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Abstract  

Changing just a few words in a story can induce a substantial change in the overall 

narrative. How does the brain accumulate and process local and sparse changes, creating a 

unique situation model of the story, over the course of a real-life narrative? Recently, we 

mapped a hierarchy of processing timescales in the brain: from early sensory areas that 

integrate information over 10s-100s ms, to high-order areas that integrate information over 

many seconds to minutes. Based on this hierarchy, we hypothesize that early sensory areas 

would be sensitive to local changes in word use, but that there will be increasingly divergent 

neural responses along the processing hierarchy as higher-order areas accumulate and amplify 

these local changes. To test this hypothesis, we created two structurally related but 

interpretively distinct narratives by changing some individual words.  We found that the neural 

response distance between the stories was amplified as story information is transferred from 

low-level regions (e.g. early auditory cortex) to high-level regions (e.g precuneus and prefrontal 

cortex) and that the neural difference between stories is highly correlated with an area’s ability 

to integrate information over time. Our results suggest a neural mechanism by which two similar 

situations become easy to distinguish.  
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Introduction 

Stories unfold over many minutes and are organized in temporarily nested structures: 

paragraphs are made of sentences, which are made of words, which are made of phonemes. 

Understanding a story therefore requires processing the story at multiple timescales such that 

words and phonemes are processed in a relatively short temporal window while sentences and 

paragraphs are processed at longer timescales. It was recently suggested that these timescales 

of language processing (i.e. “word level” vs “paragraph level”) are represented hierarchically 

along the cortical surface (Ding, Melloni, Zhang, Tian, & Poeppel, 2016; Hasson, Chen, & 

Honey, 2015; Kiebel, Daunizeau, & Friston, 2008; Murray et al., 2014). Previously, we defined a 

temporal receptive window (TRW) as the length of time in which prior information from an 

ongoing stimulus can affect the processing of newly arriving information. We found that early 

sensory areas, such as auditory cortex, have short TRWs, accumulating information over very 

short period of time (10s-100s milliseconds, equivalent to articulating a phoneme or word), while 

adjacent areas along the superior temporal sulcus have intermediate TRWs (few seconds, 

sufficient to integrate information at the sentence level). Areas at the top of the processing 

hierarchy, including the temporal parietal junction (TPJ), angular gyrus, and posterior and frontal 

medial cortices, have long-TRWs (many seconds to minutes), sufficient to integrate information 

at the paragraph and narrative levels (Hasson et al., 2015; Hasson, Yang, Vallines, Heeger, & 

Rubin, 2008; Honey, Thesen, et al., 2012; Lerner, Honey, Silbert, & Hasson, 2011). The neural 

circuits enabling long-TRW areas to accumulate and integrate information over longer periods of 

time are not yet been elucidated. However, recent work with both electrocorticography (ECoG) 

and fMRI in humans (Honey et al, 2012; Stephens et al., 2013) has suggested that the ability of 

an area to accumulate information may be related to its intrinsic neuronal dynamics (specifically 

the proportion of slow fluctuations during both rest and naturalistic stimulation).  

We previously (Hasson et al., 2008) proposed that the hierarchy of TRWs is 

conceptually analogous to the well-established hierarchy of increasing spatial receptive fields 

(SRF) size in visual cortex (Dumoulin & Wandell, 2008; Grill-Spector & Malach, 2004; Smith, 

Singh, Williams, & Greenlee, 2001). In the visual domain, cortical areas with larger SRFs 

integrate and summate information from downstream areas that have smaller SRFs (Kay, 

Winawer, Mezer, & Wandell, 2013; Press, Brewer, Dougherty, Wade, & Wandell, 2001). As a 

result, small changes in the visual field, which are detected by low-level areas with small SRFs, 

can be amplified as they are integrated up the visual hierarchy to areas with successively larger 

SRFs (Hasson, Hendler, Ben Bashat, & Malach, 2001). Similarly, here we suggest that local 
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Fig.1 Hypothesis. Two paragraphs with three sentences each (lower panel). Only three words (out of 13) 
differ between paragraphs, but these small local changes result in large changes in the overall narrative. 
We hypothesis that voxels with short TRWs will have relatively small neural differences between narratives 
(bright orange), whereas voxels with long TRWs will have relatively large neural difference (brown).   

