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Abstract

Bacterial swimming alternates between straight runs for several seconds and tumbles into random directions.

Chemotactic bacteria remember nutrient sensing history, change tumble frequency to move toward nutrients. A

question that has not been addressed is the significance of the nutrition gain and multiplication of bacterial population

with chemotaxis mechanism. To quantify these effects, we introduce a microsimulation model, which seamlessly

integrates detailed observations and assumptions about single bacterial tumbles, noisy sensing and nutrient uptake for

studying up to a few millions of them in a population. We use the model to simulate absorption of nutrients from lysis

and agar plates. Contrary to an intuitive feeling that chemotaxis could be useful under nutrient starvation, we see a

significant effect only under nutrient rich conditions where bacteria with chemotaxis outgrow their non-chemotactic

counterparts by hundreds of times. The model offers the flexibility to study the consequences of newer assumptions,

and experimental conditions.

Author Summary

Chemotaxis is a mechanism that helps bacteria navigate towards nutrients. Several aspects of the mechanism have been

well studied over the past 50 years. As most bacterial mechanisms are helpful evolutionarily to survive and to multiply,

it would be a natural question to ask how much this swim helps bacteria to gain nutrition and consequently to multiply.

However to our knowledge this question has not been asked. We develop a model that integrates bacterial motion, with

sensing and nutrient uptake and show that only under nutrient rich conditions this mechanism helps.

Introduction

Bacteria swim toward nutrient source. This movement, called chemotaxis, is guided by nutrient concentration gradients.1

In the 1960’s, ring-like patterns formed by E. coli in petri-dishes were interpreted as due to a combination of two effects

- depletion of the nutrients by bacterial aggregates at the center and a drift towards higher nutrient concentrations.2,3

These studies were followed by other population level experiments in semi-solid media which showed the formation of

different growth patterns.4,5 Pioneering microscopic studies by Berg and others on single bacterium revealed several

interesting aspects of the random walk: runs in straight lines followed by sudden tumbles that randomly change the

direction,6 nutrient memory that E. coli holds to bias its walk,7 and counter-clockwise and clockwise rotation of flagellar

motors that propel the runs and tumbles respectively.1,8–10 Concentration-jump experiments on Salmonella 11 and nutrient

release near tethered E. coli 7 established the bias in run-time lengths with nutrient gradients. The latter study even

extracted a form of the memory kernel which describes how the temporal memory of the nutrients encountered by the
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bacterium biases its run-time lengths.7 Further studies have shed light on the molecular details of flagellar motors that

propel bacterial chemotaxis,12–15 receptor occupancy responsible for the nutrient memory,16 signal transduction,17,18

and nutrient uptake pathways19–21 in chemotaxis.

Mathematical models have been used at different levels of coarse-graining to address the different experimentally relevant

questions: population level modeling of bacterial pattern formation in nutrient rich agar gels,22–24 biased random-walk

and distributions of run, tumble times of individual bacterium,25 and robustness of signal transduction pathways,16,26,27

as well as strategies for nutrient acquisition, nutrient sensing limits, and consequences for the chemotactic response.10,28,29

Further studies have focused on game theoretical strategies30 for nutrient acquisition, as well as redistribution of dissolved

organic matter in the oceanic environment.31–34 Most of these models catered either to the individual bacterium or to the

population. The compromise between details and size of the population left gaps in between. Active walker models,35

partly tried to bridge this gap. In these, the walkers actively perturb the landscape which defines their movement (in

this case bacteria consume nutrients, which eventually affects their trajectory) tracked individual clusters of about 103

bacteria. The focus however was restricted to coarse grained active walkers and was used to study on bacterial pattern

formation in semi-solid media, and not specifically on the details of chemotactic movement. Other models studied pattern

formation in a fixed population (103) of quorum sensing bacteria under confinement. While the model considered the

details of bacterial runs and tumbles as well as the diffusion of quorum sensing molecules, nutrient absorption and cell

division were out of the scope of that work.36

Fundamental to chemotaxis is a purpose to gain nutrition which possibly helps bacterial growth,37 however the relation

between the chemotactic movement strategy and cell-division has not been modeled. Bacterial cell division depends

neither on the local concentration of the nutrient or an average absorption in the population. Instead each bacterial cell

divides using the nutrient it uptakes. Most population level models did not explicitly account for the functional form

of the memory that was carefully derived from experiments7 with an exception of a few attempts to relate the nutrient

memory kernel to drift in the diffusive equation.38 Different strategies for biasing the random-walk were proposed by

Koshland11 and Berg7 for Salmonella and E. Coli respectively. The effectiveness of these different biasing strategies,

which we call minmax and min tumble rate strategies (described in Methods section), were not compared in any model.

