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Abstract: Correlated evolution among traits can happen due to genetic constraints, on-10

togeny, and selection and have an important impact on the trajectory of phenotypic evolution.11

Thus, shifts in the pattern of evolutionary integration may allow the exploration of novel regions12

of the morphospace by lineages. Here we use phylogenetic trees to study the pace of evolution of13

several traits and their pattern of evolutionary correlation across clades and over time. We use14

regimes mapped to the branches of the phylogeny to test for shifts in evolutionary integration.15

Our approach incorporates the uncertainty related to phylogeny, ancestral state estimates and16

parameter estimates to produce posterior distributions using Bayesian Markov chain Monte17

Carlo. We implemented the use of summary statistics to test for regime shifts based on a series18

of attributes of the model that can be directly relevant to biological hypotheses. In addition,19

we extend Felsenstein’s pruning algorithm to the case of multivariate Brownian motion models20

with multiple rate regimes. We performed extensive simulations to explore the performance of21

the method under a series of scenarios. Finally, we provide two test cases; the evolution of a22

novel buccal morphology in fishes of the family Centrarchidae and a shift in the trajectory of23

evolution of traits during the radiation of anole lizards to the Caribbean islands.24
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Correlated evolution among traits, known as evolutionary integration, is ubiquitous across28

the tree of life and can have an important impact on the trajectory of phenotypic evolution29

(Olson and Miller, 1958; Klingenberg and Marugán-Lobón, 2013; Armbruster et al., 2014; Klin-30

genberg, 2014; Goswami et al., 2014, 2015; Melo et al., 2016). Genetic constraints, ontogeny,31

and selection have pivotal roles in the development and maintenance of morphological integra-32

tion over time (Arnold, 1992; Arnold et al., 2001; Hansen and Houle, 2004; Goswami et al., 2015;33

Melo et al., 2016). When the additive genetic covariance between traits is strong, then evolu-34

tionary correlation is likely due to genetic factors. In contrast, traits might not show strong35

genetic covariance and still be evolutionarily integrated due to correlated selection, which can36

be a result of distinct factors, such as anatomical interactions during growth or coordinated37

function (Armbruster and Schwaegerle, 1996; Armbruster et al., 2014). For instance, corre-38

lated evolution can be favored by selection to maintain a cohesive pattern of variation among39

traits with a shared function, but evolution can be hindered if the genetic covariance is not40

aligned with the selection gradient (Lande, 1979; Schluter, 1996; Villmoare, 2012; Goswami41

et al., 2014). Alternatively, when evolutionary correlation is mainly a result of correlated selec-42

tion then the morphospace occupied by lineages can be restricted by the strength and direction43

of the selection gradient (Felsenstein, 1988; Armbruster and Schwaegerle, 1996). Shifts in the44

pattern of evolutionary integration among traits over macroevolutionary scales, due to changes45

in the genetic architecture or selection gradient, may play a fundamental role in the exploration46

of novel regions of the morphospace (Young and Hallgŕımsson, 2005; Goswami, 2006; Revell47

and Collar, 2009; Monteiro and Nogueira, 2010; Hallgŕımsson et al., 2012; Claverie and Patek,48

2013).49

Macroevolutionary transitions in morphospace evolution have been associated with both50

increases and decreases in the evolutionary integration among traits. In centrarchid fishes, for51

example, the evolution of a novel mouth morphology was followed by a rapid differentiation52

of feeding habits. More specifically, the increase in the evolutionary correlation between two53

morphological features of the suction-feeding mechanism in species of Micropterus is associ-54

ated with a specialization towards consumption of larger prey (Collar et al., 2005; Revell and55

Collar, 2009). In contrast, the once strong developmental integration between the fore- and56

hindlimbs of early tetrapods underwent a dramatic change allowing the limbs to respond to57
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diverging selective pressures and leading to the evolution of bipedalism and flight (Young and58

Hallgŕımsson, 2005; Young et al., 2010; Dececchi and Larsson, 2013). These examples show the59

role of shifts in evolutionary integration associated with the evolution of novel morphologies.60

However, stable patterns of evolutionary integration over long time scales can be responsible61

for the constraint of lineages to limited regions of the morphospace and might be a plausible62

mechanism associated with patterns of stasis observed in the fossil record (Hansen and Houle,63

2004; Bolstad et al., 2014; Goswami et al., 2015). Thus, evolutionary trait correlations are64

central to the maintenance of form and function through time, but can either drive or slow65

morphological differentiation.66

Despite the prevalent role of evolutionary integration, most of what we know about the67

tempo and mode of trait evolution come from studies of single traits (e.g., Harmon et al., 2010;68

Hunt et al., 2015, among others). Even when multiple traits are the object of investigation,69

studies often use principal component axes (or phylogenetic PCA; Revell, 2009) to reduce the70

dimensionality of the data so that univariate methods can be applied (Harmon et al., 2010;71

Mahler et al., 2013; Klingenberg and Marugán-Lobón, 2013, see Uyeda et al. 2015 for more72

examples). This is most likely a reflection of the phylogenetic comparative models of trait73

evolution available for use, since few are focused on two or more traits (but see Revell and74

Harmon, 2008; Hohenlohe and Arnold, 2008; Revell and Collar, 2009; Bartoszek et al., 2012;75

Adams, 2012, 2014b; Clavel et al., 2015). However, studying one trait at a time eliminates the76

possibility of identifying patterns of evolutionary correlation, while principal component axes77

does not allow testing for evolutionary shifts in integration because the orientation of the PC78

axes are homogeneous across the branches of the phylogenetic tree. Furthermore, it also has79

been shown that PCA can influence our biological interpretation about the mode of evolution80

of the data (Uyeda et al., 2015) because the first PC axes are consistently estimated as early81

bursts of differentiation whereas the last axes store a strong signal of stabilizing selection,82

independent of the true model of evolution of the traits. As a result, we need models that83

apply to multivariate data as such in order to better understand macroevolutionary patterns84

of evolutionary integration.85

One way to model multivariate trait evolution using phylogenetic trees is through the evolu-86

tionary rate matrix (Hohenlohe and Arnold, 2008; Revell and Harmon, 2008; Revell and Collar,87
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2009; Adams and Felice, 2014). This is a variance-covariance matrix that describes the rates of88

trait evolution under Brownian motion in the diagonals and the evolutionary covariance among89

traits (i.e., the pattern of evolutionary integration) in the off-diagonals (Huelsenbeck and Ran-90

nala, 2003; Revell and Harmon, 2008). The evolutionary rate matrix is ideal for studying91

patterns of evolutionary integration because it allows for simultaneous estimate of the individ-92

ual rates of evolution of each trait as well as the evolutionary covariance between each pair93

of traits. It is also a flexible model, since any number of evolutionary rate matrix regimes94

can be fitted to the same phylogenetic tree (Revell and Collar, 2009). The contrast between95

evolutionary rate matrices independently estimated in different regions of the tree can inform96

us about the magnitude and direction of shifts in the pattern of evolutionary integration.97

One of the challenges of working with rate matrices is that covariances can be hard to esti-98

mate, especially when the number of species (observations) is small relative to the number of99

traits (parameters) in the model. As the number of parameters in a model increases, the amount100

of data required for proper estimation also increases and it becomes crucial to directly incor-101

porate uncertainty in parameter estimates when interpreting results. However, the majority102

of studies to date have relied on point estimates of the evolutionary rate matrix by maximum103

likelihood (Revell and Harmon, 2008; Revell and Collar, 2009; Clavel et al., 2015; Goolsby,104

