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Abstract 
 Recent developments in technological tools such as next generation sequencing along 
with peaking interest in the study of single cells has enabled single-cell RNA-sequencing, in 
which whole transcriptomes are analyzed on a single-cell level. Studies, however, have been 
hindered by the ability to effectively analyze these single cell RNA-seq datasets, due to the high-
dimensional nature and intrinsic noise in the data. While many techniques have been introduced 
to reduce dimensionality of such data for visualization and subpopulation identification, the 
utility to identify new cellular subtypes in a reliable and robust manner remains unclear. Here, 
we compare dimensionality reduction visualization methods including principle component 
analysis and t-stochastic neighbor embedding along with various distance metric modifications 
to visualize single-cell RNA-seq datasets, and assess their performance in identifying known 
cellular subtypes. Our results suggest that selecting variable genes prior to analysis on single-cell 
RNA-seq data is vital to yield reliable classification, and that when variable genes are used, the 
choice of distance metric modification does not particularly influence the quality of classification. 
Still, in order to take advantage of all the gene expression information, alternative methods must 
be used for a reliable classification.  
 
Introduction  
 
Improving sequencing technologies in the past several decades has enabled single-cell 
sequencing to shed light on the understanding of cellular relationships within higher organisms1. 
In the past several years, studies focusing on single cell sequencing of whole transcriptomes have 
already revolutionized our understanding of the complexity of eukaryotic transcriptomes1–3. 
Single cell RNA sequencing allows us to explain the phenotypic heterogeneity4 observed in 
certain groups of cells and tissues by profiling cell-to-cell transcriptional heterogeneity. A major 
application of single-cell RNA-seq results in its ability to identify rare (novel) subtypes3,5–9 that 
are not easily identifiable using pre-known factors1. For example, single cell RNA sequencing 
has been exploited to identify novel subtypes in the placenta6 and intestine5. Single cell RNA 
sequencing therefore has great implications in studies regarding embryonic developments6, adult 
stem cells1 and cancer10 as it allow us to investigate and understand the heterogeneity in cell 
populations, as well as find novel subtypes. 
 
Although single-cell RNA-seq has already enabled recapitulation of known cellular subtypes3,5, 
additional computational methods are needed to identify and characterize new subtypes1. This 
task is often complicated by multiple factors such as the high dimensionality of the data, 
accompanying intrinsic noise, drop-outs during library preparation, and the data’s stochastic 
nature11. In visualizing the data, however, a plethora of methods have already been developed in 
attempt to visualize single-cell RNA-seq data in order to visually identify subtypes12 with 
dimension reduction. An often extensively used tool is Principal Component Analysis (PCA) 
(11), as well as the default Euclidean distance metric for t-Stochastic Neighbor Embedding 
(tSNE). PCA, however is a linear transformation of data, and the default Euclidean distance has 
been previously known to work poorly on high dimensional data13. Therefore, we hypothesized 
that alternative distance metrics aside from the commonly used PCA and default Euclidean for 
tSNE will be better in classifying subtypes.   
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Here, we apply and assess the performance of multiple alternative distance metrics to a publicly 
available single-cell RNA-seq dataset9, whose subtypes were annotated9. The metric 
modifications for tSNE and PCA were assessed in terms of their ability to classify subtypes 
reliably, and robustness.  
 
Methods 
 
Processing of previously published single-cell RNA-seq data 
SRA files for each study were downloaded from the Sequence Read Archive 
(http://www.ncbi.nlm.nih.gov/sra) and converted to FASTQ format using the SRA toolkit 
(v2.3.5). FASTQ files were aligned to the human reference genome (hg19) using Tophat 
(v2.0.10) with Bowtie2 (v2.1.0) and Samtools (v0.1.19). Gene expression counts were quantified 
using HTSeq (v0.5.4).  
 
Linnarson data, a single-cell RNA-seq data for cell types in the mouse cortex and hippocampus9 
(Zeisel, 2015 #2) was used in R, and matched with corresponding tags for previously known 
subtypes. Those with unknown or tag less subtypes were omitted. 

The data was log transformed and scaled before having performed any kind of distance metric 
quantification.  