Although nutrient absorption by bacteria has been described using Michaelis-Menten kinetics, studies that focused on

noisy sensing and nutrient acquisition strategies30 assumed a perfect collision-absorption condition for the nutrients and

over estimated the absorption. Though the theoretical limits of noisy nutrient sensing under low linear concentration

gradient has been studied,28,29 it has not been integrated into simulations where nutrient diffusion is studied to model

experimental conditions.

Addressing these questions requires incorporation of as many details as possible into the model, which may be com-

promised if one begins with the population level equations. In order to address these gaps which arise between the

microscopic level assumptions about the bacteria and the population level observations, we introduce a microsimulation

model. Microsimulation or agent-based models39 use a set of rules for how each agent responds to environment or other

agents. By simulating several interacting agents, the model aims to gain insights into the emergent behavior at the

population level. The models are commonly used in health, finance and traffic modeling. The formalism allows an easy

implementation of the detailed agent-level assumptions and population level observations. We illustrate the method by

simulating in a very detailed way a single bacterium as well as a colony of 105 E. Coli growing in a glucose rich medium.

Methods

Memory kernel: In our model, each bacterium performs random walk with runs at an average speed of v0 = 30µm/s,8

and tumbles with a rate,10,30

ωK(t) = ω0

[
1−

∫ t

−∞
K(t− s)c(r(s), s)ds

]
(1)
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where c(r(s), s) is the chemical concentration sensed at a past time s, K(t) = β1λe
−λt
[
λt− (λt)2

2

]
is the memory kernel7,

and τR = 1/ω0 is the average run time in the absence of a concentration gradient. Although β1 = 0.67, λ = 2.08s−1,30 have

been mentioned up to a scaling factor, to the best of our knowledge the scaling factor has not been mentioned. We estimate

for the scaling factor using the information that the chemotactic response is seen above micromolar concentrations10 as

such the integral in equation 1 becomes O(1) when c(s) ∼ O(µM) concentration, where O is used to signify of the order

of.

Uptake: E. coli uptakes using passive and active transport mechanisms.40 Glucose is primarily transported in E.

coli using phosphotransferase system (PTS). Mannose permease is also used to transport glucose with low affinity (at

high concentration).41,42 Glucose uptake by E. coli follows Michaelis-Menten kinetics. There are three pathways in E.

coli meant for uptaking glucose in low (< 0.1µM), intermediate (0.1µM − 300µM) and high chemical concentrations

(> 0.3mM) with 0.2µM(KM1), 4µM(KM2) and 1mM(KM3) as respective half saturation constants41 and maximum

uptake rate (Vmax) of glucose 0.19fg/cell/s (Supporting Information).43 We assume that in E. coli, all three uptake

pathways are simultaneously active. The instantaneous uptake rate for the ith bacterium is:

fi(r, t) = Vmax

(
c(r, t)

KM1 + c(r, t)
+

c(r, t)

KM2 + c(r, t)
+

c(r, t)

KM3 + c(r, t)

)
(2)

We make a comparison with the perfectly absorbing collision model, assuming the bacterium to be a sphere of radius a(µm)

and that it perfectly uptakes all nutrient molecules which collide with it, as is assumed in the literature. Nutrients at an

average chemical concentration c(µM), with diffusivity D(µm2/s), have N = 4πηaDτc encounters with the bacterium

in time τ(s), where η = 602.3µm−3µM−1 is the numerical conversion factor.28

Mass doubling and cell division: A single E. coli needs mD = 3× 109 molecules or 900 fg of glucose in its lifetime,

two-thirds for biomass and a third for ATP production44. In our model we assume that an E. coli divides into two

equal halves once it acquires 900 fg of glucose. Until the next tumble event the two daughters have the same position

and velocity as their parent at the time of division. If fi(r(t), t) is the instantaneous total glucose absorption by the ith

bacteria and
∫
fi(r(s), s)ds indicates the cumulative absorption since its birth along the trajectory. Then at time time

t+ dt, the total number of bacteria is given by

n(t+ dt) = n(t) +

n(t)∑
i=1

[∫
fi(r(s), s)ds

mD

]
(3)

where dt is the length of a time step in our simulations, [q] is the box function which gives the integral portion of q and

n(0) = n0 is the size of the initial bacterial population.

