
	   1	  

 1	  

 2	  

A Molecular Signature for Anastasis, Recovery from the Brink of Apoptotic Cell Death 3	  

 4	  

 5	  

 6	  

 7	  

Gongping Sun, Elmer Guzman, Hongjun Robin Zhou,  8	  

Kenneth S. Kosik, and Denise J. Montell* 9	  

 10	  

 11	  

 12	  

Molecular, Cellular, and Developmental Biology Department 13	  

Neuroscience Research Institute 14	  

University of California 15	  

Santa Barbara, CA 93106 16	  

 17	  

 18	  

 19	  

 20	  

*to whom correspondence should be addressed at denise.montell@lifesci.ucsb.edu  21	  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 24, 2017. ; https://doi.org/10.1101/102640doi: bioRxiv preprint 

https://doi.org/10.1101/102640


	   2	  

Abstract 22	  

During apoptosis, executioner caspase activity has been considered a point of no 23	  

return. However, recent studies show that cells can survive caspase activation 24	  

following transient apoptotic stimuli, a process named anastasis. To identify a 25	  

molecular signature, we performed whole transcriptome RNA sequencing of 26	  

untreated, apoptotic, and recovering HeLa cells. We found that anastasis is an 27	  

active, two-stage program. During the early stage, cells transition from growth-28	  

arrested to growing. In the late stage, cells change from proliferating to migratory. 29	  

Strikingly, some early recovery mRNAs were elevated first during apoptosis, 30	  

implying that dying cells poise to recover, even while still under apoptotic stress. 31	  

Furthermore, TGFβ-induced Snail expression is required for anastasis, and 32	  

recovering cells exhibit prolonged elevation of pro-angiogenic factors. This study 33	  

demonstrates similarities in the anastasis genes, pathways, and cell behaviors to 34	  

those activated in wound healing. This study identifies a repertoire of potential 35	  

targets for therapeutic manipulation of this process.  36	  

  37	  
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Introduction 38	  

Apoptosis is a cell suicide program that is conserved in multicellular organisms and 39	  

functions to remove excess or damaged cells during development and stress1,2. Excessive 40	  

apoptosis contributes to degenerative diseases, whereas blocking apoptosis can cause 41	  

cancer3. Apoptotic cells exhibit distinctive morphological changes4 caused by activation 42	  

of proteases called caspases5,6. Activation of executioner caspases is a necessary step 43	  

during apoptosis5 and until recently was considered a point of no return7.  44	  

 45	  

However executioner caspase activation is not always sufficient to kill cells under 46	  

apoptotic stress. For example, caspase 3 activation in cells treated with sub-lethal doses 47	  

of radiation or chemicals does not cause morphological changes or death, but rather 48	  

allows cells to survive with caspase-dependent DNA damage that can result in oncogenic 49	  

transformation8–10. In addition, transient treatment of cells with lethal doses of certain 50	  

apoptosis inducers causes caspase 3 activation sufficient to cause apoptotic 51	  

morphological changes, yet cells can survive after removing the toxin in a process called 52	  

anastasis11. While most cells fully recover, a small fraction bear mutations, and an even 53	  

smaller fraction undergo oncogenic transformation. Cell survival following executioner 54	  

caspase activation has also been reported in cardiac myocytes responding to transient 55	  

ischemia, in neurons over-expressing Tau, and during normal Drosophila development12–56	  

15. Taken together these studies suggest that cells can recover from the brink of apoptotic 57	  

cell death and that this can salvage cells, limiting the permanent tissue damage that might 58	  

otherwise be caused by a transient injury. However, the same process of anastasis in 59	  

cancer cells might underlie recurrence following transient chemo- or radiation therapy. 60	  
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Thus, defining the molecular changes occurring in cells undergoing this remarkable 61	  

recovery from the brink of death is a critical step toward manipulating this survival 62	  

mechanism for therapeutic benefit. 63	  

 64	  

Results 65	  

RNAseq reveals anastasis composes of two stages. 66	  

To initiate apoptosis, we exposed HeLa cells to a 3 hr treatment with ethanol (EtOH), 67	  

which was sufficient to induce cell shrinkage and membrane blebbing (Figure 1A, B), 68	  

cleavage of PARP1, which is a target of caspase 3/7 (Figure 1I), and activation of a 69	  

fluorescent reporter of caspase 3 activity, in ~75% of the cells (Figure G, H, J, 70	  

supplementary video 1). Removal of the EtOH by washing allowed a striking recovery to 71	  

take place over the course of several hours, during which time ~70% of the cells re-72	  

attached to the culture matrix and spread out again (Figure 1C-F, K, supplementary video 73	  

2)11.  74	  

 75	  

To define anastasis at a molecular level, we performed whole transcriptome RNA 76	  

sequencing (RNAseq) of untreated cells, apoptotic cells, and of cells allowed to recover 77	  

for 1, 2, 3, 4, 8, or 12 hours (Figure 1L).  These time points include and extend beyond 78	  

the time needed for the major morphological changes, which appeared complete by 4 79	  

hours (Figure 1A-F). Compared to untreated cells, 900-1500 genes increased in 80	  

abundance >1.5-fold at each time point, while 250-750 genes decreased >1.5 fold (false 81	  

discovery rate <0.05) (Figure 1M, Supplementary table S1). Well-characterized genes 82	  

such as Fos, Jun, Klf4, and Snail were induced, as well as genes about which little is 83	  
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known, such as the long non-coding RNA LOC284454, a gene predicted to encode a 84	  

deubiquitinating enzyme (OTUD1), a pseudokinase (TRIB1), and a phosphate carrier 85	  

protein (SLC34A3).  86	  

 87	  

We validated the expression patterns of 27 top-ranked differentially expressed (22 88	  

upregulated and 5 downregulated) genes using quantitative reverse transcription PCR 89	  