 

momentary changes in the content of linguistic input in the context of a narrative (e.g. “he” vs. 

“she) will introduce temporally local changes in the responses of areas with short TRWs. 

However, such temporally local changes can affect the interpretation of a sentence (e.g. “he 

built a wall” vs. “she built a wall”), which unfolds over a few seconds, as well as the 

interpretation over the overall narrative (“they didn’t pay for it; a big surprise” vs. “they didn’t 

vote for her; a big surprise”), which unfolds over many minutes. Small changes may thus lead 

to substantial differences in the activity of high-level areas with long TRWs (Fig. 1). 

 

 

           

In the present work, we tested the prediction that temporally local, sparse changes of words in a 

narrative will be accumulated and amplified along the processing timescale hierarchy. Just as 

small changes in word choice may lead to large changes in overall story plot, we predict that 

these changes will lead to increasingly divergent neural response patterns along the timescale 

hierarchy such that short-TRW areas will show only small differences between stories while 

long-TRW areas will show large changes (Fig. 1). Moreover, we predict that areas with larger 

neural differences between stories will have slower BOLD signal fluctuations, which enable 

these areas to accumulate more information over time. To test these predictions, we scanned 

subjects using functional magnetic resonance imaging (fMRI) while they listened to one of two 

stories. The two stories had the same grammatical structure, but differed in one to three words 

in each sentence, resulting in two distinct, yet fully coherent, narratives (Fig. 2A). To test for 

increasing divergence of neural responses to these two stories along the timescale hierarchy, 

we measured the Euclidean distance between timecourses for the two stories in each voxel. In 
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Fig.2 Stimuli. We scanned subjects while they listened to one of two stories that had the same grammatical structure, but 
differed in 33% of the words, resulting in two distinct narratives. (A) In Story1, a man is obsessed with his ex-girlfriend, 
meets a hypnotist, and then becomes fixated on Milky Way candy bars (light gray is excerpted from Story1). In Story2, a 
woman is obsessed with an ‘American Idol’ judge, meets a psychic, and then becomes fixated on vodka (dark gray, Story2). 
Marked in bold are words that differ between the two stories. (B) Participants’ performance on the behavioral questionnaire 
revealed that the comprehension level for each of the stories was high (Story1: 94.2±0.06%; Story2: 92.1±0.05%), with no 
difference between the two groups (t(34) = 0.59, p=0.28). 

   
 

addition, we scanned a subset of the subjects during rest, enabling us to measure intrinsic, low 

frequency fluctuations in the BOLD signal. In line with our hypothesis, we found a gradual 

divergence of the neural responses between the two stories along the timescales hierarchy. The 

greatest divergence occurred in areas with long TRWs and concomitant slow cortical dynamics. 

Our results suggest that small neural differences in low-level areas, which arise from local 

differences in the speech sounds, are gradually accumulated and amplified as information is 

transmitted from one level of the processing hierarchy to the next, ultimately resulting in 

distinctive neural representations for each narrative at the top of the hierarchy.  

Results 

Behavioral results: Similar comprehension of the two stories                                 

In order to assess subjects’ comprehension of the story, we presented subjects with 28 

questions immediately after the scan ended. Comprehension level for each of the stories was 

high (Story1: 94.2±0.06%; Story2: 92.1±0.05%), with no difference between the two stories 

groups (t(34) = 0.59, p=0.28), indicating that both stories were equally comprehensible (Fig.2B). 