Biasing strategies considered: Four different memory-dependent biasing strategies were considered in our analysis.

The tumble rates ω are chosen selectively toward or away from the nutrient after making a comparison between ω0 and

ωK . The strategies are dubbed as minmax tumble rate (ω = ωK), fixed (ω = ω0)45, min (ω = min(ωK , ω0)) and max

(ω = max(ωK , ω0)) tumble rate strategies.

Nutrient diffusion: The chemical concentration c(r, t) is obtained by combining the diffusion of nutrient with a constant

D (600µm2/s for glucose) and nutrient depletion due to uptake using:

dc(r, t)

dt
= D∇2c(r, t)− ξ

n(t)∑
i=1

fi(ri, t) (4)

fi(r, t) is the nutrient absorbed by ith bacterium at position r and time t. ri is the postion of the ith bacteria which

evolves as ri(t+ dt) = ri(t) + vi(t)dt and n(t) be the total bacteria in the population at time t and ξ = 1/(dV ∗Mglucose)

where dV is the volume of the discretized cells in the numerical solution and Mglucose is the molecular weight of glucose.

vi(t) = v0(sinθi(t)cosφi(t), sinθi(t)sinφi(t), cosθi(t)) is the three dimensional velocity vector at time t defined by the

angles θi(t), φi(t). If ω(t) is the rate of tumbling according to any of the strategies discussed above, then θi(t + dt) =

πz2, φi(t+dt) = 2πz3 for z1 < ω(t)dt and θi(t+dt) = θi(t), φi(t+dt) = φi(t) for z1 > ω(t)dt where z1, z2 and z3 are three
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uniform random numbers between 0 and 1. The details of numerical implementation are discussed in Supplementary

information.

Noise and Sensing: E. coli senses the nutrients in its vicinity using receptors of various kinds which are clustered as

trimers at the cell poles.46 Major receptors include TaR and TsR for sensing aspartate and serine respectively and is

abundant in an E. coli. Minor receptors like Tap and Trg for sensing dipeptides, ribose and galactose are also present

in smaller amounts.47 We also assume that the E. coli of radius a(µm) senses average chemical concentration c(µm−3)

of molecules with diffusivity D(µm2/s) in time τ(s) with minimum relative error δc/c = 1/
√

4πaDτc,28 where δc is the

absolute error in sensing the chemical concentration. To account for the fluctuations in concentration sensing, the actual

chemical concentration sensed by an individual E. coli is obtained from a gaussian probability distribution with mean c

and standard deviation δc. The concentration sensed is considered to be zero if the concentration obtained from gaussian

distribution is negative, which mostly happens for average concentration less than 1 nM (Figure 4A).

Results and discussions

Microsimulation model for chemotactic behavior

There has been a gap in the chemotaxis literature with several interesting microscopic details which are available but

not included in the modeling of chemotactic behavior. For example, despite continued research on chemotaxis driven

by favorable nutrient gradient, to our knowledge, the nutrient uptake by considering the appropriate absorption kinetics

has not been quantitatively assessed. The goal of our chemotaxis microsimulation model (Figure 1) is to be precise with

the assumptions at a microscopic level and to make predictions at the population level. Individual bacterial position

and nutrient absorption history are completely tracked in our model. Nutrient sensing history, is used along with the

experimentally observed memory kernel to bias the walk. The nutrient absorption history modeled using Michaelis-

Menten kinetics is used to follow the cell growth and division. The noise in sensing is always explicitly included, although

it matters at only extremely low nutrient concentrations (below 1 nM). The microsimulation model is simple and flexible

enough that modifications or addition of new details about the physics of the bacterium, such as quorum sensing can be

made easily. The largest starting size of the bacterial colony used in our microsimulation is 105 bacterial cells, which was

simulated 8 hours of lab experiment to reach a maximum population size of 2.5 × 106 bacteria. To our knowledge this

is the largest simulation of a bacterial colony where every individual bacterium is tracked. The computational resources

required for this simulation were about 3 GB RAM and 48 hours on a single processor. Simulating a system ten times

larger requires ten times larger memory and time and we did not pursue it. Trivial parallelization of the bacteria on

multiple processors is not possible since they are connected by the nutrient distribution. Despite this limitation, the

microsimulation was useful to address several questions discussed below.