2016, but see Huelsenbeck and Rannala, 2003 and Dines et al., 2014 for exceptions). Although105

the confidence interval around the maximum likelihood estimate can be used as a measure106

of uncertainty, this quantity is rarely reported (Revell and Harmon, 2008; Revell and Collar,107

2009; Adams, 2012; Immler et al., 2012; Adams and Felice, 2014; Collar et al., 2014). Fur-108

thermore, the uncertainty in parameter estimates does not take direct part in model selection109

using likelihood ratio tests or AIC (Burnham and Anderson, 2003), which can lead researchers110

to erroneous conclusions about their models. Besides the possible uncertainty in parameter111

estimates, there is an important computational burden associated with the evaluation of the112

likelihood function of the multivariate Brownian motion model due to the computation of ma-113

trix inversions and determinants (Felsenstein, 1973; Hadfield and Nakagawa, 2010; Freckleton,114

2012). Thus, computational time can become a limitation when performing a large number of115

likelihood evaluations, such as in simulation based approaches.116

Recently, Adams (2014b) described a method to estimate the rate of evolution under Brow-117
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nian motion of traits defined by several dimensions (high-dimensional data), even when the118

number of trait dimensions exceeds the number of lineages in the phylogeny. This method was119

extended to a plethora of variations based on the same general framework (Adams and Felice,120

2014; Adams, 2014a; Denton and Adams, 2015, see also Goolsby (2016) for a different imple-121

mentation). These methods work with high-dimensional data as a result of the use of distance122

matrices rather than covariance matrices, since the later becomes singular if the number of123

variables is larger than the number of observations. However, by avoiding the calculation of124

the covariance among trait dimensions (Adams, 2014b), such suite of methods assume a homo-125

geneous rate of evolution shared by all dimensions of a trait (the σ2
mult). Thus, σ2

mult is ideal for126

high-dimensional traits such as shape data, but it has limitations for the study of evolutionary127

integration among multiple traits.128

In order to ask questions about the evolution of integration using phylogenetic trees we need129

a computationally efficient method that can estimate evolutionary rate matrices while incorpo-130

rating uncertainty in parameter estimates. Here we implement a Bayesian estimate for the evo-131

lutionary rate matrix using Markov chain Monte Carlo (MCMC) to provide a direct assessment132

of the uncertainty associated with parameter estimates in the form of a posterior distribution.133

Our implementation also allows for multiple regime configurations and/or phylogenetic trees to134

be incorporated in the MCMC chain, thus integrating the uncertainty associated with ancestral135

state estimates and phylogenetic reconstruction to the analysis. In order to increase the per-136

formance of the likelihood evaluation, we implemented Felsenstein’s (1973) pruning algorithm.137

We also derive a new version of the pruning algorithm that is suitable for the special case when138

several rate regimes of the multivariate Brownian motion model are fit to different branches of139

the same phylogenetic tree. We apply our new approach to two biological examples: the fast140

evolution of morphology associated with the radiation of Anolis lizards from mainland South141

America to the Caribbean islands (Pinto et al., 2008; Mahler et al., 2013; Moreno-Arias and142

Calderón-Espinosa, 2016) and the shift of feeding habits driven by the change in mouth mor-143

phology in Centrarchidae fishes (Revell and Collar, 2009). We show that there is no detectable144

shift in the evolutionary integration among morphological traits during the anole radiation and145

that there is significant uncertainty in estimates of evolutionary correlation associated with the146

Centrarchidae mouth traits. We also provide results from extensive simulations showing that147
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our approach has good performance under diverse scenarios of correlated evolution.148

Methods149

A new pruning algorithm for multivariate Brownian motion with multiple regimes150

To test for shifts in the pattern of evolutionary integration among traits we need to estimate the151

rates of evolution for the individual traits and their evolutionary covariation, i.e. by estimating152

the evolutionary rate matrix (R; Revell and Harmon, 2008). Revell and Collar (2009) derived153

a general form of the likelihood function for the model that allows for several independent154

matrices assigned to different branches of the phylogenetic tree.155

Lp =

exp[−(y −DaT )T (
p∑

k=1

Rk ⊗Ck)
−1(y−DaT )

2 ]√
(2π)nr |

p∑
k=1

Rk ⊗Ck |
(1)

Where y is a vector of length n · r derived by concatenating the columns of a n by r matrix156

of trait values for n tips and r traits; D is a n ·r by r design matrix composed of 1 for each (i, j)157

entry that satisfies (j − 1) · n < i ≤ j · n and 0 otherwise; a is a vector with r root values for158

the tree (or the phylogenetic mean); Rk is the kth evolutionary rate matrix with size r. Each159

of the Ck matrices has only the sum of branch lengths which were assigned to the respective160

evolutionary rate matrix. Thus,
p∑

k=1

Ck is equal to the phylogenetic covariance matrix (C) for161

the whole tree. The elements of C are composed by the sum of branch lengths shared by each162

pair of taxa (Felsenstein, 1973). Finally, p is the number of R matrix regimes fitted to the tree.163

When p is equal to 1, equation (1) reduces to the likelihood function for a single R matrix164

(Revell and Harmon, 2008).165

The likelihood function for the evolutionary rate matrix as shown requires the matrix inver-166

sion and determinant to be computed for the sum of the Kronecker product between each Rk167

and Ck matrices. However, the matrices resulted from this product can be very large because168

each R has dimension equal to the number of traits in the data whereas C is as large as the num-169

ber of tips in the phylogeny. Some methods can be used to speed up the computation in the case170

of multiple rate regimes applied to the tree. For instance, the ‘rpf’ method avoids the explicit171
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computation of the matrix inversion and determinant by applying Cholesky factors (Gustavson172

et al., 2010; Clavel et al., 2015) whereas Goolsby (2016) recently introduced the use of pairwise173

composite likelihoods, which consists of the product of the pairwise likelihoods computed for174

all combinations of traits. These methods reduce the computational time for the evaluation of175

the likelihood but are still more time consuming than the pruning algorithm (Felsenstein, 1973;176

Freckleton, 2012; Caetano and Harmon, 2017). Here, we expand the pruning algorithm applied177

to the multivariate Brownian motion model (Felsenstein, 1973; Freckleton, 2012) to compute178

the likelihood even when multiple evolutionary rate matrices are fitted to different branches of179

the phylogenetic tree. This algorithm is implemented in the R package ratematrix (Caetano180

and Harmon, 2017) and we provide a detailed description in the Supplementary Material.181

MCMC prior densities and sampling strategy182

We have developed and implemented a Bayesian method to estimate one or more evolutionary183

rate matrices from phylogenetic comparative data. Our primary objective is to provide a184

framework to incorporate uncertainty in the estimates of R as well as to build a flexible model185

to study shifts in evolutionary integration across clades and over time. Our method requires186

a phylogenetic tree with branch lengths, continuous data for two or more traits for each tip187

species, and it uses Metropolis-Hastings Markov chain Monte Carlo (MCMC, Metropolis et al.,188

1953; Hastings, 1970).189

We model the prior density for the vector of root values (a) as an uniform or normal190

distribution and we use an uniform sliding window proposal density to sample the root value191

for every trait simultaneously. In contrast, the prior density and sampling scheme for the192

evolutionary rate matrix requires more elaboration because variance-covariance matrices are193

positive definite and are relatively hard to be estimated. We model R with two independent194

distributions; one for the vector of standard deviations and another for the correlation matrix195