  

Increased neural difference between the stories from short- to long-timescale regions  

We were interested in the differences in neuronal response of subjects listening to Story1 

compared to those listening to Story2. In order to test for such differences, we used a Euclidean 

distance metric (see Methods for details). We calculated the Euclidean distance between the 

two groups’ response timecourses within all voxels that responded reliably to both stories (7591 

voxels, see Methods). We ranked the 7591 reliable voxels based on their neural Euclidean 

distance, and then divided them into five equal-sized bins. These bins are presented in Fig.3A, 
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showing bins with relatively small difference between the stories (-0.4±0.01, light orange color) 

up to bins with relatively large difference between the stories (3.14±0.02, brown color). Regions 

with relatively small difference between the stories include short-TRW areas such as auditory 

cortex, medial STS and ventral posterior STS (marked in light orange). Regions with relatively 

large difference between the stories include medium- to long-TRW areas such as the 

precuneus, bilateral angular gyrus, bilateral temporal poles, and medial and lateral pre-frontal 

cortex (marked in dark orange and brown). In each of these areas, we also measured the 

similarity of the response to the two stories using a between groups ISC analysis (see methods 

                                      

Fig.3 Neural results demonstrating amplification of the neural distance. (A) We 
calculated the Euclidean distance between the two groups’ response timecourses and 
ranked the voxels based on their neural Euclidean distance, and then divided them into five 
equal-sized bins. Small neural differences are primarily observed in and around primary 
auditory cortex while increasingly large neural differences are observed extending towards 
TPJ, precuneus, and frontal areas. (B) Normalized ISC in each of the five bins. The bin with 
the smallest Euclidean distance (marked in light orange) showed the highest ISC, whereas 
the bin with the largest Euclidean distance showed the lowest ISC between the stories 
(brown color). These differences between the bins were highly significant. (C) We calculated 
the Euclidean distance between the stories’ neural response in each of the 12 scenes, and 
then rank ordered these average distance values. In 11 of the 12 scenes, the ordering of bins 
was the same as for the overall story, with only small change in the Euclidean distance 
between the areas with large differences in the last segment. 
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for details), to provide an intuitive sense of the magnitude of the effects. We found that the bin 

with the smallest Euclidean distance had the highest mean similarity between the stories (mean                                        

= 0.51 ± 0.04). The range of ISC values among the voxels in this bin was skewed towards 

greater between-story similarity (range: 0.39-0.73, Fig. 3B). In contrast, the bin with the largest   

Euclidean distance showed very little cross-story ISC similarity (mean = 0.35 ± 0.06), with 

skewed probability toward areas with close to zero similarity in response patterns across the two 

stories (range: 0.066-0.52; Fig.3B). These differences between the bins were highly significant 

as revealed by 1-way ANOVA on the normalized ISC (F(1,7585) = 2622.58,  p<10-10; Scheffe’s 

post-hoc comparisons revealed that all the bins’ normalized ISC significantly differ from each 

other).  

Amplification pattern is replicated in 11 out of 12 scenes of the story 

We next tested whether the amplification of neural differences from short- to long-TRW areas 

occurred in every scene of the story. To that end, we calculated the Euclidean distance between 

the stories’ neural response in each of the 12 scenes, averaged them across voxel bins (defined 

over the entire story), and then rank ordered these average distance values. In 11 of the 12 

scenes, the ordering of bins was the same as for the overall story, with only small change in the 

Euclidean distance between the areas with large differences in the last segment (Fig.3C). The 

consistency of ordering across the 12 independent segments suggests that the amplification of 

neural distance from low-level regions to high-level regions is robust and stable.  

Significant correlation between neural distance and capacity to accumulate information 

over time                                                                                                                               

Finally, we asked whether the difference in neural response to the two stories was related to the 

capacity to accumulate information over time. To characterize this capacity, we calculate a time 

receptive window (TRW) index using an independent data set obtained while subjects listened 

to an intact and word scrambled versions of another story (see methods for details). Naked-eye 

comparison of the TRW index brain map (Fig.4A, upper panel) and the two stories Euclidean 

distance map (Fig.4A, lower panel) revealed high similarity between the maps. Indeed, we 

found, at a voxel-by-voxel basis, that the larger the difference in the neural responses between 

the stories, the larger the voxel’s TRW index (r=0.426, p<0.001) (Fig.4B). As an area’s TRW 

size may be related to intrinsically slower cortical dynamics in these areas (Honey et al., 2012; 

Stephens et al., 2013), we also calculated the proportion of low frequency power during a 

resting state scan. We found that voxels with larger neural difference between stories also had 

greater proportion of low frequency power (r=0.246, p<0.001) (Fig. 4C).  
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Discussion 