Single bacterium near lysis

Uptake from dissolved nutrients

We first analysed the nutrient gain of a single bacterium in a non-equilibrium situation where the nutrients are suddenly

released away from the bacterium. One such occurrence in oceanic conditions could be the release of nutrients from

phytoplankton lysis. We modeled this event with the burst of a 100 µm radius sphere with 1000µM glucose concen-

tration. A typical trajectory traced by a chemotactic (minmax tumble rate) bacterium is illustrated by considering a

bacterium starting at 750 µm from nutrient release (Figure 2). We compare the two cases where the background nutrient

concentrations are CB = 0µM and CB = 40µM .48 The overall nutrient gained for two conditions of the bacterium

moving randomly or biased by nutrient gradients using the fixed or minmax tumble rate strategies are shown in Figure

3. Surprisingly a single chemotactic bacterium does not gain much from nutrient uptake under lysis conditions compared

to the non-chemotactic bacteria (fixed tumble rate) (Figure 3). Infact, under the conditions studied, bacterium gains its

nutrient requirement of 900 fg from the dissolved nutrients (CB = 40µM). No significant uptake gain was noticed for lysis
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events for different distances of the single bacterium from the food source (data not shown). Similarly, no nutrient uptake

gain was also noticed for simulating a colony of bacteria near the lysis event (Figure S13) (Supplementary information).

Role of noisy sensing

The role of noise and sensitivity limits have been extensively discussed in the literature.28,29 The minimum relative noise

sensed by an E. coli of radius a(µm) in time τ(s) and swimming in an average concentration c(µM) and the nurients of

the medium having diffusivity D(µm2/s) and conversion factor η = 602.3µm−3µM−1 is given by δc/c = 1/
√

4πηaDτc,28

which is shown in Figure 4A for different concentrations. The deviations of the number of encounters relative to its

average thus drops significantly above a concentration of 10 nM. In our microsimulation, we always include the effect

of noise, whether or not it is relevant. In every instance of simulation, we generate a gaussian random number using a

mean c and standard deviation δc and use it for estimating the sensitivity of detection. Also shown in Figure 4A are the

instantaneous rate (fi(r, t)) of absorption at a given concentration, and the time required for 900 fg absorption assuming

this instantaneous rate. The nutrient experienced above background by a single bacterium along the trajectory (Figure

2) is shown in Figure 4B. While the noise limits in sensing are interesting, in a background concentration of 40 µM, this

noise limit becomes irrelevant. As illustrated by combining all the three graphs in Figure 4A. Interestingly the limits

where noise becomes significant are where the nutrient concentration is too low to have a reasonable uptake in several

hours.

E. Coli in culture conditions

Effect of memory on swarm ring formation

A microsimulation was performed to mimic the growth of a 105 bacterial colony placed at the center of a 40mm×40mm×
0.125mm petridish with a 100µM uniform glucose concentration.3 The evolution of the bacterial colony after 6 hours is

shown in Figure 5. The simulation with minmax tumble strategy replicates the experimentally observed ring formation

in Figure 5A because of the nutrient depletion at the center, migration of the bacteria towards the periphery and a

favorable multiplication there. From the experiments on E. Coli 7 and Salmonella 11 different strategies for biasing the

bacterial random walk, what we call minmax and min tumble rates were inferred. To make the discussion complete, we

studied four different strategies listed in the methods section – the tumble rates towards and away from nutrients being

affected or unaffected. In Figure 5B (max tumble rate) though there is a formation of ring but the nutrient uptake and

cell division are lesser than that of the strategy corresponding to the minmax tumble rate (Figure 6). In Figures 5C (min

tumble rate) and 5D(fixed tumble rate), however the bacteria can also drift away from the nutrient source with a higher

chance thereby reducing the overall nutrient gain and population growth and not forming the rings. The quantitative

details are shown in Figure 6, where the number of bacteria and nutrient absorbed are shown in Figure 6A and Figure

6B respectively. The number of bacteria increased in steps in all these calculations. In order to understand the origin of

this step like increase, we perfomed a seperate simulation where the initial bacterial population did not just have a single

size (mD) but rather a mixed age population with a distribution of bacterial sizes between just divided (mD) to ready to

divide (2mD). This resulted in in a smooth increase in bacterial population for minmax tumble rate. The maximum rate

of bacterial growth occurs only with the minmax chemotactic strategy. While a clear signature of chemotactic advantage

is seen, in this simulation of lab experimental conditions it must be noted that the concentration as well as the amount

of nutrient are very high compared to most realistic conditions.