(qRT-PCR). The results of RNAseq and qRT-PCR correlated well, with an R2 of 0.89 90	  

(Figure 1N-P, Supplementary figure S1). Out of 22 top-ranked, up-regulated genes we 91	  

tested, 18 increased in abundance in HeLa cells recovering from apoptosis induced by a 92	  

second chemical (10% DMSO), and in a second cell line (human glioma H4 cells) 93	  

recovering from EtOH-induced apoptosis (Supplementary figure S2). This suggests that 94	  

there is a core anastasis response that is neither cell-line-specific nor apoptosis-inducer-95	  

specific.  96	  

 97	  

A principle component analysis (PCA) of the RNAseq data showed that cells undergoing 98	  

anastasis clustered into two distinct groups: one group composed of cells allowed to 99	  

recover for 1-4 hours, and a second containing cells that recovered for 8 or 12 hours. 100	  

Both groups were also clearly different from apoptotic cells and untreated cells (Figure 101	  

1Q). We therefore defined the first 4 hrs of recovery as the early stage, and 8 to 12 hrs as 102	  

late.  103	  

 104	  

Distinct features of early and late recovery 105	  
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To compare the transcriptional profiles between early and late stages, we used the 106	  

program AUTOSOME16, which clusters genes according to similarities in their 107	  

expression patterns over time (Supplementary table S2). This approach identified 8 108	  

clusters containing a total of 1,172 genes upregulated during early recovery, and 6 109	  

clusters containing 759 genes upregulated late (Supplementary table S3). We refer to 110	  

these as early and late response genes, respectively (Figure 2A, Supplementary table S3). 111	  

Gene Ontology (GO) analysis revealed enrichment of expected categories such as 112	  

“regulation of cell death” and “cellular response to stress” in the early response (Figure 113	  

2B). The GO term “transcription” was the most significantly enriched, indicating 114	  

induction of transcription factors during initiation of anastasis (Figure 2B). The term 115	  

“chromatin modification” was also enriched. Enrichment of early response genes in 116	  

“regulation of cell proliferation” and “regulation of cell cycle” terms suggested that 117	  

removing apoptotic stress released cells from a growth-arrested state to re-enter the cell 118	  

cycle and proliferate (Figure 2B). Remarkably, the classes of early and late response 119	  

genes were very different. The late response was enriched in posttranscriptional activities 120	  

such as ncRNA processing and ribosome biogenesis. 121	  

 122	  

KEGG pathway analysis showed early response genes to be enriched in cell cycle and 123	  

pro-survival pathways such as TGFβ, MAPK, and Wnt signaling (Figure 2C). The late 124	  

response showed enrichment in general post-transcriptional pathways such as ribosome 125	  

biogenesis, RNA transport, protein processing, and endocytosis, as well as specific 126	  

pathways such as focal adhesion and regulation of actin cytoskeleton (Figure 2C).  127	  

 128	  
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Cells transition from proliferation to migration during recovery from apoptosis 129	  

Consistent with enrichment of cell cycle and proliferation genes in the early response, 130	  

cell numbers increased during the first 11 hours of recovery (Figure 3A, Supplementary 131	  

figure S3), plateaued after 11 hours, and began to increase again at ~ 30 hours. At even 132	  

later time points (after replating), recovered cells exhibited a similar proliferation rate to 133	  

control, mock-treated cells (Figure 3B).  134	  

 135	  

Due to the enrichment of “focal adhesion” and “regulation of actin cytoskeletion” 136	  

pathways in late response gene clusters (Figure 2C), we hypothesized that cells might 137	  

become migratory during the proliferation pause. To measure migration, we performed 138	  

wound-healing assays. Scratch wounds made in monolayers of cells allowed to recover 139	  

from EtOH treatment for 16 hrs closed faster than that in mock-treated monolayers 140	  

(Figure 3C, D), even though they exhibited a lower cell number and slightly slower 141	  

proliferation rate (Supplementary figure S4). In both mock-treated and EtOH-treated 142	  

cells, those that migrated to fill the wound were more elongated than cells lagging behind 143	  

(Figure 3E). A larger proportion of cells recovering from EtOH treatment showed this 144	  

elongated morphology compared to mock-treated cells (Figure 3F, G), suggesting this 145	  

morphology might facilitate migration and wound closure. 146	  

 147	  

Recovery from apoptotic stress is different from recovery from autophagy 148	  

The observed enrichment of cell cycle components in the early response suggested that 149	  

one facet of anastasis is re-entry into the cell cycle following growth arrest during 150	  

apoptosis. To distinguish which molecular features of anastasis were common to another 151	  
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type of growth arrest and recovery, and to identify those more likely to be specific to 152	  

anastasis, we evaluated the expression of the top-ranked, differentially expressed 153	  

anastasis genes in cells undergoing recovery from nutrient deprivation. Nutrient 154	  

deprivation induces growth arrest and autophagy, a process that can promote survival17,18. 155	  