Small, local changes of word choice in a story can completely alter the narrative. In this 

study, we predicted that the accumulation and amplification of sparse, temporally local word 

changes will be reflected in increasing divergent neural response along the timescale 

processing hierarchy. In line with our predictions, we found that short timescale areas, including 

primary auditory cortex, showed only small neural differences in response to local word 

changes. This finding is consistent with observations that these early auditory areas process 

transient and rapidly changing sensory input (Okada et al., 2010; Poeppel, 2003), such that brief 

local alternations in the sound structure will only induce brief and local alternations in the neural 

responses across the two stories. However, just as these small word changes are amplified in 

the overall interpretation of the whole story, we found that small neural differences in early 

sensory areas were accumulated and amplified as they traversed the processing timescale 

Fig.4 Correlation with processing timescales. (A) TRW index brain map (upper panel) 
and the two stories Euclidean distance map (lower panel). (B) Scatter plot of the voxel’s 
TRW-index and the Euclidean distance between the stories. The larger the voxel’s TRW 
index, the larger the difference in the neural responses between the stories (C) Scatter 
plot of the voxel’s proportion of low frequency power during a resting state scan and the 
Euclidean distance between the stories. Voxels with greater low frequency power 
proportion was correlated with larger neural difference between stories . 
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hierarchy: while short-TRW areas showed small neural differences (0.62 normalized correlation 

between stories), long-TRWs areas, including TPJ, angular gyrus, PCC, and dmPFC, showed 

large neural differences (0.16 normalized correlation between stories) (Fig. 3). Moreover, the 

difference in neural response between stories was significantly correlated with both TRW length 

(r = .426, p<.001) and slower cortical dynamics (r = .14, p<.02). 

 The topographical hierarchy of processing timescales along the cortical surface (Hasson 

et al., 2015) is supported by single unit analysis (Murray et al., 2014), ECoG analysis (Honey, 

Thesen, et al., 2012), fMRI analysis (Baldassano et al., 2016; Hasson et al., 2008; Lerner et al., 

2011), MEG analysis (Ding et al., 2016), computational models (Kiebel et al., 2008), and resting 

state functional connectivity (Margulies et al., 2016; Sepulcre, Sabuncu, Yeo, Liu, & Johnson, 

2012). Based on this hierarchy, it was hypothesized that high-level cortical areas encode slowly 

changing states of the world, while low-level areas encode fast changes (Honey, Thesen, et al., 

2012; Kiebel et al., 2008; Stephens, Honey, & Hasson, 2013). In line with this hypothesis, we 

found that low-level areas showed relatively similar neural responses to the two stories, 

consistent with the strong similarity of the stories at the word and acoustic level. However, the 

neural responses in high-level areas, which integrate information over longer periods of time, 

were very different for the two stories, consistent with the strong dissimilarity of the stories at the 

narrative and situation model level. These results are in line with a very recent study 

demonstrating that high-level regions have a more stable neural state, which slowly changes at 

large event boundaries in the narrative (Baldassano et al., 2016). We suggest that areas with 

long processing timescales gradually construct and retrain a situation model (van Dijk & Kintsch, 

1983; Zwaan & Radvansky, 1998) of the event structure based on the information which is 

gathered as the story unfolds over time (Speer, Zacks, & Reynolds, 2007; Zacks et al., 2001).  

 The topography of timescale processing is consistent with the previously proposed 

linguistic hierarchies: low-level regions (A1+) represent phonemes (Arsenault & Buchsbaum, 

2015; Humphries, Sabri, Lewis, & Liebenthal, 2014), syllables (Evans & Davis, 2015) and 

pseudowords (Binder et al., 2000), while medium-level regions (areas along A1+ to STS) 

represent sentences (Fedorenko et al., 2016; Pallier, Devauchelle, & Dehaene, 2011). At the 

top of the hierarchy, high-level regions (bilateral TPJ, precuneus, mPFC) represent paragraphs 

up to the whole narrative (Hickok & Poeppel, 2007; Lerner et al., 2011; Price, Bonner, Peelle, & 

Grossman, 2015). In these studies, the different parts of the processing hierarchy were 

characterized by comparing neural responses to meaningful versus less meaningful stimuli (e.g. 

words vs pseudowords, sentences vs scrambled sentences). Here, we show how such a 
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topographical hierarchy allows for the accumulation and integration of local changes needed for 

the processing of two coherent, yet markedly different narratives, which are told using the exact 

same grammatical structure.   