(Barnard et al., 2000; Zhang et al., 2006). This method allows the prior density for the rates196

(vector of standard deviations) to be parametrized independently of the evolutionary integration197

(correlation matrix). Under this parametrization, one can assign any distribution of positive198

real values to the vector of standard deviations (here we use an uniform or a exponential density)199

and the correlation matrix is modelled as the Cholesky decomposition of variance-covariance200
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matrices sampled from an inverse-Wishart distribution (Zhang et al., 2006). This parameter201

extension approach is named ‘separation-strategy’ (Barnard et al., 2000; Zhang et al., 2006)202

because it relies on the independent modelling of the vector of standard deviations and the203

correlation matrix that together compose the evolutionary rate matrix. The advantage of204

the separation-strategy is twofold; it allows for intuitive modelling of rates of evolution and205

evolutionary integration and it is an efficient proposal scheme, because matrices are guaranteed206

to be positive definite at every draw (Barnard et al., 2000; Zhang et al., 2006).207

Incorporating uncertainty in regime configurations and phylogenetic trees208

Our approach can integrate any number of evolutionary rate matrix regimes fitted to the same209

phylogenetic tree. A regime is often dictated by some categorical data which states are hy-210

pothesized to be associated with shifts in the tempo and mode of evolution of the traits under211

study. Regimes are often ‘painted’ to the phylogenetic tree using stochastic mapping simula-212

tions (Huelsenbeck et al., 2003) and analyses are repeated over a sample of stochastic maps.213

In order to facilitate incorporation of uncertainty in both ancestral state estimates and phy-214

logenetic inference, such as multiple phylogenetic trees sampled from a posterior distribution,215

we implemented a MCMC that integrates over multiple rate regime configurations and/or phy-216

logenetic trees. At each step of the MCMC chain one phylogenetic tree is randomly sampled217

from a pre-determined pool of trees and used to evaluate the likelihood of the model. The218

approach assumes that each phylogeny or regime configuration in the pool has equal chance to219

be sampled, but one can also assign the frequency of sampling as a result of a previous analysis.220

This pool is assumed to be gathered a priori, as a result of stochastic mapping simulations,221

samples from a posterior distribution of trees or other similar analyses. Although this method222

does incorporate the uncertainty related to alternative regime configurations, different topolo-223

gies and set of branch lengths, it is not a joint estimation of the tree and the model because224

the MCMC only applies proposal steps to the vector of root values and the evolutionary rate225

matrices.226
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Testing for shifts between rate regimes227

A useful criterion to perform model selection in a Bayesian framework is the Bayes factor (Kass228

and Raftery, 1995), which is a ratio between the marginal likelihoods of the competing models.229

However, the estimation of marginal likelihoods is a computationally expensive and contentious230

task. One of the most accurate methods to estimate the marginal likelihood is the stepping231

stone approach. This method consists of taking samples from a series of weighted posterior232

distributions by scaling the likelihood of the model so that a continuum between the prior and233

the posterior is created (Fan et al., 2011; Xie et al., 2011; Uyeda and Harmon, 2014). However,234

the stepping stone method adds significantly to the computation burden of the analysis, because235

each step of the continuum represents a complete MCMC chain and a large number of steps are236

required to produce a sufficient approximation of the marginal likelihood (Uyeda and Harmon,237

2014).238

Here, we do not use Bayes factor to compare models, although implementation is feasible for239

future work. We focus our interpretation of results on the distribution of posterior parameter240

estimates, and quantify the amount of uncertainty and the magnitude of the difference be-241

tween components of the evolutionary rate matrices fitted to different regimes of the tree. We242

implemented summary statistics that provide a framework to decide whether there is enough243

signal in the data to support a model comprised by multiple R matrix regimes. First we check244

the difference between untransformed R matrices (ss-overall), then we contrast the vector of245

standard deviations (ss-rates) and the difference between correlation matrices (ss-correlation)246

derived from these R matrices. The first quantity check for overall changes in the evolutionary247

rate matrix whereas the later two quantities check for a shift in the rates of evolution of each248

individual trait and the structure of evolutionary integration among traits. We perform tests249

by calculating the percentile of the 0 value with respect to the distribution of the difference250

between summary statistics computed from the joint posterior distribution of parameter esti-251

mates. If the 0 value is within 95% of the density, then there is significant overlap between the252

posterior distribution of the corresponding parameter estimates and we cannot reject that the253

rate regimes are likely samples from the same distribution.254

The approach using summary statistics described here is justified by the fact that the models255

are nested. This means that it is possible to collapse the posterior distribution of evolution-256
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ary rate matrices fitted to different regions of the same phylogenetic tree to produce a single257

distribution if enough overlap is detected. For example, a model with three evolutionary rate258

matrix regimes can be reduced into a model with two regimes and so on. Thus, the summary259

statistics tests help us decide whether the posterior distribution between two parameters show260

enough overlap to justify their collapse into a single one. This argument extends to different261

attributes of the R matrix, such that one can collapse the rates of evolution of the traits into262

a single regime while accepting a shift in the pattern of evolutionary correlation among traits.263

Simulation study264

We performed simulations to test the performance of our Bayesian MCMC estimates and the265

use of summary statistics under different scenarios of correlated and uncorrelated evolution.266

For each simulation we used rejection sampling to generate a phylogenetic tree with 200 tips267

and at least one monophyletic clade containing 50 tips under a birth-death model. Then, we268

simulated data using a multivariate Brownian motion model for three continuous traits with269

two evolutionary rate matrix regimes, one for the 50 tips clade and another for the background270

group (Fig. 1). We performed four simulation scenarios: no shift (equal matrices), shift of271

orientation (positive versus negative evolutionary correlations), shift of rates (same evolutionary272

correlation but varying rates of evolution), and shift of integration (same rates but different273

degrees of evolutionary correlation). We applied two treatments for the scenario of shift of274

rates and shift of integration by varying the magnitude of the shifts. Figure 2 shows the total275

number of simulation treatments and their true parameter values.276

For all simulations we used a uniform prior for the vector of standard deviations, a marginally277

uniform prior for the correlation matrix (Barnard et al., 2000), and a multivariate normal prior278

for the vector of phylogenetic means centered in the mean of the tip data for each trait and279

with standard deviation equal to two times the standard deviation of the tip data (Fig. 3). We280

chose an informative prior for the phylogenetic mean in order to facilitate the convergence of281

the MCMC chains, since the root values are not the primary focus of this set of simulations.282

Nevertheless, we repeated a subset of the simulations using a uninformative prior assigned to the283

root values to show that the MCMC also performs well under this scenario. For each simulation284

treatment we performed 100 replicates, each replicate composed by two independent MCMC285
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chains of 500,000 generations. The initial state of every MCMC chain was set to a random286

draw from its prior distribution. We checked for convergence using the Gelman and Rubin287

(1992) test applied to each parameter of the model (each element of the root values, standard288

deviation vector, and correlation matrix was considered a separate parameter). We plotted289

the distribution of the percentiles of the true parameter values for the simulations compared290

to the posterior distributions to show the proportion of MCMC estimates that contained the291

true value of the simulation within the 95% highest probability density (HPD) interval. We292

simulated phylogenies, traits and mapped regimes using the R package phytools (Revell, 2012)293

and performed all parameter estimates with the package ratematrix (Caetano and Harmon,294

