo-randomized across
each trial in order to increase the difficulty of the task by preventing participants’ expectation of the temporal onset coherent
motion. After the incoherent phase, one RDK became more coherent than the other for one second. The direction of coherent
dots was comprised within an angle of 45°-90° around the azimuth. 50% of the trials were upward coherent motion and the
remaining 50% of the trials were downward coherent motion. At each frame, 5% of all dots were randomly reassigned to new
positions and incoherent dots to a new direction of motion. Dots going into collision in the next frame were also reassigned a
new direction of motion.

Psychophysical analysis
The performance of each individual was averaged as a function of the seven degree of visual motion coherence of the stimuli,
irrespective of colour or direction of motion. The coherence discrimination threshold was set to 75% of correctness for each
individual’s data, as typically used in a two-alternative forced choice (2-AFC) paradigm , forcing participants to adopt the same
decision criterion for all stimuli29. Here, the 75% detection threshold corresponds to chance level. They were then separately
fitted to psychometric functions with the maximum-likelihood methodology (Psignifit30) which provided valid estimates of
perceptual thresholds on a per individual basis (more details in 26).

MEG pre-processing and source reconstruction
All data pre-processing and source-imaging were done according to well accepted MEG guidelines31. Signal-Space-Separation
(SSS) was performed on raw data using Maxfilter (Elekta-Neuromag32) to compensate for external magnetic interferences.
MEG data were band-pass filtered (2 to 45 Hz), down-sampled to 250 Hz and epoched from -100 ms to 1000 ms relative to the
onset of RDK coherence. Trials that were contaminated by artifacts were rejected (e.g. peak-to-peak amplitude difference
above 150 microvolts in EOG data) leaving 89% of trials considered to have an appropriate signal-to-noise ratio. The cortically
constrained source reconstruction was done using the dSPM method following the guidelines of the MNE software33. The
entire pre-processing was done using MNE34.

MEG decoding
Decoding generally consists in predicting a target variable y from one pattern of brain activity x ∈ Rp among all possible
patterns or brain states. When the target can take a finite number K of possible values, like a multi-class classification problem,
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one has that y ∈ {1, . . . ,K}. Here, when x were MEG signals, p was the number of channels and time points used for the
prediction. When x was the amplitude of cortical sources, p corresponded to the number of source locations. The first goal
of this study was to estimate how well each pair of visual motion coherence level could be discriminated against each other.
Considering that multi-class classification approaches do not take into account the ordinal nature of the target to predict, indeed
predicting 1 instead of 7 is as bad as predicting 1 instead of 2 although the mistake is obviously smaller in the second case, we
instead built a decoder which could yield high pattern classification accuracy for distinguishable coherence levels, and low
pattern classification accuracy for nearby levels of visual motion coherence which were perceptually hard to differentiate (cf.
next two sections on method).
The second goal of the study was to find whether separate categorical brain states (two or more) emerged following the
presentation of the stimuli as a function of the seven levels of visual motion coherence. Specifically, the task of participants
consisted in deciding whether the red or the green cloud of dots was most coherent as a function of coherence level. One
working hypothesis was thus that at least one boundary delimiting a possible threshold between the neural activations induced
by low vs. high coherent motion would be found during decoding.

To address this question, we opted out of a regression model estimated jointly for all levels of coherence, and combined it
with a ranking metric adapted to discrete and ordered targets. Although an alternative approach could have consisted in testing
the incoherent portion of the stimuli against each level of visual coherence, this would have lead to a strongly imbalanced
training dataset (i.e. 196 incoherence trials for 28 trials per level of coherence) which is heavily problematic for MVPA
classification approaches35. Specifically, with this formulation of the decoding, an inaccurate model which always predicts
incoherence instead of coherence would have 85% of accuracy due to the imbalanced dataset. The ranking technique proposed
here does not suffer from such class imbalance considering that a single regression model was learnt for all coherence levels,
and the ranking metric employed yielded 50% accuracy levels in spite of the low number of trials.

We now describe in detail the regression model employed.