Understanding a narrative requires more than just understanding the individual words in 

the narrative. For example, children with hydrocephaly, a neurodevelopmental disorder that is 

associated with brain anomalies in regions including the posterior cortex, have well-developed 

word decoding but concomitant poor understanding of narrative constructed from the same 

words (Barnes & Dennis, 1992; Barnes, Faulkner, & Dennis, 2001). In Parkinson’s Disease (PD) 

and early Alzheimer’s Disease (AD), researchers have found that individual word 

comprehension is relatively intact, yet the ability to infer the meaning of the text is impaired 

(Chapman, Anand, Sparks, & M., 2006). In PD, this deficit in the organization and interpretation 

of narrative discourse was associated with reduced cortical volume in several brain regions, 

including the superior part of the left STS and the anterior cingulate (Ash et al., 2011). Our 

finding that these regions demonstrated large differences between the stories (Fig. 3) suggests 

that reduced volume of cortical circuits with long processing timescales may result in reduced 

capability to understand temporally extended narratives.  

The phenomenon we described here, in which local changes in the input generate a 

large change in the meaning, is ubiquitous: a small change in eye gaze differentiates happiness 

from anger; a small change in intonation differentiates comradery from mockery; a small change 

in hand pressure differentiates comfort from threat. What is the neural mechanism underlying 

this phenomenon? In vision, researchers have shown that low-level visual areas with small 

spatial receptive fields (SRFs) are sensitive to spatially confined changes in the visual field, but 

that these small changes are accumulated and integrated along the visual processing stream 

such that high-level areas, with large SRFs can show substantively different neural responses 

from a very small change in visual stimuli. For example, it was shown that the fusiform face area 

is more sensitive to holistic changes in the picture (vase vs face) than to local features and it 

was suggested that the fusiform face area, which is a high-order visual region, spatially group 

many local features to create the holistic percept (Hasson et al., 2001). Analogously, our results 

suggest that regions which are capable to group information across many different time points 

(i.e. regions with long processing timescales) are highly sensitive to holistic changes (i.e. at the 

narrative level). To our knowledge, this is the first study to systematically map the gradual 

amplification of temporally confined changes along the processing timescales hierarchy. Our 

study suggests a neural mechanism by which two similar situations become easy to distinguish.  
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Methods 

Subjects                                                                                                                                                                     

Thirty six right-handed subjects (ages 21.1±3.7) participated in the study. Eighteen subjects (9 

female) heard Story1, and eighteen other subjects (9 female) heard Story2. Two subjects were 

discarded from the analysis due to head motion (>2 mm). This sample size of 18 subjects for 

each story was chosen based on previous studies in our lab that tested for similarities and 

differences in neural responses to naturalistic stimuli (Ames, Honey, Chow, Todorov, & Hasson, 

2015; Honey, Thompson, Lerner, & Hasson, 2012; Lerner et al., 2011) as well as power 

analyses (Pajula & Tohka, 2016). Experimental procedures were approved by the Princeton 

University Committee on Activities Involving Human Subjects. All subjects provided written 

informed consent. 

Stimuli and Experimental Design 

In the MRI scanner, participants listened to one of two stories. While the two stories had the 

exact same grammatical structure, they differed in one to three words per sentence, creating 

two distinct narratives (mean words change in a sentence = 2.47±1.7, 34.13%±20 of the words 

in the sentence). In Story1, a man is obsessed with his ex-girlfriend, meets a hypnotist, and then 

becomes fixated on Milky Way candy bars (Fig. 2A, negative to positive story arc). In Story2, a 

woman is obsessed with an ‘American Idol’ judge, meets a psychic, and then becomes fixated 

on vodka (Fig. 2A, positive to negative story arc). The two stories were read and recorded by 

the same actor. The beginning of each sentence was aligned post-recording. Each story was 

6:44 minutes, and was preceded by 18 s of neutral music and 3 s of silence. The story was 

followed by an additional 15 s of silence. These music and silence periods were discarded from 

all analyses.  