Autophagy results in degradation of cytoplasmic components in autophagosomes, which 156	  

are double-membrane-bound vesicles that sequester cytoplasm and fuse with 157	  

lysosomes17. However expression of autophagy genes was not induced during anastasis, 158	  

suggesting that the two survival mechanisms differ. A time course showed that amino 159	  

acid starvation for 2 hours induced autophagy in HeLa cells, shown by increased LC3 160	  

staining, which is a marker of for autophagosomes. LC3 staining is typically further 161	  

augmented by blocking fusion between autophagsomes and lysosomes with bafilomycin 162	  

A119, and this was also true in nutrient-deprived HeLa cells (Figure 4A-D). Two hours of 163	  

starvation did not induce caspase 3 activation (Figure 4E), although longer treatments 164	  

did. Of the 24 genes upregulated during anastasis that we tested, 10 were downregulated 165	  

or only slightly upregulated during recovery from autophagy (Figure 4F-O). Thus 166	  

elevated transcription of these 10 genes distinguishes cells in early anastasis from those 167	  

recovering from autophagy. Furthermore cells recovering from autophagy showed no 168	  

measurable difference in the rate of wound closure compared to mock treated cells 169	  

(Figure 4P, Q). Thus, cells recovering from transient apoptotic stress exhibit both 170	  

molecular and behavioral hallmarks that distinguish anastasis from recovery from other 171	  

types of stress that induce growth arrest. 172	  

 173	  

Cells poise for recovery during apoptosis. 174	  
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The transcriptional profile of cells undergoing anastasis revealed an unknown feature of 175	  

apoptotic cells that appears to contribute the rapid transition to recovery. We noticed that 176	  

transcripts corresponding to a subset of early response genes that were induced during the 177	  

first hour of anastasis were already elevated in abundance in apoptotic cells, relative to 178	  

untreated cells (Figure 1O, P, Figure 2A, Supplementary 1A-G). One possible 179	  

explanation would be that these are genes that drive apoptosis, and that apoptosis had not 180	  

completely stopped 1 hour after removal of the chemical stress. Alternatively, these could 181	  

be genes encoding proteins that contribute to recovery, and that cells prepare for that 182	  

possibility even after caspase activation. To distinguish between these opposing 183	  

possibilities, we compared the levels of expression of 10 such early genes at 1 hr of 184	  

recovery after 3 hr EtOH treatment, to the levels in cells left in EtOH for 4 hrs. The 185	  

mRNA levels after 4 hr EtOH treatment were significantly lower than those at 1 hr 186	  

recovery, indicating that accumulation of these mRNAs was associated with the survival 187	  

response (Figure 5A-J). We analyzed the corresponding protein levels for five of the 188	  

early response targets for which antibodies were available. The protein levels remained 189	  

unchanged or were slightly reduced during apoptosis (Figure 5K), suggesting that while 190	  

the mRNAs accumulated, their translation was inhibited, consistent with prior 191	  

observations of downregulated protein synthesis in apoptotic cells20. This intriguing 192	  

finding supports the idea that even during apoptosis, cells actually poise for recovery by 193	  

synthesizing, or protecting from degradation, specific mRNAs encoding survival 194	  

proteins, which are however not translated. If apoptotic stress persists, the mRNAs are 195	  

degraded and the cells die. However, if the apoptotic stress disappears, cells are prepared 196	  
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to rapidly synthesize survival proteins. This ‘poised for recovery’ state may help to 197	  

explain the rapid recovery after stress removal. 198	  

 199	  

Knocking down Snail impaired recovery from apoptosis. 200	  

Snail is one of the mRNAs enriched in apoptotic cells and then highly induced in early 201	  

recovery, and has been reported to protect cells from apoptosis21,22. We found that Snail 202	  

protein levels increased during recovery (Figure 5K). In addition, knocking down Snail 203	  

expression by stably expressing short hairpin RNA (shRNA) reduced the endogenous 204	  

Snail protein level (Figure 6A) and reduced the percentage of cells surviving EtOH-205	  

induced apoptosis (Figure 6B). We also found increased PARP1 cleavage in Snail-206	  

depleted cells following EtOH treatment (Figure 6A). Therefore the poor recovery 207	  

following Snail knockdown may result from enhanced caspase activation during EtOH 208	  

treatment, impaired anastasis, or both.  209	  

 210	  

Activation of TGFβ  signaling contributes to Snail upregulation and migration. 211	  

One important upstream regulator of Snail is TGFβ signaling23, and this pathway was 212	  

enriched in the early recovery gene set. TGFβ signaling regulates transcription through 213	  

phosphorylation and activation of downstream transcription factors Smad2 and Smad324. 214	  

Phosphorylation of Smad2/3 increased during apoptosis and in the first hour of recovery, 215	  

then diminished after 4 hrs of recovery, indicating transient activation of TGFβ signaling 216	  