Regression model
Due to the limited number of data points available for learning, and the high dimensional nature of the neuroimaging data, we
used a linear model following the standard approach in MVPA studies5, 11, 23. The target values y ∈ Rn, here provided for the n
data points available for statistical inference, were derived from a linear combination of data, y = Xω , where ω ∈ Rp was a
weight vector and X was a n-by-p data matrix. The value n here corresponded to the number of stimuli presentations, a.k.a.
single trials or epochs. For each ith observation, the target yi ∈ {1, . . . ,K} could take K different values: in this study, K = 7
corresponded to the seven levels of visual motion coherence defining the number of classes. Again, a multi-class classification
approach could have been adopted, yet this strategy would have ignored that target values were ordered. For instance, decoding
the 5th instead of the 2nd level of motion coherence is worse than predicting the 3rd level of motion coherence instead of the
2nd one. This is an information that a multi-class linear SVM model could not exploit. An SVM would also estimate p×K
parameters instead of p which would naturally increase the risk of overfitting and reduced the interpretability of the results.
Instead, we chose a ridge regression method, and evaluated the predictive performance with a metric tailored for ordinal
problems. The ridge regression model was defined as the solution to the convex optimization problem:

ω̂ = argmin
ω∈Rp

‖y−Xω‖2
2 +λ‖ω‖2

2 (1)

The ridge regression model is a popular approach whose practical success is due to fast estimation, robustness to noise and
limited sensitivity to rough tuning of the parameter λ . Indeed results obtained by ridge regression are known to be far less
sensitive to the choice of λ parameter compared to sparse estimators such as Lasso. In our experiments, λ was the same for all
subjects36.

Decoding was performed on a per individual basis using all epochs. The 204 gradiometers and different time windows were
tested: for example, for the time window ranging from 100 to 600 ms, the dimensions of the data were the number of samples
n = 196 (at most, 28 trials x 7 coherence levels) depending on the number of dropped epochs times the number of features
p = 204×126 ∼ 2.5×104 where the temporal window ranging from 100 ms to 600 ms contained up to 126 samples. The
performance of the method was evaluated with a 10-fold stratified cross-validation which preserved the percentage of samples
for each class or motion coherence level in each fold.

Decoding was also performed on source-reconstructed data in bilateral regions of interest (ROI) previously reported as being
implicated in the task26. In source-space, the dimensions of the data were n= 196 at most and, for instance, p= 126×117∼ 106

depending on the size of the ROI (here, 117 dipoles in the ROI).
Following estimation of the ridge regression model, a ranking metric was then employed to quantify the model performance

while taking into account that the targets have a natural order.
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Assessing decoding performance with pairwise ranking metric
Although ridge regression preserves the order of the target variables, it does not provide a relevant metric for the evaluation of
the success rate of the decoder with an ordered set of categories. When using a linear regression model, the mean square error
(MSE) is the natural performance metric. Yet, in high dimensional settings with a limited number of samples (n� p) as we are
dealing with here, MSE is a poor metric. In order to reduce the variance of the estimated coefficients, high values of λ were
used causing a strong amplitude bias on the coefficients and a poor performance when measured using MSE. Performance
evaluated with MSE was also affected in the presence of a bimodal state as illustrated in Fig. 1-B. Note that this strong bias
problem is what motivates certain authors to use a Pearson correlation as measure of performance rather than the MSE, although
MSE is natural when using ridge regression37.

To leverage the ordinal nature of the target values y, we quantified the performance in terms of ranking, where we tested the
ability of the decoder to properly order pairs of samples, trials, based on the target to predict27, 28. The ranking metric consisted
in comparing the real values of y and the predicted ones. Let us consider two trials from the validation dataset with (yi 6= y j)
and where (yi,y j) denote their associated labels.