In addition, 26 of the subjects (13 from each group) underwent a 10-min resting state scan. 

Subjects were instructed to stay awake, look at a gray screen, and “think on whatever they like” 

during the scan. 

Behavioral assessment                      

Immediately following scanning, each participant's comprehension of the story was assessed 

using a questionnaire presented on a computer. Twenty-eight 2-forced choice questions were 

presented. Two-tailed Student t-tests (α = 0.05) on the forced-choice answers were conducted 

between the two story groups to evaluate the difference in participants’ comprehension. 

MRI Acquisition 
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Subjects were scanned in a 3T full-body MRI scanner (Skyra, Siemens) with a 12-channel head 

coil. For functional scans, images were acquired using a T2*-weighted echo planar imaging 

(EPI) pulse sequence [repetition time (TR), 1500 ms; echo time (TE), 28 ms; flip angle, 64°], 

each volume comprising 27 slices of 4 mm thickness with 0 mm gap; slice acquisition order was 

interleaved. In-plane resolution was 3 × 3 mm2 [field of view (FOV), 192 × 192 mm2]. Anatomical 

images were acquired using a T1-weighted magnetization-prepared rapid-acquisition gradient 

echo (MPRAGE) pulse sequence (TR, 2300 ms; TE, 3.08 ms; flip angle 9°; 0.89 mm3 resolution; 

FOV, 256 mm2). To minimize head movement, subjects' heads were stabilized with foam 

padding. Stimuli were presented using the Psychtoolbox version 3.0.10 (Pelli, 1997). Subjects 

were provided with MRI compatible in-ear mono earbuds (Sensimetrics model S14), which 

provided the same audio input to each ear. MRI-safe passive noise-canceling headphones were 

placed over the earbuds for noise reduction and safety.  

Data analysis 

Imaging analysis 

Preprocessing.                  

fMRI data were reconstructed and analyzed with the BrainVoyager QX software package (Brain 

Innovation) and in-house software written in MATLAB (MathWorks). Preprocessing of functional 

scans included intra-session 3D motion correction, slice-time correction, linear trend removal, 

and high-pass filtering (two cycles per condition). Spatial smoothing was applied using a 

Gaussian filter of 6 mm full-width at half-maximum value. The complete functional dataset was 

transformed to 3D Talairach space (Talairach & Tournoux, 1988).        

Euclidean distance measure                                  

We were interested in the differences in neuronal response of subjects listening to Story1 

compared to those listening to Story2. In order to test for such differences, we used a Euclidean 

distance metric in all the voxels that reliably respond to both stories (7591 voxels with Inter-

subject-correlation > 0.12, see (Lerner et al., 2011) for details). In each voxel, we calculated the 

mean response of the 18 subjects presented with Story1 and the mean response of the 18 

subjects presented with Story2. This averaging resulted in two mean timecourses, one for 

Story1 (S1) and one for Story2 (S2), each with 269 time points. Next, we calculated the 

Euclidean distance between the timecourses S1 and S2:   

     𝐷 =  √∑ (𝑆1(𝑡i) − 𝑆2(𝑡i))2269
𝑖=1  
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where 𝑆1(𝑡i) is the mean BOLD timecourse measured in Story1, and 𝑆2(𝑡i) is the mean BOLD 

timecourse measured in Story2. This procedure was repeated for each voxel, resulting in a 

distance value for each of the 7591 voxels.  