Principal component analysis and tSNE 

For all pairs of the previously known subtypes specified9, principal component analysis, and t-
Distributed Stochastic Neighbor Embedding (t-SNE) with various distance metrics embedded, 
were performed. Linear Discriminant Analysis (LDA) from MASS (v7.3 – 45) was used as a 
classifier for each pair of subtypes. For principal component analysis, prcomp from R stats 
package v(3.2.2) was used then visualized into a scatterplot including variance, with the first two 
principal components. tSNE was performed using Rtsne (v0.11) with a specific distance metrics 
assigned (Euclidean, Manhattan, Minkowski).   
 
For both PCA and tSNE, the classification was then evaluated and visualized using ROCR 1.0-
5.gz with an AUC value and ROC curve plot.   
   
Performance Benchmarking  
To assess the robustness of PCA and tSNE with different distance metrics, we sought to 
benchmark performance as a function of the number of genes used in the dimensionality 
reduction. Varying number of genes was randomly sampled on a logarithmic scale. Performance 
AUC for PCA and tSNE with distance metrics embedded were calculated as noted, then 
replicated ten times with different seed values. The AUC values for all metrics were obtained 
from calculating the performance values of predictions for LDA. Resulting matrices of 
difference metrics with replications and gene sizes were melted with reshape2 (v1.4.1). 
Geom_smooth from ggplot2 (v1.0.1) was then used with loess to create the final benchmarking 
plot containing the mean lines of benchmarking performance AUC values for PCA and tSNE 
with distance metrics.    
 
From visual inspection of scatterplots including ROC curve and AUC value of all possible pairs 
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of subtypes from previous runs (PCA and tSNE), we observed that the pair Pyramidal SS and 
Pyramidal CA1 was the most similar and hence most challenging to differentiate, so further runs 
were focused on this pair. In addition, we benchmarked performance using the 200 genes with 
the most variance in gene expression across cells. Within these variable genes, gene samples 
were randomly selected again on a logarithmic scale to create final benchmarking plots.   
 
Result and Discussion   
 
When trying to identify the subtypes of a data whose subtypes are not annotated, many 
researchers use PCA or tSNE with default Euclidean metric for single cell RNA sequencing data 
(Figure 1), and visually identify the different subtypes. The visualized plot contains clusters of 
points, which are often distinguished into groups or subtypes depending on the approximate 
distance between the clusters. Therefore, to quantify how well one subtype is classified from 
another when the choice of distance metrics is varied, all possible pairs of subtypes annotated 
were tested (Figure 2), for different metrics. The scatterplots of all subtype pairs for PCA and 
tSNE with Euclidean were mostly visually well classified with AUC values near 1 (perfect 
classification) except Pyramidal SS and Pyramidal CA1 (Figure 2). Further tests with various 
distance metrics were therefore run on the Pyramidal CA1 and Pyramidal SS pair as our aim was 
to observe which metric performed better when the classification became more difficult (when 
subtypes are more similar).  
 
In attempt to compare the performance of distance metrics, the trend in the performance of each 
metric over various sample sizes on a logarithmic scale, were observed. Lowering the size of the 
gene sample provides less information for the classification, so while the performance values 
may be lower with small sample sizes, a superior distance metric is expected to attain high and 
consistent performance values even with a slight increase in the sample size.   
 
Initially, gene samples were selected randomly and benchmarked for multiple distance metrics 
(Figure 3, 1). There is a positive correlation between sample size and performance values across 
all metrics, but the performance values do not near 1, with 1 indicating complete separation of 
subtypes. This is important, as it is difficult compare to conclude which metric performs better 
when the performance values of all the metrics are similarly poor. Moreover, PCA and tSNE 
with Minkowski (min) and Manhattan (man) contain plateaus in their paths as sample size 
increases, suggesting that regardless of the number of genes sampled, the performance values is 
not likely to reach 1. We hypothesize this is due to the intrinsic noise in the single cell RNA 
sequencing data that complicates the classification as sample size increases. To resolve this 
issue, we took the 200 genes with the greatest variance in their gene expression and 
benchmarked within these variable genes (Fig3, 2). 200 genes were enough to allow the 
performance AUC values to reach 1 and to eliminate the plateaus. All distance metrics showed 
the characteristics of a superior distance metric, as performance values rapidly increased as 
sample gene size increased, and remain consistent.  
 