2017).295

In order to check for congruence between our approach and maximum likelihood estimators,296

we used the R package mvMORPH (Clavel et al., 2015) to find the best model using likelihood ratio297

tests (one regime versus two regimes) for all simulated scenarios. We compared the results from298

the MCMC with the maximum likelihood estimates by calculating the percentile of the MLE299

estimates for the two regimes model with respect to the posterior distributions and checked300

whether the model favored by the likelihood ratio test also showed support when relying on301

the summary statistics computed from the posterior distribution of parameter estimates. The302

comparison between the likelihood ratio test and our posterior check approach is not a formal303

evaluation of model test performance, since the two approaches are fundamentally distinct.304

On the other hand, this serve as a pragmatic comparison to show whether we can adopt the305

use of summary statistics calculated from the posterior distribution to make reliable choices306

between models with direct incorporation of uncertainty in parameter estimates while retaining307

the explanation power of a more formal model testing approach.308

Empirical examples309

We use two examples to show the performance of the approach with empirical datasets and to310

further explore the impact of the direct incorporation of uncertainty in parameter estimates and311

model comparison. The first example tests for a shift in the evolutionary integration among312

anoles traits during the Caribbean radiation. Then, we repeat the analysis from Revell and313

Collar (2009) study on the evolution of buccal traits in Centrarchidae fishes.314
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Anoles are small lizards that live primarily in the tropics. There are nearly 400 anole315

species with diverse morphology and they have become a model system for studies of adaptive316

radiation and convergence (Losos, 2009; Mahler et al., 2013, and references therein). The317

ancestral distribution of the genus is in Central and South America and the history of the clade318

includes island dispersion and radiation as well as dispersal back to the mainland (Nicholson319

et al., 2005; Losos, 2009). The adaptive radiation of anoles to the Caribbean islands and the320

repeated evolution of ecomorphs are the main focus of evolutionary studies in the genus (Mahler321

et al., 2010; Losos, 2009; Mahler et al., 2013). However, mainland anoles are distributed from322

the north of South America to the south of North America and show more species (60% of323

all species) than island anoles and equally impressive morphological diversity (Losos, 2009).324

Mainland and island anole species form distinct morphological clusters (Pinto et al., 2008;325

Schaad and Poe, 2010; Moreno-Arias and Calderón-Espinosa, 2016), but rates of trait evolution326

have been shown not to be consistently different (Pinto et al., 2008). Island ecomorphs can327

be readily distinguished by body size and the morphology of limbs, head and tail (Losos,328

2009; Mahler et al., 2013). Thus, it is plausible that a shift in the structure of evolutionary329

integration among those traits associated with the radiation to the islands played an important330

role on the exploration of novel regions of the morphospace and allowed the repeated evolution331

of specialized morphologies. Herein we test this hypothesis by fitting two evolutionary rate332

matrix regimes, one for mainland and other for island anole lineages.333

We compiled data for snout-vent length (SVL), tail length (TL), and head length (HL)334

of 125 anole species (99 Caribbean and 26 mainland species) made available by Mahler et al.335

(2013) and Moreno-Arias and Calderón-Espinosa (2016). We chose this set of traits because336

they are important for niche partitioning among anoles (Pinto et al., 2008; Losos, 2009; Mahler337

et al., 2013) and also provided the best species coverage given the data currently available. We338

use Gamble et al. (2014) maximum clade credibility tree for all comparative analyses, but we339

trimmed the phylogeny to include only the species that we have morphological data. To map the340

different R matrix regimes to the phylogenetic tree we classified species as ‘island’ or ‘mainland’341

and used the package ‘phytools’ (Revell, 2012) to estimate the transition rates between the342

states in both directions using an unconstrained model (e.g., the ‘all rates different’ model) and343

to perform 100 stochastic mapping simulations. We set the model to estimate one R matrix for344
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each mapped state (‘island’ or ‘mainland’) and we used the pool of 100 stochastic maps in the345

MCMC to take into account the uncertainty associated with ancestral state estimation. We346

ran four independent MCMC chains of 2 million generations each and used a random sample347

from the prior as the starting point of each chain. We set a uniform prior for the phylogenetic348

mean, a marginally uniform prior on the correlation matrices and a uniform prior on the vector349

of standard deviations for the R matrices. We discarded 25% of each MCMC chain as burn-in350

and checked for convergence using the potential scale reduction factor (Gelman and Rubin,351

1992). In order to test the influence of the root state for the rate regimes, we repeated the352

analyses by setting the root state for the stochastic mapping simulations as a random sample353

between ‘island’ and ‘mainland’ and with the ancestral distribution fixed as ‘mainland’.354

In addition to the analyses of mainland and island anoles lizards, we replicated the study by355

Revell and Collar (2009) as an exercise to contrast the inference of evolutionary rate matrices356

in the presence of a direct estimate of uncertainty provided by the posterior densities. Revell357

and Collar (2009) showed that the evolution of a specialized piscivorous diet in fishes of the358

genus Micropterus is associated with a shift towards a stronger evolutionary correlation between359

buccal length and gape width (see Fig. 1 in Revell and Collar, 2009). This tighter integration360

might have allowed Micropterus lineages to evolve better suction feeding performance. For361

this analysis we used the same data and phylogenetic tree made available by the authors.362

We set prior distributions using the same approach for the analysis of anole lizards described363

above. We also ran four MCMC chains starting from random draws from the prior for 1 million364

generations and checked for convergence using the potential scale reduction factor (Gelman and365

Rubin, 1992).366

Results367

Performance of the method368

We ran a total of 1,200 Markov chain Monte Carlo chains to check the performance of the369

model under six different scenarios of correlated evolution among traits. All chains finished370

without errors, showed good convergence after 500,000 generations and results were congruent371

both with the true simulation parameters and with maximum likelihood estimates (Table 1372
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and Fig. 4). Figures 2 and S1 show examples of the posterior distribution of evolutionary rate373

matrices and root values for each simulation scenario. Changing the prior distribution for the374

vector of root values from multivariate normal to uniform showed no detectable bias in the375

posterior distribution, however the MCMC required approximately twice as many iterations to376

converge (Fig. S2). The distribution of percentiles for both the MLE and the true value for the377

simulations with respect to the posterior distribution of parameter estimates were, on average,378

within the 95% highest posterior density interval (Fig. 4). The likelihood ratio tests supported379

the two rates model about as often as our test based on summary statistics across all simulation380

scenarios (Table 1). When data was simulated with a single evolutionary rate matrix across381

the tree but tested for two regimes, both the likelihood ratio tests and the summary statistics382

(ss-overall) resulted in less than 5% of the 100 replicates with support for the wrong model.383

Alternatively, one might be interested on shifts in some of the attributes of the evolutionary384

rate matrices more than others, such as specific hypotheses about the change in the pattern385

of evolutionary integration without a priori expectations about shifts in the rates of trait386

evolution. Table 1 shows the results of the summary statistics approach with respect to different387

attributes of the evolutionary rate matrices fitted to the data. These results are congruent388

with the simulation scenarios and show that the approach using summary statistics calculated389

from the posterior distribution of parameter estimates is a reliable and flexible way to identify390

changes in rates of trait evolution (ss-rates) or shifts in the pattern of evolutionary integration391