Let P = {(i, j) s.t. yi 6= y j} be the set of pairs with different labels. One quantifies the prediction accuracy Acc with the
percentage of correct orderings for pairs of trials:

Acc = #{(i, j) ∈P s.t. (yi− y j)(y
pred
i − ypred

j )> 0} (2)

For each pair of trials, there were two possible options and the chance level was therefore 50%. This quantity is related to
Kendall’s rank correlation metric38 which can be seen as a non-parametric correlation measure. To go beyond average accuracy,
a key insight of this work was to inspect for which pair of trials the decoder made a mistake. For this, we thus defined a 7-by-7
similarity matrix M:

Myi,y j =
#{(i, j) ∈P s.t. (yi− y j)(y

pred
i − ypred

j )> 0}
#{(m,n) ∈P,(ym,yn) = (yi,y j)}

(3)

Each Mi, j was a value between 0 and 1 that told us how well we could distinguish the level i from the level j, 1 being the best;
inversely, if the level i was similar or close to the level j, this decoding value would be close to chance level 0.5. The matrix was
symmetric since comparing the levels i and j or j and i provides the same score. Such matrices, that can be seen as confusion
matrices adapted for our pairwise ranking metric, are presented in Fig. 1-D.

Criteria for decoding categorization
Template matrices were defined for the discrete values of theoretically possible categorization into two brain states driven
by the motion coherence levels, namely: 15%, 25%, 35%, 45%, 55%, 75%, or 95%. Each matrix had an on/off pattern at a
given threshold (e.g. 55%) with values of 0.5 (off) or 0.65 (on). An example is provided in the black matrices of Fig. 1-E. The
correlation between the empirical matrices (fully based on MEG data) and all the possible template matrices as defined above,
thus provided the selection criterion to decode a categorization pattern at a specific threshold. Specifically, for each empirical
similarity matrix, the template matrix yielding the highest correlation score was considered a good predictor of the participants’
motion coherence thresholds eliciting the choice boundary from MEG data indicated as a dashed vertical line in Fig. 1-D.

Results
Modeling of simulated data as proof of concept
First, we modeled typical behavioral profiles observed during a perceptual discrimination task by using simulated data (e.g.
ranging from 7% to 92% of coherence). The modeling allowed validating the use of an ordinal model which fitted better the data
than a linear model (Fig. 1-B, left panel). As detailed above, the simulated trials were decoded using cross-validation by fitting
a ridge regression to the training data and evaluating the performance of the model on all possible pairwise combination of test
trials. The similarity matrix (Fig. 1-B, right panel), which represents the predictive power in distinguishing two coherence
levels, was evaluated with a 10-fold stratified cross-validation method. Each entry in the similarity matrix shows how similar
each coherence level is to another one; alternatively, each entry can also be interpreted as how well one coherence level can
be distinguished from another using a linear multivariate statistical model. All pairwise comparisons given in the similarity
matrix built an anti-diagonal pattern: the lighter blocks in the similarity matrix were coherence levels for which no differences
in brain responses could be captured yielding a decoding score at chance level; conversely, the darker blocks (red) captured
high decoding accuracy scores for which brain responses highly differed between two coherent motion e.g., brain responses to
7% coherent motion were highly distinguishable from those obtained during the presentation of 92% coherent motion. When
comparing the neighboring levels 64% and 78% in (Fig. 1-B, right panel), the high accuracy of decoding demonstrated a
difference in brain activity patterns, reflecting a discontinuity in the activation profiles despite a progressive change in the
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visual motion coherence levels. The observed discontinuity or edge located between 50% and 64% of visual motion coherence
revealed the presence of a categorical boundary.

Spatial selectivity of decoding categorization
The appropriate time window for best decoding performance was established using time-resolved cross-validation techniques24.
The overall best decoding performance was obtained for latencies ranging from 100 ms to 600 ms post-motion coherence onset
as illustrated in (Fig. 1-C). The decoder was applied to MEG data in this time window on a per individual basis. Similarity
matrices scored how well pairs of visual motion coherence could be distinguished, and then ordered, on the basis of brain
activity. Fig. 1-D reports the similarity matrices computed on grand-average MEG data (n = 36 participants). Similarity matrices
obtained for the MEG sensors (gradiometers) are reported in the top panel. Similarity matrices obtained for source-reconstructed
estimates in the ROI hMT+ and in a control region “frontal pole” are provided in the middle and bottom panels, respectively.