(Figure 6C). To test if Snail upregulation was due to TGFβ signaling, we treated cells 217	  

with a TGFβ receptor I specific inhibitor LY364947. LY364947 did not affect basal cell 218	  
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survival or proliferation (Supplementary figure S5) but suppressed the induction of Snail 219	  

protein during recovery (Figure 6D).  220	  

 221	  

TGFβ signaling activation can promote epithelial-to-mesenchymal transition (EMT) and 222	  

cell migration25. To determine if the transient activation of TGFβ signaling during early 223	  

recovery was responsible for the increased migration later, we inhibited TGFβ signaling 224	  

only during apoptosis and early recovery stage, then tested cell migration using the 225	  

wound-healing assay. Transient inhibition of TGFβ signaling by LY364947 reduced the 226	  

average migration speed of EtOH-treated cells from 45 to 37 µm/h while reducing the 227	  

average migration speed of mock-treated cells from 27 to 23 µm/h, suggesting TGFβ 228	  

signaling contributes to both basal motility and anastasis-induced migration in HeLa cells 229	  

(Figure 6E). Interestingly, TGFβ signaling, Snail mRNA, and Snail protein were all 230	  

downregulated during autophagy and recovery (Figure 4F, Figure 6C). Recovery from 231	  

autophagy did not stimulate cell migration (Fig 4P, Q), further supporting the idea that 232	  

activation of TGFβ signaling, induction of Snail, and increased migration characterize the 233	  

recovery from the brink of apoptotic cell death specifically, rather than general stress 234	  

responses.  235	  

 236	  

Induction of angiogenesis-related genes throughout recovery. 237	  

While TGFβ signaling and Snail expression were transiently elevated during early 238	  

recovery, some angiogenesis-related genes were persistently elevated throughout the 12 239	  

hours examined. Placenta growth factor (PGF) binds vascular endothelial growth factor 240	  

receptor (VEGFR) and stimulates endothelial cell proliferation and migration26. PGF was 241	  
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among the top 10 upregulated genes at every time point during apoptosis and recovery 242	  

(Supplementary table S1). PGF mRNA increased ~22-fold at 1hr recovery, and even after 243	  

24hr recovery, PGF mRNA was 3-fold higher in EtOH-treated cells compared to mock-244	  

treated cells (Figure 7A, B).  245	  

 246	  

Ephrin and Ephrin receptor (EphR) signaling are also important in blood vessel 247	  

development and angiogenesis 27,28. Several EphRs (EPHA2, EPHB2, EPHB4) and 248	  

Ephrins (EFNB1, EFNB2) were upregulated throughout recovery (Supplementary table 249	  

S1). For example, expression of EFNB2 in the first hour of recovery was ~1.6 fold that of 250	  

mock-treated cells and elevated ~ 2-3 fold during 3-12 hours of recovery (Supplementary 251	  

figure S1K). EPHA2 was significantly upregulated after 24 hr recovery (Figure 7C). 252	  

Sprouty 2 (SPRY2) is a common transcriptional target of VEGFR and EphR signaling29. 253	  

SPRY2 expression was upregulated from 4hr to 24hr recovery (Figure 7D-F), suggesting 254	  

activation of VEGFR and EphR signaling during recovery.  255	  

 256	  

Discussion 257	  

The ability of cells to survive caspase-3 activity has implications for normal 258	  

development, cancer, and degenerative and ischemic diseases. Here we report the first 259	  

molecular characterization of cells recovering from the brink of apoptotic cell death. The 260	  

data show that anastasis proceeds in two clearly defined stages that are characterized by 261	  

distinct repertoires of genes. In the early stage, cells transcribe mRNAs encoding many 262	  

transcription factors and re-enter cell cycle. In the late stage, cells pause in proliferation 263	  

while increasing migration. While the proliferation and migration responses were 264	  
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transient, others were longer lasting. For example, we found that cells that have 265	  

undergone anastasis elevate expression of angiogenesis-related genes for 24 hours. In 266	  

vivo, these factors would be expected to exert a non-autonomous effect of stimulating 267	  

blood vessel growth.  Taken together the results presented here demonstrate that cells 268	  

recovering from the brink of apoptotic cell death express factors that promote 269	  

proliferation, survival, migration, and angiogenesis (Figure 8). The cell biological 270	  

processes involved in anastasis are thus reminiscent of wound healing responses 30, 271	  

consistent with the idea that cells evolved this capacity in order to limit permanent tissue 272	  

damage following a transient injury.  273	  

 274	  

Many of the same molecular pathways are also upregulated during wound healing and in 275	  

cells undergoing anastasis including TGFβ, receptor tyrosine kinase, MAPK signaling, 276	  

and angiogenesis promoting pathways30. TGFβ signaling and Snail expression are 277	  

thought to promote EMT and chemotherapy resistance during tumor progression31–33. 278	  

Cells undergoing anastasis activate TGFβ signaling and Snail expression, and become 279	  

migratory, all features of EMT. Two recent studies reported that EMT, though 280	  

dispensable for tumor metastasis, is required for tumor recurrence after 281	  

chemotherapy34,35, suggesting that EMT is a survival strategy for tumor cells under stress 282	  

in vivo. Our results suggest a possible relationship between tumor recurrence, EMT, and 283	  

anastasis. If cancer cells exposed to radiation or chemotherapy during treatment escape 284	  

death via anastasis, TGFβ signaling and Snail expression would be induced, and these 285	  

critical regulators of EMT32 would confer resistance to further chemotherapy and 286	  
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radiation33. Therefore anastasis could in principle drive EMT-dependent tumor 287	  

recurrence.  288	  

 289	  

In vivo, fast growing tumors require formation of new blood vessels to supply nutrients 290	  

and provide a route to metastasis36. Common cancer treatments, like tumor resection, can 291	  