(ss-correlation).392

Empirical examples393

The biogeographic reconstruction using a more recent anole phylogeny (Gamble et al., 2014) is394

mostly congruent with previous studies (Glor et al., 2005; Nicholson et al., 2005; Losos, 2009).395

There are multiple radiations from mainland South America to the Caribbean islands and a396

single radiation from the islands back to mainland South America (Fig. 5). In contrast, the397

Jamaican clade (A. reconditus + A. grahami), that previous results have shown to be sister398

to the clade that dispersed from the Caribbean islands back to mainland (Losos, 2009), is now399

nested within this secondary radiation. These results are maintained when we used all species400

from Gamble et al. (2014) instead of the trimmed tree (see Fig. S3). The R matrix estimates for401
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each regime show no difference in the structure of integration but the rates of evolution for the402

Caribbean anole lineages are twice as fast as mainland lineages (Fig. 5, see also figures S4 for the403

posterior of root values and S5 for trace plots). In other words, the evolutionary rate matrix for404

the two regimes are proportional (ss-overall=0.004, ss-rates=0.0002, and ss-correlation=0.4).405

Setting the root state as ‘mainland’ does not influence the posterior distribution of parameter406

estimates. Head length and tail length are positively correlated along the phylogeny and also407

show a strong positive evolutionary correlation with body size.408

In the case of the Centrarchidae fishes, there is a clear distinction between the results of the409

maximum likelihood point estimate and the Bayesian estimate of the evolutionary rate matrix410

regimes. Under MLE, we found a significant difference between the R matrix regimes using411

likelihood ratio tests. There is a stronger evolutionary correlation between the gape width412

and the buccal length of the Micropterus clade (r=0.83) when compared with other lineages413

(r=0.36). In contrast, the direct incorporation of uncertainty in parameter estimates reveal414

an important overlap between the posterior densities for the R matrices estimated for each415

regime (Fig. 6, see also figures S6 for the posterior of root values and S7 for trace plots). The416

posterior density does not show evidence of a shift towards stronger evolutionary correlation417

between gape width and buccal length in Micropterus (ss-correlation=0.46) and the overall418

overlap between the posterior of evolutionary rate matrix fitted to each regime is pronounced419

(ss-overall=0.58). Thus, after taking the uncertainty in parameter estimates into account, it420

is unlikely that a shift on the pattern of evolutionary correlation happened in the Micropterus421

clade.422

Discussion423

Here we implemented a Bayesian Markov chain Monte Carlo estimate of the evolutionary rate424

matrix. Our approach allows multiple regimes to be fitted to the same phylogenetic tree and425

integrates over a sample of trees or regime configurations to account for uncertainty in ancestral426

state estimates and phylogenetic inference. We also implement summary statistics to compare427

the posterior distribution of parameter estimates for different regimes. We show that our428

approach has good performance over a series of different scenarios of evolutionary integration429

and is congruent with parameter estimates using maximum likelihood. The use of maximum430
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likelihood estimate is definitely faster, since the MCMC chain requires many more evaluations431

of the likelihood function. However, our new extension of Felsenstein (1973) pruning algorithm432

applied when multiple R matrices are fitted to the same tree reduces the computation time of433

the likelihood for the model significantly. The integration of uncertainty in parameter estimates434

provided by the posterior distribution and the use of summary statistics to describe patterns435

in the data that can be directly relevant to our biological predictions are significant rewards436

for the longer time invested in data analysis.437

The use of summary statistics to evaluate the overlap between the posterior distributions438

of parameter estimates from different regimes is a intuitive and reliable framework to make439

decisions of whether or not the data show a strong signal for multiple regimes. Our simulations440

showed that results from this approach are, in average, congruent with the likelihood ratio test.441

More importantly, summary statistics computed from the posterior distribution can recognize442

meaningful discrepancies between distinct evolutionary rate matrix regimes across a series of443

simulation scenarios. In this study we focused on the evolutionary rates for each trait (ss-rates)444

and the evolutionary correlation among traits (ss-correlation), but any other summary statistics445

computed over the posterior distribution of parameter estimates and representing an attribute446

of the model relevant for a given question could be implemented. For example, characteristics447

of the eigen-structure of the matrices or more formal tests such as the Flury hierarchy (Phillips448

and Arnold, 1999) could be also implemented. This framework is flexible, does not require449

an estimate of the marginal likelihood and can be easily tailored towards specific biological450

predictions of the study system. On the other hand, it is important to note that the use451

of summary statistics does not constitute a formal model test, but instead asks the question452

of whether the parameter estimates for the regimes are distinct enough for us to accept the453

hypothesis of heterogeneity in the tempo and mode of trait evolution.454

Point estimates such as the maximum likelihood can generate a false impression of certainty455

that may limit our biological interpretations if not accompanied by estimates of the variance.456

It is possible to calculate the confidence interval around the MLE and use this interval to check457

for overlaps in the parameter estimates (i.e., using the Hessian matrix). The disadvantage of458

this approach is that the confidence interval provides only the percentiles of the density around459

the MLE. As a result, it is not possible to calculate summary statistics, incorporate uncertainty460
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in downstream analyses, or to provide a visualization of the distribution of parameter estimates461

such as in this study (see Figures 2 and 6). Maximum likelihood estimate of models of trait462

evolution are commonly reported without any estimate of the variance, most likely because the463

focus are often on the results of model tests and p values rather than in our ability to reliably464

estimate and interpret the parameters of a model (see discussion in Beaulieu and O’Meara,465

2016 on a related issue). Furthermore, model tests such as the likelihood ratio test and the466

Akaike information criteria (AIC) do not incorporate any measure of the variance of estimates467

in their calculations. This is problematic when parameters can be hard to estimate and models468

are challenged by reduced sample sizes, which is a common issue in phylogenetic comparative469

methods analyses in general.470

The analysis of mouth shape evolution in function of diet in Centrarchidae fishes (Revell471

and Collar, 2009) is an interesting example of the impact of uncertainty in parameter estimates472

on our biological conclusions. The likelihood ratio test showed a strong support for a shift473

in the structure of evolutionary correlation associated with the evolution of piscivory in the474

Micropterus clade. In contrast, the summary statistics computed from the posterior distribution475

did not show strong evidence for the same scenario of macroevolution. When we contrast the476

result from the MLE with the posterior distribution (Fig. S8), we can visualize the origin477

of the incongruence. The likelihood ratio test focus on the relative fit of the constrained478

model (one regime) compared with the full model (two regimes) whereas the summary statistics479

compute whether our posterior knowledge about the model reflects a strong signal for a shift480

between regimes using the overlap between the posterior distribution of parameter estimates.481

Furthermore, the same trend can be shown by computing the confidence interval around the482