Effect of absorption kinetics on bacterial growth rate

The absorption kinetics depends on the type of the nutrient and kinds of absorption pathways which are active, etc. We

restrict our analysis to the absorption of glucose via Michaelis-Menten kinetics. In the literature all nutrient molecules

colliding with bacteria are assumed to be perfectly absorbed. While this perfect absorption may be a good model under

nutrient limited conditions but over predicts the cell division, absorption and when the nutrient is sufficiently available
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in nutrient rich experimental conditions. The exponential growth phase using the two types of kinetics in our model

predicts the time for population doubling to be 90 min (Michaelis-Menten kinetics) and 6.5 min (complete absorption)

respectively (Figure S16). The doubling times of 6.5 minute is too fast to be true, and perfect absorption models should

be used with caution.

Effect of initial population on swarm ring formation

Swarm ring formation depends on the nutrient availability as well as its depletion at the center by the bacteria. The size

of the initial population clearly has a significant role on when the rings form. We have simulated eight hours of laboratory

experiment in a petridish with 100 µM initial nutrient concentration with three different population sizes - 103, 104 and

105. All the three initial population in this range showed ring formation for minmax tumble rate strategy (Figure S15),

but population with smaller size showed smaller rings and formation of such rings took larger time. Specifically ,with

all the microscopic details accounted for by our model, the 105 initial population showed a ring which extended upto

the boundaries of the dish within a simulation corresponding to 8 hours of experiment. The appearance of the observed

macroscopic pattern within experiment time gives us confidence that the microsimulation starting with all microscopic

details can model the population level observations.

Growth advantage of chemotactic bacteria

In order to study the relative growth advantage of bacteria having chemotaxis mechanism, we simulate mixed populations

containing a chemotactic (minmax tumble rate) and non-chemotactic (fixed tumble rate) in the same conditions as in

swarm ring formation noted earlier. The total number of bacteria at start was kept at 105, and the chemotactic fraction was

varied as: 1%, 10%, 30% and 50%. Even when the initial fraction of chemotactic bacteria in the population was 1% within

8 hours of experiment time the chemotactic population surpasses its non-chemotactic counterpart. The X-Y projection

of the position of chemotactic and non-chemotactic bacteria at different time point (Figure 7) reveals the preferential

movement of chemotactic bacteria away from nutrient depleted regions leads to greater population growth compared to

the non-chemotactic bacteria (Figure 8). The chemotactic population shows even faster growth rate compared to the

non-chemotactic population when we start with 10%,30% and 50% chemotactic bacteria in the population (Figure S18).

Comparing the nutrient gain between chemotactic and random walk mechanisms single E. Coli and the colony under

different nutrient conditions, we find that chemotaxi movement with its inherent noisy sensing limits helps in going from

nutrient rich to nutrient richer conditions rather than from nutrient poor to nutrient rich conditions. The detailed limits

of advantages of chemotaxi will be explored later.

Conclusion

A microsimulation method which can track every single bacterium in a large population has been developed. The

simulation seamlessly integrates several interesting details at a single bacterium level to reach predictions for a population.

Using the detailed model we are able to make comparisons of the nutrient gain by bacterium in different conditions.

The model offers the flexibility of adding further assumptions at a single bacterium level and make comparisons with

experimental studies.
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Figures

Memory:
    ∫ K(t-s) c(s) ds

Gaussian random 
   number (c, δc)

Noise:    δc/c

Absorption kinetics:

             Σ c(t)/(K
M

+c(t))

Biased tumble 
rates

Reaction-di"usion equation
    Nutrient concentration:  c(r,t)

Bacterial numbers:  n(r,t)

Sensing

Cell divison 

Figure 1: Schematic diagram of microsimulation methodology
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Figure 2: X-Y projection of trajectory of a single E. coli near a lysis event in media with a background nutrient

concentration of 0 µM (gray lines) and 40 µM (black lines). Lysis event is assumed to be from the burst of a cell

with 1000 µM concentration and 100 µm radius and bacteria move with minmax tumble rate. Considering the nutrient

concentrations involved and the noise in sensing, bacterium ends up drifting away from the source of the lysis burst.
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Figure 3: A comparison of nutrient gained by bacteria when swimming with minmax tumble rates (solid lines) and a

random walk scenario (dotted lines, no concentration-gradient dependent bias) near the lysis event discussed above in