induce extensive angiogenesis, which may promote tumor recurrence37. In fact, elevated 292	  

expression of angiogenic factors and/or increased blood vessel formation have been 293	  

found in recurrent craniopharyngioma, bladder cancer, squamous cell carcinoma after 294	  

surgery or irradiation38–40. Our results imply if tumor cells survive apoptosis triggered by 295	  

chemotherapy, irradiation or surgery, these survivors may upregulate production of pro-296	  

angiogenic factors to facilitate angiogenesis and tumor recurrence.  297	  

 298	  

In addition to providing insight into the molecular nature of anastasis, the work presented 299	  

here uncovers an unanticipated aspect of apoptosis. Even during apoptosis, cells poise for 300	  

recovery by accumulating mRNAs encoding survival proteins. The proteins however are 301	  

not expressed until and unless they are needed to reverse the apoptotic process. We 302	  

propose that this facilitates rapid recovery upon removal of the apoptotic stimulus.  303	  

Apoptosis and caspase 3 have been linked to tumor recurrence. In cancer patients, the rate 304	  

of recurrence is positively correlated with the amount of activated caspase 3 in tumor 305	  

tissues41,42. One explanation that has been offered to explain this somewhat paradoxical 306	  

result is that after radiotherapy or chemotherapy, activated caspase 3 promotes production 307	  

of pro-growth signals that are released from dying cells to stimulate proliferation of 308	  

living tumor cells, leading to tumor recurrence41,43,44. Dying cells can also secrete VEGF 309	  
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in a caspase-dependent way to promote angiogenesis after irradiation45. These previous 310	  

studies proposed that apoptotic cells induce non-autonomous compensatory proliferation 311	  

in neighboring cells. The model is that cells that activate caspase 3 die and stimulate cells 312	  

without activated caspase to proliferate and grow. However, our study suggests another 313	  

possible mechanism underlying tumor recurrence: that tumor cells with activated caspase 314	  

3 themselves may eventually survive, proliferate, migrate, and trigger angiogenesis, 315	  

contributing to tumor repopulation.     316	  

 317	  

When facing tissue injury, anastasis could in principle facilitate repair and regeneration, 318	  

and limit the permanent damage that might otherwise occur in response to a powerful but 319	  

temporary insult. On the other hand, anastasis would be detrimental if adopted by cancer 320	  

cells in response to chemo- or radiation therapy, thus potentially promoting recurrence. 321	  

Thus the mechanisms described here fit into the general idea that cancers mimic and co-322	  

opt wound-healing behaviors46. Enhancing anastasis would be expected to be beneficial 323	  

in the context of degenerative or ischemic disease, whereas inhibiting anastasis should be 324	  

beneficial in cancer treatment. 325	  

 326	  

Materials and methods 327	  

Cell culture  328	  

Human cervical cancer HeLa cells (ATCC cell line CCL-2), was grown in MEM 329	  

supplemented with GlutaMAX (Thermo Fisher Scientific), 10% fetal bovine serum 330	  

(Sigma), and 100U/ml Penicillin-Streptomycin (Thermo Fisher Scientific). Human 331	  

neuroglioma H4 cells (ATCC cell line HTB-148) were grown in high glucose DMEM 332	  
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supplemented with GlutaMAX (Thermo Fisher Scientific), 10% fetal bovine serum, and 333	  

100U/ml Penicillin-Streptomycin. All cells were maintained at 37°C with 5% CO2 and 334	  

90% humidity. Cells were tested for Mycoplasma contamination. 335	  

 336	  

For RNAseq, 1.2×106 cells were seeded in each 100mm dish and cultured overnight. The 337	  

next day, cells were treated with either fresh growth medium or fresh growth medium 338	  

with 4.3% ethanol (EtOH) (Fisher Scientific) for 3 hrs. Samples from untreated and 339	  

apoptotic cells were collected at this moment. For recovery, medium was carefully 340	  

removed and fresh growth medium was added. For each time point, three biological 341	  

replicates were included. 342	  

 343	  

For qRT-PCR, western blotting, and immunofluorescent antibody staining, 2×105 cells 344	  

were seeded in a 35mm dish or 6-well plate and cultured overnight. The next day, cells 345	  

were treated with either fresh growth medium, or fresh growth medium with 4.3% 346	  

(HeLa) or 4% (H4) EtOH for 3 hrs or fresh growth medium with 10% dimethyl sulfoxide 347	  

(DMSO) (Santa Cruz Biotechnologies) for 2.5 hrs, or Hanks’ balanced salt solution 348	  

(HBSS) (Thermo Fisher Scientific) for 2 hrs. The precise concentration and time points 349	  

were chosen based on titration studies to achieve the highest possible percentage of 350	  

apoptotic cells that could recover. For recovery, medium was carefully removed and fresh 351	  

growth medium was added for the indicated period of time.  352	  

 353	  

For TGFβ signaling inhibition, 5µM LY364947 (Sigma) was added to cells together with 354	  

mock or EtOH treatment. 355	  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 24, 2017. ; https://doi.org/10.1101/102640doi: bioRxiv preprint 

https://doi.org/10.1101/102640


	   17	  

 356	  

RNA extraction 357	  

For RNA sequencing, total RNA was extracted using mirVana miRNA isolation kit 358	  