MLE estimates, since there is an important overlap between the R matrices fitted to each483

regime.484

The results from the test of whether mainland and island anole species differ in the pattern485

of evolutionary integration among traits are intriguing. The posterior distribution of evolu-486

tionary rate matrices fitted to each regime show a constant pattern of evolutionary integration487

whereas rates of trait evolution are faster on island anole lineages. The radiation of anole488

lizards on the Caribbean islands is one of the most striking examples of adaptive radiation489

in evolutionary biology. It is natural to expect that a shift in the trajectory of evolution of490
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morphological traits associated with ecomorphs would occur, since mainland and island anole491

species are known to occupy different regions of the morphospace (Pinto et al., 2008; Schaad492

and Poe, 2010; Moreno-Arias and Calderón-Espinosa, 2016). Surprisingly, our results suggest493

that ecomorphs evolved under a constant pattern of evolutionary integration among traits494

when compared with mainland lineages but differ due to faster rates of trait evolution. One495

hypothesis is that the evolutionary correlation among traits, which determine the major axes496

of morphological evolution in the group, do not act as a constraint to the exploration of the497

morphospace by the lineages. Thus, island and mainland anole lineages are not distinct in their498

potential to explore the morphospace and ecomorphs might be special in the sense of repetitive499

radiations and not due to exclusive morphological evolution when compared to their mainland500

counterparts. This explanation has some support by the fact that a few mainland species are501

morphologically similar to island ecomorphs (Schaad and Poe, 2010). In contrast, higher rates502

of evolution is most likely a reflection of the rapid morphological differentiation observed on503

the Caribbean anole lineages and associated with the ecological opportunity posed by the new504

island habitats coupled to the reduction in predation risk. Our results corroborate the idea505

that ecomorphs might also have evolved among mainland species since there is no detectable506

shift in the trajectory of evolution among morphological traits. However, efforts to understand507

anole biodiversity, ecology and evolution have been strongly focused on island systems and still508

relatively very little is known about mainland lineages.509

Conclusion510

Most of what we know about the tempo and mode of trait evolution come from studies of511

individual traits, but evolutionary integration is ubiquitous across the tree of life. Recently we512

have seen an increase in comparative tools aimed to deal with the challenges posed by high-513

dimensional traits, such as shape data. However, the discipline is still in need of better models514

to deal with multiple traits, such as the examples explored in this study. Our framework is515

aimed primarily on the test of shifts in the structure of evolutionary integration among traits516

across clades and over time. However, the implementation of summary statistics make it feasible517

to extend such tests to be focused on any attribute of the evolutionary rate matrix that might518

fit the biological predictions of a specific study. Another important advantage of simulation519
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based approaches, such as the Bayesian MCMC, is that proposals can be modified to integrate520

over different number of regime configurations, distinct models of trait evolution, and even521

simultaneously estimate parameters for the trait evolution model and the phylogenetic tree.522

Thus, our implementation lays the groundwork for future advancements towards flexible models523

to explore multiple facets of the evolution of integration over long time scales using phylogenetic524

trees. Integration among traits is a broad and yet fundamental topic in evolutionary biology.525

Understanding the interdependence among traits over the macroevolutionary scale can be key526

to tie together our knowledge about the genetic basis of traits, development, and adaptive shifts527

in the strength or direction of evolutionary correlation.528
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Armbruster. 2014. Genetic constraints predict evolutionary divergence in Dalechampia blos-562

soms. Phil. Trans. R. Soc. B 369:20130255.563

20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 25, 2017. ; https://doi.org/10.1101/102939doi: bioRxiv preprint 

https://doi.org/10.1101/102939
http://creativecommons.org/licenses/by/4.0/


Burnham, K. P. and D. R. Anderson. 2003. Model Selection and Multimodel Inference: A564

Practical Information-Theoretic Approach. 2nd edition ed. Springer, New York.565

Caetano, D. S. and L. J. Harmon. 2017. ratematrix: An R package for studying evolutionary566

integration among several traits on phylogenetic trees. bioRxiv .567

Clavel, J., G. Escarguel, and G. Merceron. 2015. mvmorph: An R package for fitting multivari-568

ate evolutionary models to morphometric data. Method. Ecol. Evol. 6:1311–1319.569

Claverie, T. and S. N. Patek. 2013. Modularity and rates of evolutionary change in a power-570

amplified prey capture system. Evolution 67:3191–3207.571

Collar, D. C., T. J. Near, and P. C. Wainwright. 2005. Comparative analysis of morphological572

diversity: Does disparity accumulate at the same rate in two lineages of centrarchid fishes?573

Evolution 59:1783–1794.574

Collar, D. C., P. C. Wainwright, M. E. Alfaro, L. J. Revell, and R. S. Mehta. 2014. Biting575

disrupts integration to spur skull evolution in eels. Nature Communications 5:5505.576

Dececchi, T. A. and H. C. E. Larsson. 2013. Body and limb size dissociation at the origin of577

birds: Uncoupling allometric constraints across a macroevolutionary transition. Evolution578

67:2741–2752.579

Denton, J. S. S. and D. C. Adams. 2015. A new phylogenetic test for comparing multiple high-580

dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in581

lanternfishes (Myctophiformes; Myctophidae). Evolution 69:2425–2440.582
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Table 1: Proportion of simulation replicates showing support for two R matrix regimes un-
der likelihood ratio test (LRT) and using summary statistics computed from the posterior
distribution of parameter estimates. The ‘ss-overall’ summary statistics compares the entire
evolutionary rate matrix, ‘ss-rates’ refers to the rates of evolution for the individual traits and
‘ss-correlation’ represents only the structure of evolutionary correlation among traits. Simula-
tions were performed with no shift (Single), shift of orientation (Orient), weak shift of rates
(Rates I), strong shift of rates (Rates II), weak shift of integration (Integ I), and strong shift
of integration (Integ II). Figure 2 show the true value for each simulation and a plot of the
posterior distribution of one simulation replicate and S1 show the posterior distribution of root
values.

Single Orient Rates I Rates II Integ I Integ II
LRT 0.04 1 1 1 0.25 0.98

ss-overall 0.02 1 0.85 1 0.28 0.84
ss-rates 0.01 0.04 0.98 1 0.03 0.02

ss-correlation 0.01 1 0.06 0.03 0.26 1
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R1

R2

Figure 1: Example of phylogeny used for the simulation study. We simulated phylogenies with
200 tips using a homogeneous birth-death model. Then, we randomly selected one node with
exact 50 daughter tips to set the location of the transition between the background rate regime
R1 and the focus clade regime R2 showed in red.
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Figure 2: Example of posterior distribution for the six simulation treatments with three traits
each. Top-left plot shows the results with no shift in the evolutionary rate matrix regime and
top-right shows the results with a shift in the orientation of R. Middle row are results with a
shift in the rates of evolution of each trait and bottom row shows the results when the strength
of the evolutionary correlation shifts between regimes. Estimates for the background regime
are showed in black and for the focus regime in red (see Fig. 1). For each plot: diagonal
histograms show evolutionary rates (variances) for each trait, upper-diagonal histograms show
pairwise evolutionary covariation (covariances), and lower-diagonal ellipses are samples from
the posterior distribution showing the 95% confidence interval of each bivariate distribution.
Numbers in the top left of histograms are the true value used for each simulation; background
rate regimes are showed in black and focus clade regimes in red. Table 1 shows the aggregate
results for each simulation replicate: ‘Single’ and ‘Orient’ correspond to top-left and top-right
plots. ‘Rates’ I and II are middle row left and right plots. ‘Integ’ I and II are bottom row left
and right plots. The two replicates in the middle and bottom rows differ in the strength of the
shift between regimes, left is weak and right is strong shift.
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−1 0 1