In order to account for differences that arise from irrelevant sources (i.e. signal to noise ratio), 

we normalized Euclidian distance measures with the mean and standard deviation from null 

distributions generated through label shuffling. In this procedure, the two story groups were 

randomly shuffled such that two new pseudo-group were created, each with 9 Story1 and 9 

Story2 timecourses. We calculated the Euclidean distance between the resulting mean 

responses, 𝑆1̃(𝑡) and 𝑆2̃(𝑡), in the pseudo groups: 𝐷̃ =  √𝛴𝑡(𝑆1̃(𝑡) − 𝑆2̃(𝑡))
2
.  The procedure of 

label shuffling and computing a surrogate Euclidean distance value was repeated 50,000 times, 

generating a null distribution of 50,000 distance values for each voxel. We then normalized the 

difference in each voxel according to its specific mean and standard deviation of the null 

distribution: Dnorm = (D – µ(null))/ơ(null). Reliable voxels were then ranked based on their 

normalized Euclidean distance value (Dnorm) and divided into five equal-sized bins. These bin 

categories (small to large neural difference) were then projected onto the cortical surface for 

visualization. 

Finally, we tested whether the order of these neural difference bins was consistent across 

sections of the story. Do voxels with small or large neural differences over the entire story also 

have respectively small and large neural difference for every section of the story? Thus, we 

calculated Dnorm for each of twelve scenes of the story across all the included voxels. These 

voxels were then sorted based on their bin from calculating Dnorm across the entire story. The 

Dnorm values for each bin were then averaged across voxels for each scene, and then rank 

ordered. 

ISC between the stories 

The normalized Euclidean distance measure of similarity has an arbitrary scale and thus does 

not provide an intuitive sense of the magnitude of effects. As a complementary measure, we 

additionally calculated similarity using intersubject correlation (ISC, Hasson et al., 2004), which 

measures the degree to which neural responses to naturalistic stimuli are shared across 

subjects in the two different story groups. To calculate the ISC between the two story groups, for 

each reliable voxel, we correlated each story subject’s timeseries with the average timeseries 

across all of the subjects that listened to the other story. We than averaged these 36 correlation 

values to get an estimation of the similarity of the responses between the stories in each voxel 
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(ISCb). Finally, we calculated ISC within each story (ISCw1 for Story1 and ISCw2 for Story2) by 

taking the average correlation between each subject and the average of all other subjects in the 

same group. We used this measure of within-group similarity to normalize the between-group 

ISC: ISCnorm= ISCb/( ISCw1+ ISCw2). 

Correlation between neural distance and capacity to accumulate information over time 

Next, we calculated an index of each voxel’s temporal receptive window (TRW), i.e. the capacity 

to accumulate information over time, in order to test the relationship between a voxel’s 

processing timescale and its neural distance measure. In a previously collected data set, 

subjects were scanned listening to both an intact version and word-scrambled version of a story 

(“Pieman” by Jim O’Grady, see Lerner et al., 2011 for details). Response similarity to the intact 

and scrambled stories was measured using ISC as described above, resulting in a value ISCintact 

and ISCscram for each voxel. Using this independent data set, we defined the TRW index of each 

voxel as the difference in neural activity between the intact story and the word scrambled story: 

TRW = ISCintact – ISCscram. We then calculated the correlation between neural response (Dnorm, 

described above) with the TRW index:  r = correlation(Dnorm, TRW index).  Statistical 

significance of this correlation coefficient (that the correlation is not zero) was computed using a 

Student's t distribution for a transformation of the correlation. 

Relation between neural distance and timescale of BOLD signal dynamics 

Previous work has suggested that long-TRW areas have intrinsically slower neural dynamics 

compared to short-TRW areas, and that these slower cortical dynamics may be related to an 

area’s ability to accumulate information over time (Honey, Thesen, et al., 2012; Stephens et al., 

2013). Based on such observations, we evaluated the neural dynamics of our reliable voxels 

during a resting state scan in 26 of our subjects. Following Stephens et al., 2013, we estimated 

the power spectra of each voxel using fast Fourier transform. We then quantified the proportion 

of low frequency power as the accumulating power below a fixed threshold of 0.04 Hz:           

𝛼 =  ∫ 𝑃(𝑓)𝑑𝑓
0.04

0
, where 𝑃(𝑓) is the power estimated as above. Finally, we calculated the 

Pearson correlation between proportion of low frequency power (α) and the neural response 

difference (Dnorm, described above) voxel by voxel. Statistical significance of this correlation 

coefficient (that the correlation is not zero) was computed using a Student's t distribution for a 

transformation of the correlation. 
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