Figure 1. Categorization Decoding. a) One experimental trial in which participants discriminated which of the red or green
cloud of moving dots was most coherent. b) Left: simulated data (gray) were best modeled by ordinal (red) than by a linear
(red) fit. Right: similarity matrix providing a score of the decoding performance for each pairwise comparisons. c) Significant
time-resolved decoding of visual motion coherence levels were found 100 to 600 ms (green) post-stimulus onset. d)
Grand-average (n=36) similarity matrices in sensors (top), hMT+ (middle) and frontal-pole (bottom) for the selected time
window. Distribution of behavioral perceptual thresholds (gray histogram) and the mean (dashed line). e) Correlation scores
between each template and similarity matrix (black histograms) and likeliest boundary decoded from MEG data (dashed red
line).

The similarity matrices obtained in sensor and hMT+ data showed two distinct categories as an anti-block-diagonal patterns:
two light blocks of decoding score at chance level (~50%) for close coherence levels (low levels: 15%-45% against themselves,
high levels: 55%-95% against themselves), and two dark blocks of decoding score nearing ~65% for coherence levels that were
apart, namely 15%-45% against 55%-95%. These results conform with the notion of perceptual categories, namely: visual
motion coherence levels 45% and 55% were close from the point of view of the coherence level in visual stimulation, but
distant in perceptual space with the former most likely classified incoherent and the latter as coherent. The two brain states thus
defined by the similarity matrix are compatible with categorical classification of the stimuli in this task. Specifically, visual
motion coherence stimuli could either elicit a pattern consistent with not detecting the coherent signal in the display and not
discriminating within the ensemble of stimuli whose coherence could not be detected (below the boundary) and detecting the
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coherent signal in the display but not discriminating within the ensemble of stimuli whose coherence could be detected (above
the boundary).

To further investigate the link between brain activity at the single trial level and behavioral outcomes, we systematically
compared the boundary delimited by the decoding approach with the perceptual threshold obtained from psychometric fits.
The mean perceptual threshold was obtained in the task from the previous study26 and shown here in the histogram over
the 36 subjects (Fig. 1-D, bottom panel). The emerging categorical boundary at 45-55% of visual motion coherence in both
sensors and hMT+ (but not frontal pole) matched well the mean perceptual threshold observed behaviorally (black dotted line;
Fig. 1-D).

To establish a quantitative criterion for this observation, template matrices were constructed to model each theoretically
possible perceptual threshold. Each template matrix was then correlated with each of the decoding similarity matrices obtained
from empirical measurements (Fig. 1-E). The aim was to find the peak of the correlation between the template threshold and the
emerging boundary. This procedure, which is similar in spirit to the Representational Similarity Analysis (RSA) approach9, 39,
insured that the decoding similarity matrix was not forced to look like any specific template matrix. The quantitative metric
confirmed our qualitative assessment (Fig. 1-D). Specifically, the peaks of the correlations were found for template matrices
corresponding to a mean perceptual threshold of 55% in both MEG sensors and in source-reconstructed hMT+; the control ROI
showed no selectivity.

Temporal accumulation selectivity of categorization decoding
The spatiotemporal sensitivity of source-reconstructed MEG data was exploited to test at which latency sufficient information
had been integrated to reach a reliable and stable classification pattern. To explicit the choice of the cumulative time window
range, Fig. 2-A shows the grand average time course in response to the seven motion coherence levels over the 36 subjects in
hMT+. As can be seen (Fig. 2-A) and as previously reported26, main differences were located at these latencies although no
clear categorization were visible in the time response. For this, scoring was established in a temporally cumulative manner
from 100 ms post-motion coherence onset on by adding the consecutive 50 ms time window to each previous one (Fig. 2-B)
until 450 ms. The decoder was applied to sensors and to source estimates in the regions of interest as well as additional cortical
sources known to be involved in the task26, namely: hMT+ and the control region frontal pole but also the medial primary and
secondary visual cortices (V1/V2), the intraparietal sulcus (IPS) and ventrolateral prefrontal region (VLPFC) (Fig. 2, bottom
left). In Fig. 2-B, in which all similarity matrices are reported, two brain categories of coherence levels seemed to emerge.
As one of the focuses was to link the decoding to the behavioral data, the black dotted lines illustrated the known average
perceptual threshold to find how well it fitted with the boundary found in the similarity matrices.