(Thermo Fisher Scientific) then treated with TURBO Dnase (Thermo Fisher Scientific) to 359	  

get rid of the genomic DNA. Ribosomal RNA (rRNA) was removed using RiboMinus 360	  

Eukaryote System v2 (Thermo Fisher Scientific). The quality of RNA was examined 361	  

using fragment analyzer (Advanced Analytical).  362	  

 363	  

For qRT-PCR, RNA was extracted using RNeasy Mini kit (Qiagen) and treated with 364	  

TURBO DNase to remove genomic DNA. 365	  

 366	  

RNA sequencing and data analysis 367	  

cDNA libraries used for sequencing were made from rRNA-depleted RNA using Ion 368	  

Total RNA-seq kit v2 (Thermo Fisher Scientific), and sequenced on an Ion Torrent 369	  

Proton sequencer (Thermo Fisher Scientific). Strand specific single-end reads were 370	  

generated from sequencing with average read lengths of 75 bp. Reads were mapped to 371	  

UCSC Human Reference Genome (hg19) using Tophat (v2.0.13)47. Reads covering gene 372	  

coding regions were counted using htseq (v0.6.1)48 and resulting count data was used for 373	  

was used for downstream analysis. Count data were first filtered by removing genes with 374	  

low expression, or genes with less than 50 reads in more than 2 replicates per sample. 375	  

Remaining count data was normalized using trimmed mean of M-values method using 376	  

edgeR (v 3.14.0)49. Normalized count distributions were fit to a generalized linear model 377	  

in order to test for differential expression of genes (p-value=0.05) among multiple 378	  
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samples. The differential expression test was corrected for multiple testing by applying 379	  

the Benjamini-Hochberg method on p-values to control false discovery rate.	  380	  

AutoSOME16 was used for identification of gene clusters with similar expression patterns 381	  

on CPM (counts per million) and log2 transformed count data.   382	  

 383	  

Gene Ontology enrichment analysis was performed using DAVID 384	  

(https://david.ncifcrf.gov/) and PANTHER (http://pantherdb.org). Only the common GO 385	  

terms with Bonferroni P value less than 0.001 and FDR less than 0.001 were considered 386	  

significantly enriched. KEGG pathway enrichment analysis was performed using 387	  

WebGestalt (http://www.webgestalt.org).  388	  

 389	  

qRT-PCR 390	  

RNA samples were reverse transcribed into cDNA using SuperScript III first-strand 391	  

synthesis system (Thermo Fisher Scientific). And qPCR was performed on QuantStudio 392	  

12K Flex real-time PCR system (Thermo Fisher Scientific) with Power SYBR green PCR 393	  

master mix. The primers used in qPCR are listed in supplementary table S4.  394	  

 395	  

Live imaging 396	  

2×105 cells were seeded in each glass-bottom, 35mm dish (MatTek corporation). Cells 397	  

were incubated with Hoechst 33342 (Molecular Probes) for 20min, and imaged on Zeiss 398	  

LSM 780 with temperature and CO2 control. Images were taken every 10min. Medium 399	  

change for EtOH treatment and recovery was carried out between scans. To monitor 400	  
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caspase 3 activation during EtOH treatment lively, NucView 488 (Biotium) was added. 401	  

NucView488 binds irreversibly to DNA and thus inhibits anastasis. 402	  

 403	  

Western blotting 404	  

Cells were lysed in laemmli sample buffer and run in 4-20% Mini-PROTEAN TGX 405	  

precast protein gels (Bio-rad). Primary antibodies used were rabbit anti-Egr1 (Cell 406	  

signaling #4154), rabbit anti-c-Fos (Cell signaling #2250), rabbit anti-c-Jun (Cell 407	  

signaling #9165), mouse anti-Snail (Cell signaling #3895), rabbit anti-PARP1 (Cell 408	  

signaling #9532), rabbit anti-Smad2/3 (Cell signaling #8685), rabbit anti-pSmad2/3 (Cell 409	  

signaling #8828), mouse anti-α-Tubulin (Sigma #T6199). Secondary antibodies used 410	  

were IRDye 800CW donkey anti-rabbit IgG (H+L), IRDye 680LT donkey anti-mouse 411	  

IgG (H+L), IRDye 800CW donkey anti-mouse IgG (H+L) (Li-Cor Biosciences). The 412	  

blots were scanned on Odyssey imaging system (Li-Cor Biosciences). Cell treatment, 413	  

sample collection and western blotting were repeated at least three times, and the 414	  

representative blots were shown in the figures. 415	  

 416	  

Immunofluorescent staining 417	  

Cells were seeded in 6-well plate with coverslip. After treatment, cells were washed once 418	  

with PBS and fixed with cold methanol for 5min. Cells were then rinsed with PBS twice 419	  

and washed with PBS containing 0.2% Triton X-100 (Fisher Scientific). After that, cells 420	  

were blocked with PBS containing 0.2% Triton X-100 and 5% goat serum (Sigma). The 421	  

primary antibody and secondary antibody used are rabbit anti-LC3B (Cell signaling 422	  