We conclude that when using single cell RNA sequencing data, selecting the variable genes and 
omitting the noise in the data before analysis drastically improves the ability to classify subtypes. 
When the variable genes are selected, the subtype classification performance remains high 
regardless of method. If all genes are used, however, we find that an alternative, more sensitive, 
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and robust method may be necessary to reliably identify subtypes. Therefore, while our findings 
may help those analyzing single-cell RNA-seq data for subtype classification and understanding 
heterogeneity, identification of rare, novel subtypes will require a more robust method. 
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Figures  

 
Figure 1: Dimensionality reduction and visualization of single cell RNA-seq data from 
Linnarson et al.9 highlights limited ability to visually distinguish annotated subtypes.  

a.  Dimensionality reduction and visualization using PCA. 100 genes with the greatest 
variance post log transformation (See Methods) were selected and analyzed using PCA, 
then visualized using the first two principal components. The seven major subtypes 
annotated in the original paper are colored. We can visually distinguish the points into 
groups or subtypes depending on the approximate distance between the clusters.  

b.  Dimensionality reduction and visualization using tSNE. Again, 100 genes with the greatest 
variance post log transformation (See Methods) were selected and analyzed with tSNE 
using the default Euclidean distance metric, and colored with the annotated subtypes. 
Similar to the PCA plot, we can approximately distinguish some clusters.  

 

 
Figure 2; Quantification of subtype discrimination by LDA, ROC, and AUC. 

a.  Distinguishing subtypes using PCA. All possible pairs of the major subtypes including 
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astrocytes ependymal, endothelial-mural, interneurons, microglia, oligodendrocytes, 
pyramidal CA1, and pyramidal SS were run with PCA and visualized using a scatterplot. 
An LDA classifier (See Methods) was used to quantify the extent to which the subtypes 
can be distinguished and classified. ROC curves and AUC value were used for 
quantification of discrimination performance. All the genes were used. We observed that 
all the subtype pairs did nearly equally well with high AUC values, except for Pyramidal 
SS and Pyramidal CA1 as shown. Further tests with various distance metrics were 
therefore run on the Pyramidal CA1 and Pyramidal SS pair as our aim was to observe 
which metric performed better when the classification became more difficult (when 
subtypes are more similar).   

b.  Distinguishing subtypes using tSNE with Euclidean distance. 100 most variable genes 
were selected for the tSNE analysis. We observed that tSNE with Euclidean performed 
better than PCA as the AUC performance values were much higher compared to that of 
PCA for the same subtype pair.  

 
 
Figure 3: Benchmarking mean subtype discrimination performance for random and 
variable gene samples shows improved performance for variable gene samples. 

a. Benchmarking performance for random gene samples. In attempt to compare the 
performance of distance metrics, the trend in the performance of each metric over various 
gene sample sizes on a logarithmic scale, were observed. Lowering the size of the gene 
sample provides less information for the classification, so while the performance values 
may be lower with small sample sizes, a superior distance metric is expected to attain 
high and consistent performance values even with a slight increase in the sample size.   
 
Gene samples were selected randomly and benchmarked for multiple distance metrics. 
There is a positive correlation between sample size and performance values across all 
metrics, but the performance values do not near 1 for any metrics, suggesting imperfect 
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classification even when high number of genes is used. Moreover, PCA and tSNE with 
Minkowski (min) and Manhattan (man) contain plateaus in their paths as sample size 
increases. 

b.  Benchmarking performance for variable gene samples. We hypothesize that the plateau 
and low AUC values were due to the intrinsic noise in the single cell RNA sequencing 
data that complicates the classification as sample size increases. To resolve this issue, we 
took the 200 genes with the greatest variance in their gene expression and benchmarked 
within these variable genes. 200 genes were enough to allow the performance AUC 
values to reach 1, as well as eliminate the plateaus. All distance metrics showed the 
characteristics of a superior distance metric, as performance values rapidly increased as 
sample gene size increased, and remain consistent, suggesting similar robustness as well.  
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