Using reverse-inference, we selected the template matrix which corresponded to the known mean perceptual thresholds
of the 36 participants. We then computed the correlations in specific cortical regions to capture an anatomic and temporal
discrimination. The correlation scores between the perceptual templates and the similarity matrices in the different cortical
regions are provided in Fig. 2-C. The stability of the similarity matrices (Fig. 2-B) and the plateau of correlations between the
template and the similarity matrices (Fig. 2-C) were first reached in hMT+ followed by V1/V2 in occipital regions, IPS and
VLPFC. The latency of optimal decoding was consistent with seminal neurophysiology work suggesting functional selectivity
of motion computation in hMT+ which may also be indicative of behavioral choice boundary3, 4, 16, 40. Perceptual boundaries
for motion coherence discrimination could also be decoded later on in regions implicated in the task (V1/V2, IPS and much
later in VlPFC) but not in the control region. These observations suggest that the decoder was anatomically and temporally
selective. Specifically, the sequence of decoding latencies suggests that the outcome of categorization computed in hMT+ may
be forwarded downstream to V1/V2 – as a possible general mechanism contributing to plasticity - as well as VLPFC, as a likely
consequence of perceptual decisions required by the task. Decision-related aspect was likely not encoded in low-level sensory
areas, however the categorization pattern was still visible in hMT+ when appearing in VLPFC due to accumulation of evidence
over the whole time range.

Discussion
In this study, we showed that brain decoding could classify brain states as a function of visual motion coherence during a
discrimination task. The categorical boundary partitioning two brain states was consistent with participants’ discrimination
performance as indexed by their perceptual thresholds. Specifically, while the decoder was at chance level in discriminating
between two motion coherence levels within the same perceptual category (within perceived or within non-perceived levels
of visual motion coherence), the decoder performed well in discriminating brain activity in response to motion coherence
levels across different categories (across perceived and non-perceived levels of visual motion coherence). We discuss below the
implications and limitations of our findings.

In the visual motion coherence discrimination task used here, the intermixed clouds of dots (or RDKs) were identifiable by
two distinct parameters: their color (red or green) and the increased degree of motion coherence in one cloud as compared
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to the other. The task required participants to identify the colour of the most coherent cloud of dots. Although the employed
stimuli were quite typical for visual motion tasks, a couple requirements set this task apart. First, the selective feature in
the display was the coherence of motion irrespective of the direction of motion. This differed from feature-based attention
tasks in which the relevant feature is the direction of coherent motion41, 42. Second, the task required the discrimination of
two clouds of dots simultaneously presented and spatially intermingled; this was distinct from a previous decoding study in
which the two populations were spatially segregated16. Nevertheless, and consistent with prior decoding work on visual motion
processing5, 15–18 the earliest robust decoding of motion coherence was found in hMT+, as well as V1/V2. Third, the color of
the most coherent cloud of dots was randomized on every trial; as such, the color feature was orthogonal to the task requirement
although participants’ effectively classified their responses as ”red” or ”green”. Accordingly, the successful decoding for any
given pair of RDK coherence levels reported here (cf. cells in the decoding matrix being > 50%) captured information about
motion coherence per se, not its color nor its direction.

The behavioral discrimination of continuous sensory information, such as coherent motion, requires the setting up of an
internal criterion classifying sensory information into two or more categories3, 40. Seminal work has shown that visual motion
coherence at which neural activity reaches 50% of its maximum value can be estimated by means of a neurometric threshold2. A
similar approach has been used on MEG source estimates in this task, revealing the extent to which the neurometric thresholds
computed in the local brain area hMT+ could effectively reflect participants’ discrimination of visual motion coherence
26. While perceptual thresholds can be derived using several analytical steps and fitting procedures, we have shown that a
multivariate decoder can directly capture the partitioning of brain activity as a function of participants’ performance by using a
dedicated ranking metric associated with a template matrix correlated with the errors of the decoder when evaluated on left out
test data. Our approach also showed that the partitioning of brain states fitting participants’ perceptual thresholds could be
found at different timings and at different cortical locations.