#2775) and Alexa Fluor 488 conjugated goat anti-rabbit IgG (H+L) secondary antibody 423	  
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(Thermo Fisher Scientific). The images were acquired on a Leica DMi8 microscope. Cell 424	  

treatment and staining were repeated three times, and the representative images were 425	  

shown in the figure. 426	  

 427	  

Short-hairpin RNA construct, transfection and stable cell line 428	  

Short-hairpin RNA constructs were made in the pLVX vector. The sequences of snail 429	  

shRNA and scrambled shRNA were 5’-430	  

GGATCTCCAGGCTCGAAAGtcaagagCTTTCGAGCCTGGAGATCCtttttt-3’50 and 5’-431	  

CCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAACCTTAGGttttt-3’ 432	  

(Addgene #1864). The constructs were transfected into HeLa cells using TurboFect 433	  

transfection reagent (Thermo Fisher Scientific), and selected using 2µg/ml puromycin 434	  

(Thermo Fisher Scientific) to get stable cell lines.  435	  

 436	  

Proliferation assay 437	  

HeLa NucLight Red cells (Essen BioScience) were seeded in 6-well plate and cultured 438	  

overnight. After EtOH treatment, cells were cultured in growth medium and imaged in 439	  

the IncuCyte Zoom (Essen BioScience) every hour. 9 fields of view were taken per well, 440	  

and the number of red fluorescent nuclei was counted using IncuCyte Zoom software 441	  

(Essen BioScience).  442	  

 443	  

Wound healing assay 444	  

HeLa NucLight Red cells were seeded in 100mm dish and cultured overnight. After 445	  

treatment and 16hr recovery, cells were trypsinized and seeded in Matrigel-coated 96-446	  
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well ImageLock plate (Essen BioScience) at 4×104 cells per well. After 4hrs, wound was 447	  

made in each well using WoundMaker (Essen BioScience). The wound closure process 448	  

was imaged in IncuCyte Zoom every hour.  449	  

 450	  

Recovery rate quantification 451	  

Before treatment, cells seeded in 6-well plate were incubated with growth medium with 452	  

DRAQ5 (Thermo Fisher Scientific) for 10min at 37C, and imaged in IncuCyte Zoom to 453	  

quantify the original cell number. After 4hr recovery, cells were washed twice with PBS 454	  

to remove floating dead cells, and stained with DRAQ5 again. The cell number was 455	  

quantified again as the number of survivors. The recovery rate was calculated as the ratio 456	  

between the number of survivors to the original cell number.  457	  

 458	  

Statistical analyses 459	  

Statistical analysis used in RNAseq data analysis was described in the “RNA sequencing 460	  

and data analysis” section. For other experiments, statistical significance was determined 461	  

using unpaired, two-tailed, t-tests with Welch’s correction for comparison between two 462	  

samples, and one-way ANOVA to compare more than two samples, with P<0.05 set as 463	  

criteria for significance. The Tukey test was used to derive adjusted P value for pairwise 464	  

comparison among multiple samples. Sample size was not predetermined. 465	  

 466	  

Data availability 467	  

The RNAseq data have been deposited in the Gene Expression Omnibus (GEO) under 468	  

accession ID GSE86480. 469	  

470	  
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Figure 1. RNAseq defines anastasis as a two-stage active process.  615	  

A-F) Time-lapse live imaging of HeLa cells before EtOH treatment (A), after 3hr EtOH 616	  

treatment (B), and after recovery for 1hr (C), 2hrs (D), 3hrs (E), and 4hrs (F). G-H) 617	  

Caspase 3 activity (green fluorescence) in the same group of cells before (G) and after 618	  

(H) 3hr EtOH treatment. DAPI staining is shown in blue in A-H. Scale bar is 50µm. I) 619	  

Western blots of full-length PARP1 (FL-PARP1) and cleaved PARP1 in cells after 3hrs 620	  

mock or EtOH treatment (T) followed by 21hrs recovery (R). J) Quantification of the 621	  

percentage of cells with active caspase 3 during EtOH treatment (n=5). K) The ratio of 622	  

the number of remaining cells right after washing away EtOH (R0h) or after 5hr recovery 623	  

(R5h) to the number of cells after mock treatment (n=3). L) The workflow of RNAseq 624	  

experiments. M) Numbers of upregulated and downregulated genes in apoptotic cells, 625	  

cells after 1hr, 2hr, 3hr, 4hr, 8hr, and 12hr recovery compared to untreated cells (fold 626	  

change>1.5, false discovery rate < 0.05). N) Correlation of RNAseq and qRT-PCR data 627	  

for 27 genes. O, P) Comparison of the changes in levels of FOS (O) and SNAI1 (P) 628	  

mRNAs over time detected by RNAseq and qRT-PCR. In n-p, ‘fold change’ is compared 629	  

to the expression level in untreated cells. Q) Principal component analysis of RNAseq 630	  

data reveals four clusters: untreated cells, apoptotic cells, 1-4 hrs recovery, and 8 and 12 631	  

hrs recovery. Each color represents a different time point. Each time point was analyzed 632	  

in triplicate. 633	  

  634	  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 24, 2017. ; https://doi.org/10.1101/102640doi: bioRxiv preprint 

https://doi.org/10.1101/102640


	   30	  

Figure 2. AUTOSOME and enrichment analyses of early and late response genes. 635	  

A) AUTOSOME analysis. The red indicates increases and blue indicates decreases in 636	  

mRNA abundance. Genes most highly upregulated during 1 to 4hrs recovery are defined 637	  

as early response genes, and those that peak at 8 or 12hrs are late response genes. Red 638	  

bracket points out the genes upregulated in both apoptosis and early recovery. B) GO 639	  

enrichment analysis of early response genes and late response genes. C) KEGG pathway 640	  

enrichment analysis of early and late response genes. In B and C), P value is the 641	  