Figure 2. Bacteria do not gain enough nutrition from lysis burst, and it comes significantly by absorbing from the uniform

background. The dotted lines were shifted up uniformly by 10 fg for clarity.
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Figure 4: (A) Minimum relative error in nutrient sensing at a given concentration of the nutrients(red line), rate of

glucose uptake by a single cell (green line), and time for cell division after absorption of 900 fg of glucose (purple line).

(B) The concentration experienced by the bacterium near the lysis event above background in Figure 2.
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Figure 5: Simulation of an experiment where a bacterial colony is placed at the center of a petridish (40 mm side) with

an initial uniform nutrient concentration of 100 µM. The calculations were performed to capture 8 hours of laboratory

conditions using four different tumble rate strategies A. minmax tumble rate, B. max tumble rate, C. min tumble rate,

and D. fixed tumble rate. When walk is biased in both directions, the experimentally observed rings appear within the

8 hours of simulation. Images are given at 6 hours of experiment time
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Figure 6: Quantitative results from the simulations replicating the petridish experiments: (A) cell division and (B)

glucose uptake over 8 hours depending on the random walk strategy. The step-like behavior in most of the nutrient

uptake curves is because all bacteria started from same age (size). minmax tumble rate strategy was repeated starting

with the bacterial colony having a size distribution from just divided to ready to divide and it shows a smoothly increasing

cell count.
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Figure 7: X-Y projection of the position of chemotactic (green) and non-chemotactic (red) bacterial populations after (A)

2 (B) 4 (C) 6 and (D) 8 hours from start. The initial fraction of chemotactic bacteria is 1% and it is placed a petridish

of 40mm× 40mm, represented as the square in each of the pictures.
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Figure 8: Quantitative description of the growth of a mixed population starting with an initial 1% chemotactic and 99%

non-chemotactic bacteria: (A) Over an 8-hour period the chemotactic bacterial population multiplies over a hundred

times faster and grows more than the non-chemotactic one (B) The radial distribution of the population 2 and 8 hours

from the start shows the chemotactic and non-chemotactic bacteria preferring distributions around the periphery and the

centre.
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Supplementary information

Diffusion equation

The nutrient molecules in the medium gets either diffuse or get depleted owing to uptake by the bacterial population

following,

dc(r, t)

dt
= D∇2c(r, t)− ξ

n(t)∑
i=1

fi(ri, t) (5)

c(r, t) is the chemical concentration at position r at time t. For our simulation we need to discretize space and time to

solve the diffusion equation using finite difference method. We discretize the space using dx=dy=dz=25µm and time using

dt= 1
6 s. We also use the diffusvity D=600µm2/s similar to the diffusivity of glucose49 50 and γx = Ddt

dx2 ; γy = Ddt
dy2 ; γz = Ddt

dz2 .

The indices for space, time discretization are given by, i =

[
x−xmin

dx

]
+1, j =

[
y−ymin

dy

]
+1, k =

[
z−zmin

dz

]
+1; l =

[
t
dt

]
+1

in our simulations, where min corresponds to minimum values of an entity and [q] corresponds to the integer part of a

real quantity q. Let f(i, j, k, l) be the amount of glucose consumed between time t and t+dt and inside grid (i, j, k),

ξ = 1
ηdxdydzMglucose

is the conversion factor from mass to concentration, η = 602.3µM−1µm−3 and Mglucose is the molar

mass of glucose. We solve the diffusion equation using the following finite difference method,

c(i, j, k, l+1) = c(i, j, k, l)+γx(c(i+1, j, k, l)+c(i−1, j, k, l)−2c(i, j, k, l))+γy(c(i, j+1, k, l)+c(i, j−1, k, l)−2c(i, j, k, l))

+γz(c(i, j, k + 1, l) + c(i, j, k − 1, l)− 2c(i, j, k, l))− ξf(i, j, k, l)

with zero-flux boundary condition as,

c(imax + 1, j, k, l) = c(imax, j, k, l); c(0, j, k, l) = c(1, j, k, l); c(i, jmax + 1, k, l) = c(i, jmax, k, l); c(i, 0, k, l) = c(i, 1, k, l)

c(i, j, kmax + 1, l) = c(i, j, kmax, l); c(i, j, 0, l) = c(i, j, 1, l); for all i, j, k

where, c(i, j, k, l) is the chemical concentration at time t = l × dt in the (i, j, k)th grid.