Figure 3: Prior distribution for the evolutionary rate matrix (R) used for all analyses. Plate
shows samples in the interval between -1 and 1 from the prior for a model with three traits.
Diagonal plots represent the prior for evolutionary rates (variances) for each trait, upper-
diagonal plots show pairwise evolutionary covariation (covariances), and lower-diagonal are
samples from the posterior distribution of ellipses showing the 95% confidence interval of each
bivariate distribution.
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Figure 4: Distribution of percentiles for the maximum likelihood estimate (MLE) of the full
model and for the true value of the simulations with respect to the posterior distribution of
each simulation replicate. Plots to the left (pink) show the percentiles for the MLE whereas
plots to the right (blue) show the percentiles for the true value of the simulations. Most of the
density across all simulation scenarios and parameters is within the 95% HPD of the posterior
distribution.
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Figure 5: Posterior distribution of the R matrix regimes fitted to the island anole (green) and
mainland anole (brown) lineages. Left figure shows the maximum clade credibility tree (MCC)
from Gamble et al. (2014) with only the taxa used in this study. State reconstruction for the
branches was performed with a stochastic map simulation using ‘mainland’ as the root state
for the genus. Right upper plot shows the posterior distribution of parameter estimates for the
evolutionary rate matrices. Diagonal plots show evolutionary rates (variances) for each trait,
upper-diagonal plots show pairwise evolutionary covariation (covariances), and lower-diagonal
are samples from the posterior distribution of ellipses showing the 95% confidence interval of
each bivariate distribution. Right bottom figure shows a representation of each trait (TL: tail
length; HL: head length; SVL: snout-vent length).
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Figure 6: Posterior distribution of the R matrix regimes fitted to the background group (gray)
and to the Micropterus clade (red). Left figure shows the phylogeny from (Revell and Collar,
2009) and the silhouette of some representatives of the Centrarchidae genera. Right plot shows
the posterior distribution of parameter estimates for the evolutionary rate matrices. Diagonal
plots show evolutionary rates (variances) for each trait, upper-diagonal plots show pairwise
evolutionary covariation (covariances), and lower-diagonal are samples from the posterior dis-
tribution of ellipses showing the 95% confidence interval of each bivariate distribution.
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Figure S1: Example of posterior distribution of root values for the six simulation treatments
with three traits each. Simulation treatments are the same as showed on Figure 2. Top and
bottom plots for ‘Shift of rates’ and ‘Shift of integration’ treatments correspond to the left and
right plots of the same treatments on Figure 2, respectively. The true value for the ancestral
state of each trait in all simulations was equal to 10.
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Figure S2: Example of posterior distribution of root values for the six simulation treatments
with three traits each using a uniform prior for the vector of root values. Simulation treatments
are the same as showed on Figure 2 and Figure S1. The true value for the ancestral state of
each trait in all simulations was equal to 10.
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Anolis crassulus
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Anolis limifrons
Anolis zeus
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Anolis oscelloscapularis
Anolis capito
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Anolis cupreus
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Anolis altae
Anolis pachypus
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Anolis sericeus
Anolis bremeri
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Anolis sagrei
Anolis ophiolepis
Anolis mestrei
Anolis homolechis
Anolis jubar
Anolis confusus
Anolis guafe
Anolis ahli
Anolis allogus
Anolis rubribarbus
Anolis imias
Anolis ernestwilliamsi
Anolis desechensis
Anolis cristatellus
Anolis scriptus
Anolis cooki
Anolis monensis
Anolis krugi
Anolis pulchellus
Anolis gundlachi
Anolis poncensis
Anolis evermanni
Anolis stratulus
Anolis acutus
Anolis caudalis
Anolis marron
Anolis brevirostris
Anolis websteri
Anolis distichus
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Anolis sabanus
Anolis nubilus
Anolis lividus
Anolis ferreus
Anolis oculatus
Anolis bimaculatus
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Anolis leachi
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Anolis centralis
Anolis pumilis
Anolis loysiana
Anolis garridoi
Anolis guazuma
Anolis tranquillus
Anolis sheplani
Anolis placidus
Anolis angusticeps
Anolis paternus
Anolis alayoni
Anolis cupeyalensis
Anolis cyanopleurus
Anolis rejectus
Anolis clivicola
Anolis alfaroi
Anolis macilentus
Anolis vanidicus
Anolis alutaceus
Anolis inexpectatus
Anolis baleatus
Anolis barahonae
Anolis ricordii
Anolis eugenegrahami
Anolis christophei
Anolis cuvieri
Anolis guamuhaya
Anolis porcus
Anolis chamaeleonides
Anolis barbatus
Anolis argenteolus
Anolis lucius
Anolis alumina
Anolis semilineatus
Anolis olssoni
Anolis barbouri
Anolis fowleri
Anolis insolitus
Anolis etheridgei
Anolis armouri
Anolis cybotes
Anolis shrevei
Anolis haetianus
Anolis breslini
Anolis whitemani
Anolis longitibialis
Anolis strahmi
Anolis marcanoi
Anolis dolichocephalus
Anolis hendersoni
Anolis bahorucoensis
Anolis koopmani
Anolis monticola
Anolis darlingtoni
Anolis aliniger
Anolis singularis
Anolis chlorocyanus
Anolis coelestinus
Anolis bartschi
Anolis vermiculatus
Anolis noblei
Anolis smallwoodi
Anolis baracoae
Anolis luteogularis
Anolis equestris
Anolis occultus
Anolis fraseri
Anolis chocorum
Anolis frenatus
Anolis princeps
Anolis insignis
Anolis microtus
Anolis agassizi
Anolis casildae
Anolis maculigula
Anolis danieli
Anolis aequatorialis
Anolis anoriensis
Anolis gemmosus
Anolis ventrimaculatus
Anolis festae
Anolis chloris
Anolis peraccae
Anolis huilae
Anolis extremus
Anolis roquet
Anolis aeneus
Anolis richardi
Anolis trinitatus
Anolis griseus
Anolis bonairensis
Anolis luciae
Anolis fitchi
Anolis podocarpus
Anolis neblininus
Anolis calimae
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Anolis jacare
Anolis tigrinus
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Polychrus marmoratus 1
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Figure S3: Maximum clade credibility tree from Gamble et al. (2014) study showing the distri-
bution of ‘mainland’ and ‘island’ anole species. The species ‘sp nov 1’, ‘sp nov 2’, and ‘sp nov 3’
were excluded from the phylogenetic tree. Data for the distribution of anole species and out-
groups were compiled from Nicholson et al. (2005), Losos (2009), Thomas et al. (2009), Reptile
database (reptile-database.org) and GBIF (gbif.org). Ancestral state reconstruction was per-
formed using stochastic mapping with the ‘all rates different’ model and the root state set as
‘mainland’ (Nicholson et al., 2005; Losos, 2009).
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Figure S4: Posterior distribution of root values fitted to the island and mainland anole lineages
(SVL: snout-vent length).
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Figure S5: Trace plots of the log-likelihood and the acceptance ratio for the four independent
MCMC chains of the island and mainland anole analysis.
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Figure S6: Posterior distribution of root values fitted to the Centrarchidae fishes.
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Figure S7: Trace plots of the log-likelihood and the acceptance ratio for the four independent
MCMC chains of the Centrarchidae fishes analysis.
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Figure S8: Posterior distribution of the R matrix regimes fitted to the background group
(gray) and to the Micropterus clade (red). Maximum likelihood estimate for the same data
and phylogenetic tree showed in blue lines. Plot shows the posterior distribution of parameter
estimates for the evolutionary rate matrices. Diagonal plots show evolutionary rates (variances)
for each trait, upper-diagonal plot show pairwise evolutionary covariation (covariances), and
lower-diagonal plot shows samples from the posterior distribution of ellipses showing the 95%
confidence interval of each bivariate distribution.
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The pruning algorithm used to calculate the likelihood of multiple R

matrices fitted to the tree

Here we describe in details the pruning algorithm (Felsenstein, 1973, 1985) applied to calculate

the log-likelihood of a multivariate Brownian motion model in which the rates vary throughout

the branches of the tree. The pruning algorithm explores the property that trait changes

in each of the branches can be modelled independently and applies a multivariate normal

density to compute the likelihood of evolutionary changes at each branch assuming a Brownian

motion model (Felsenstein, 2004; Freckleton, 2012). When multiple rate regimes are fitted to

a phylogeny, the likelihood is often computed by scaling the branch lengths by the rates (e.g.,