Bonferroni P value.  642	  
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Figure 3. Cells transition from proliferation to migration during recovery. 644	  

A) Cell number during recovery after mock or EtOH treatment (n=3). B) Cells after 47hr 645	  

recovery from mock or EtOH treatment were trypsinized and re-plated at similar density. 646	  

The curves show the change of cell number over 22hrs (n=3). C, D) wound healing 647	  

assays. C) Quantification of wound width over time (n=8). The stars above each time 648	  

point present the statistical significance of the difference between cells after mock versus 649	  

EtOH treatment. *: P<0.05. **: P<0.01. ***: P<0.001. ****: P<0.0001. D) Images of 650	  

wounds made in cells recovering from mock treatment (D’ and D’’) or EtOH treatment 651	  

(D’’’ and D’’’’). The yellow lines mark the wound margins. E) Magnified images of the 652	  

outlined regions in (D’’’’). F and G) Images of confluent monolayers of cells recover 653	  

from mock (F) or EtOH (G) treatment. In E and G, yellow arrows point to elongated 654	  

cells. In all plots, error bars represent standard error of mean. 655	  
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Figure 4. Comparison between anastasis and recovery from autophagy  657	  

A-D) LC3B autophagosome marker staining (green) in cells incubated with growth 658	  

medium containing 1% DMSO (control) (A), or HBSS containing 1% DMSO (B), or 659	  

growth medium containing 100nM Bafilomycin A1 (C), or HBSS containing 660	  

Bafilomycin A1 (D). E) Western blot for PARP1 showing little cleavage during amino 661	  

acid starvation. The 2hr time point was chosen for further studies. F-O) Comparison 662	  

between the mRNA levels of indicated genes after 0hr, 1hr, and 4hr recovery from 663	  

apoptosis (gray bars) or from autophagy (black bars). ‘fold change’ is compared to 664	  

expression level of mock-treated cells. *: P<0.05. **: P<0.01. ***: P<0.001. ****: 665	  

P<0.0001. n=3. P) Relative wound width over time in wound healing assay (n=5). Q) 666	  

Images of wounds made in cells recovering from mock treatment (upper two panels) or 667	  

amino acid starvation (lower two panels). Yellow lines mark the margin of wound. In all 668	  

bar graphs, error bars represent standard error of mean.  669	  
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Figure 5. Apoptotic cells were poised for recovery. 670	  

A-J) mRNA levels of the indicated genes relative to mock-treated cells after 3hr mock 671	  

treatment (mock-T3R0), after 3hr EtOH treatment (EtOH-T3R0), after 1hr recovery from 672	  

EtOH treatment (EtOH-T3R1) and after 4hr EtOH treatment (EtOH-T4R0) (n=3). Stars 673	  

show statistic significance between EtOH-T3R1 and EtOH-T4R0. *: P<0.05. **: P<0.01. 674	  

***: P<0.001. ****: P<0.0001. K) The protein levels of Egr1, c-Fos, c-Jun, Snail during 675	  

recovery from mock treatment and EtOH treatment.  676	  

  677	  
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Figure 6. Transient activation of TGFβ  signaling induced Snail upregulation, which 678	  

was required for anastasis, and caused increased migration in late stage. 679	  

A) Cleavage of PARP1 and Snail protein in HeLa cells stably expressing scrambled 680	  

shRNA (scr shRNA) or snail shRNA treated with or without EtOH for 3hrs. B) Recovery 681	  

rate of untransfected HeLa, HeLa-scr shRNA, and HeLa-snail shRNA cells after mock 682	  

treatment or EtOH treatment (n=3). In all bar graphs, error bars represent standard error 683	  

of mean. C) Western blots of phosphor-Smad2/3, total Smad2/3, Snail in cells recovering 684	  

from mock treatment, EtOH treatment or starvation. D) The level of pSmad2/3, Smad2/3 685	  

and Snail in apoptotic cells (T3R0), cells after 1hr recovery (T3R1) and 4hr recovery 686	  

(T3R4). The addition of LY364497 and EtOH is indicated. E) Average migration speed 687	  

of the indicated group of cells during wound healing assay (n=8). Before wound healing 688	  

assay cells were treated with or without EtOH together with 0.1% DMSO or 5µM 689	  

LY364947 for 3 hrs, followed by 4 hrs recovery with 0.1% DMSO or 5µM LY364947 690	  

and an additional 16 hrs recovery without any inhibitor. Error bars represent 95% 691	  

confidence interval. *: P<0.05. **: P<0.01. ***: P<0.001. ****: P<0.0001. 692	  
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Figure 7. Angiogenesis-related genes were persistently upregulated during recovery. 694	  

mRNA expression of PGF (A, B), EPHA2 (C), SPRY2 (D-F) in cells recover from mock 695	  

or EtOH treatment for the indicated time (R). Error bars represent standard error of mean. 696	  

*: P<0.05. **: P<0.01. ***: P<0.001. ****: P<0.0001.  697	  

  698	  
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Figure 8. Schematic of events in anastasis. 699	  

During apoptosis, cells poise for recovery. If the stress persists, cells die. If the stress is 700	  

removed, cells undergo two stages of recovery.  701	  
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