Additionally, we found that the more sensory evidence accumulated over time, the more stable and robust the similarity
matrices became both at the scalp level and in brain regions. The first stable decoding pattern emerged in hMT+ (~250 ms),
consistent with the known likelihood estimations and evidence accumulation of visual motion in this region and at this latency2, 3.
By 300 ms, a comparable decoding pattern was found in V1/V2, followed by IPS and by 450 ms by VLPFC. The early decoding
latencies found in posterior regions and the later latencies found in frontal regions were overall consistent with decoding
accuracies reported in perceptual decoding studies. Visual awareness can typically be decoded early in occipital regions and late
in frontal areas20, 43–46 and while the late decoding component is related to perceptual awareness, it can alsor reflect expectation,
task requirements, and attentional selection20, 43.

The observed spatiotemporal sequencing and stabilization of peak decoding in regions implicated in the task (but not others,
i.e. control area frontal pole) suggest that motion selectivity and choice probability computed in hMT+ could be passed on
downstream to early visual cortices as well as to decision-related areas (IPS). Recent models of visual motion processing4 and
recent fMRI data22 have suggested that perceptual priors in early visual cortices may be shaped on the basis of higher-levels
computations. Both seminal and recent findings have suggested that attention and feature-selectivity may be crucial in the
modulation of early sensory cortices5, 16, 42. Our MEG decoding results add to this literature by suggesting that selectivity
to higher-order features computed in hMT+ such as motion coherence irrespective of direction or color may feedback to
early visual cortices. These and other17, 18 results also suggest that the classification boundaries computed in hMT+ may have
lasting effects for the analysis of visual motion. In particular, and consistent with previous literature5, 15–18, the latency of the
categorization pattern across brain regions suggest the possibility that information relevant to perceptual boundaries from hMT+
feedbacks to V1/V2 consistent with predictive coding models of visual processing4, 47 and learning theories48–51.

Nevertheless, it is noteworthy that in the context of perceptual categorization tasks such as the one employed here,
the dissociation between the perceptual and the decisional components are difficult to disentangle20, 52, 53. Several studies
have discussed the dissociation between perceptual processing and decision-making20, 21, 52, 54–59. For instance, a temporal
dissociation between early sensory processing in occipital areas and decision-related processing in parieto-frontal regions have
been shown to be increasingly pronounced over time20. The perceptual thresholds used here to model the best fitting category
do not readily dissociate between these two possibilities. Although the present study suggests that multivariate decoding
can successfully retrieve perceptual thresholds, it is important to remain skeptical about the link between the information
allowing decoding neural activity and its relationship to the computations effectively used to perform the task. For instance,
brain activity categorized early on in hMT+ may contain top-down information feedback from decisional brain regions that
may have helped the decoded categorization boundaries. However, three main aspects suggest that the decisional component
may not be implicated here: first, the decision was made on the orthogonal feature color which was not used in the classifier
as reported above. Second, the decoding in parietal cortices occurred much later than the stabilization observed in hMT+.
Although response-locked analyses52 could be used to disentangle the perceptual and decisional component, one limitation of
the current decoder is that it is sensitive to any statistical differences in amplitude or in latency. Hence, analyzing the same time
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window sorted on the basis of the stimulus onset or of the response would not allow to draw stronger conclusions regarding
the (perceptual or decisional) nature of the cortical representations enabling the categorization of brain states. Third, recent
evidence suggests that the inactivation of parietal regions are not decisive for motion categorization in monkeys60.

In sum, we presented a new MEG decoding technique that can capture the perceived categorization of continuous sensory
information. Our results showed a sustainable pattern over time that correlated with participants’ perceptional threshold and
which successively implicated hMT+, V1/V2, IPS and VLPFC, consistent with general models of decision-making in motion
categorization tasks61. Future work should aim at disentangling the perceptual analysis and the decisional components of
perceptual decision-making tasks.
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Figure 2. Temporal-accumulation decoding. A) Grand average hMT+ time courses in response to the seven motion coherence
levels. B) Grand average similarity matrices (n = 36) in sensors, MT, V1/V2, IPS, VLPFC and frontal pole (top to bottom rows,
respectively). Incremental decoding of the similarity matrices within the selected time window could be seen. Colored frames
indicate the earliest decoding pattern capturing the perceptual thresholds (dashed lines) e.g. 250 ms for MT. C) Each similarity
matrix was correlated with the template matrix optimally capturing perceptual thresholds. Correlations were cumulatively
performed over the full time course of brain responses.
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