Eastman et al., 2011). However, this procedure is not applicable to the multivariate case, since

the product of the length of a branch and the BM rate is a matrix. We derived the pruning

algorithm for multiple rate regimes by following the same procedures described by Felsenstein

(1973, 2004), but assuming that all rates are multivariate, that rates are different at each

branch and that branches can have more than one rate regime (after Revell and Collar, 2009).

This algorithm completely avoids the calculation of the matrix inverse and the determinant of

the phylogenetic covariance matrix (C) or the Kronecker product between R and C matrices.

However, the inverse of the R matrix, which will have dimensions equal to the number of traits

in the data set, is still required.
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In this extension of the algorithm, each branch of the phylogeny can be assigned to one or

more evolutionary rate matrix (R) regimes and the sum of the portions of the branch assigned

to each regime need to be equal to the total length of that branch (Revell and Collar, 2009).

We demonstrate that the algorithm yields the same likelihood as in Felsenstein (1973) and

Freckleton (2012) by showing that all calculations converge when a single regime is fitted to

tree. The pruning algorithm works by visiting the tips and going down node by node. At each

step the contrast between two tips is computed and a new “phenotype” value replaces the two

original tips, becoming the new tip. The likelihood of the contrast is calculated and we move

to the next contrast until we reach the root node. From here on we will refer to the following

phylogenetic tree as an example:

Where xi is a vector with r trait values for tip i and vi is the branch length leading to tip or

node i. We will refer to the node representing the common ancestor of tips 1 and 2 as the node

4 and the node representing the common ancestor of all tips as the root node. The method

works as following:

1. Calculate the contrast. Choose a pair of tips i and j with a unique and exclusive

common ancestor k. In our example, the selected species are 1 and 2. Compute the

contrast uij = xi − xj.
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2. Compute the log-likelihood. Use the vector of contrasts (uij), the number of traits

in the data (r), the branch lengths (vi and vj), and the length of the branches assigned

to each of the k evolutionary rate matrix regimes (Revell and Collar, 2009) to compute

the log-likelihood:

L = −1

2

(
r log(2π) + log |Si + Sj|+ uᵀ

ij (Si + Sj)
−1 uij

)
where

Si = R1 v1i + R2 v2i + . . .+ Rk vki

Sj = R1 v1j + R2 v2j + . . .+ Rk vkj

and

vi = v1i + v2i + . . .+ vki

vj = v1j + v2j + . . .+ vkj

(1)

If we assume a single evolutionary rate matrix is fitted to the whole tree, equation 1

reduces to equation 10 in Freckleton (2012):

Let

R = R1 = R2 = . . . = Rk

then

Si = R1 v1i + R2 v2i + . . .+ Rk vki

= R v1i + R v2i + . . .+ R vki

= R
k∑

l=1

vli
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We know, from equation 1, that the sum of the portions of the branch length assigned to

each regime is equal to the total length of the branch. Then:

Si = Rvi as well as Sj = Rvj

and

Si + Sj = R(vi + vj)

Substituting into equation 1, we have:

L = −1

2

(
r log(2π) + log |R(vi + vj)|+ uᵀ

ij (R(vi + vj))
−1 uij

)
= −1

2

(
r log(2π) + log |R|+ r log(vi + vj) +

uᵀ
ij (R)−1 uij

(vi + vj)

) (2)

Which is the same as equation 10 in Freckleton (2012)1.

3. Calculate the new phenotype vector xn for the node n. This quantity is originally

calculated as the weighted average of the vector of species means for species i and j with

weights equal to the length of the branches vi and vj. For the case of a single trait, x1i

and x1j, we would have:

x1n =
vi σ

2
1i

vi σ2
1i + vj σ2

1j

x1j +
vj σ

2
1j

vi σ2
1i + vj σ2

1j

x1i (3)

When σ2
i = σ2

j , equation 3 becomes equivalent to equation 7 in Felsenstein (1973) and the

rates of each branch can be omitted. However, here we assume that rates are different in

every branch, that the evolutionary covariance among traits are non-zero and that more

than one rate regime can be assigned to the same branch. As a result, the rates need to be

represented as variance-covariance matrices (R1,R2, . . . ,Rk) and the sum of the product

between the portions of each branch and their rate regimes is given by the matrices Si

and Sj (see equation 1). By expanding equation 3, we have:

xn = Si (Si + Sj)
−1 xj + Sj (Si + Sj)

−1 xi (4)

1Note that the published equation in Freckleton (2012) has a printing error. The corrected form is

L = − 1
2

(
k log(2π) + log |C|+ k logVi +

ut
iC

−1ui

Vi

)
. The correct form can be appreciated in the function ‘clik-

General’ on line 393 of the Supporting Information file MEE3 220 sm demo.R available online (Freckleton, 2012).
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In the first step of our example, we calculate the phenotype value for the node 4 (x4).

Then, we prune the tips 1 and 2 from the tree, leaving only the tip 3 and the new tip 4

with vector of trait values x4. The next contrast will be calculated between x4 and x3.

4. Compute the variance of xn. After computing the vector of trait values for the node

n, we need to calculate the variance associated with the uncertainty in the estimation of

xn. This uncertainty is added to the variance of the branch immediately bellow the node

n. For a single trait and we would have:

var[x1n] =
viσ

2
1i vjσ

2
1j

viσ2
1i + vjσ2

1j

+ vnσ
2
1n (5)

Where m, . . . , n are the indexes for the branches that connect the root to the node n of

the tree. Again, when a single rate regime is fitted to the tree, equation 5 is equivalent

to equation 9 in Felsenstein (1973). For the multivariate case, this quantity becomes a

variance-covariance matrix which is added to Sn (the branch length below the node n

multiplied by the rate regimes; see equation 2) and can be calculated as:

var[xn] =
(
(Si)

−1 + (Sj)
−1
)−1

+ Sn (6)

The equivalence between equations 5 and 6 can be easily verified by checking the compu-

tation of the harmonic mean of matrices. For two scalar quantities the harmonic mean is

given by 2 a b
a+b

whereas for matrices we have ((A)−1 + (B)−1)
−1

.

5. Repeat. Steps 1 to 4 are repeated until only two tips remains. The root node will have

a zero contrast. The variance associated with the root node is computed as:

var[root] =
(
(Si)

−1 + (Sj)
−1
)−1

(7)

6. Compute the final log-likelihood. The final log-likelihood conditioned on the phyloge-

netic tree, rate regime and trait data is computed as the sum of all partial (node-by-node)

log-likelihoods computed in step 2.
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