Calculating maximum uptake rate for Michaelis-Menten kinetics

The excess uptake rate of glucose for 1g dry weight of E. coli per hour in presence of other sugars is ∼ 1.7g43. Based on

the above data we assume the maximum uptake rate of glucose in absence of any other sugar is ∼ 2g per gram of dry

weight of E. coli per hour. Further we know the average mass of an E. coli is 1 pg and almost 2/3 of it is water44 so, 1 g

of dry weight of E. coli contains ∼ 3× 1012 cells. So a single E. coli can uptake with a maximum rate of ∼ 2
3×1012×3600g

glucose/second or ∼ 0.19 fg of glucose per second.

Experiment with a nutrient rich blob

We simulated a bacterial population using microsimulation approach starting with 105 bacteria starting at a distance

of about 8500µm from the glucose rich source of initial concentration 10,000µM and of radius 1250µm centered at the

origin. We quantified the cell division and nutrient uptake for minmax,max,min,fixed tumble rate and immobile bacterial

population. The cell division(Figure S10) and nutrient uptake(Figure S11) is most advantageous for minmax tumble rate

followed by max,min, and fixed tumble rate with immobile bacteria being the most disadvantageous. The simulation time

corresponds to 8 hours of real time for each strategy where details of noisy nutrient sensing, memory dependent bias in

run and tumble motion, glucose uptake using Michaelis-Menten kinetics and cell division have all been considered at a

single bacterium level.
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Figure S9: Population of bacteria after 6 hours starting at a distance of ∼ 8500µm with glucose rich source at the center.

Each square has sides of 4cm. (A) minmax tumble rate (B)max tumble rate (C)min tumble rate (D) fixed tumble rate
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Figure S10: Cell division in 8 hours, starting with 105 cells at (6000µm, 6000µm, 0) with the glucose rich source centered

at the origin.
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Figure S11: Glucose uptake(femto-gram) in 8 hours, starting with 105 cells at (6000µm, 6000µm, 0) with the glucose rich

source centered at the origin.

Phytoplankton lysis event

We perform microsimulation on a population of bacteria starting with 105 cells from a distance of 900µm from the glucose

rich source of initial concentration of 1000µM having 100µm radius at the centre of a box of dimensions 4mm× 4mm×
4mm. This mimics the natural event of phytoplankton burst in the ocean with a background glucose concentration of

40µM . Simulating for the various strategies reveals that under the given circumstances chemotaxis does not offer any

significant nutrient uptake advantage.
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Figure S12: Cell division in 8 hours of phytoplankton lysis event starting with 105 cells at (500µm, 500µm, 500µm). The

step like characteristic is owing to starting with same size of each bacterium in the population.
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Figure S13: Glucose uptake(femto-grams) in 8 hours of phytoplankton lysis event starting with 105 cells at

(500µm, 500µm, 500µm).

Randomizing initial size

The bumpy nature of the cell division plot corresponding to the ring formation experiment is owing to the fact that

we start with all bacteria having same size, hence they also performs cell division synchronously. This synchronous cell

division vanishes(Figure 6) when we randomize the initial size of the population while forming the rings(Figure S14).
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Figure S14: Randomizing initial size of each bacterium in the population did not affect ring formation (minmax tumble

rate).

Effect of Size : Ring formation after 6 hours

We perform the microsimulation for swarm ring formation with chemotactic bacteria (minmax tumble strategy) for 8

hours of laboratory experiment time with three starting population sizes (n0 = 103, 104, 105). All population forms rings,

but the sizes of the ring decreases with initial size of the population.

(a) (b) (c)

Figure S15: Swarm ring formation for initial colony sizes of (a) n0 = 103, (b) n0 = 104, (c) n0 = 105 bacteria. The size

of the square in all cases is 40 mm× 40 mm
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Perfect Absorption vs. Michaelis Menten Kinetics

We compare the glucose uptake and growth of E. coli population using perfect absorption and Michaelis-Menten kinetics.

Perfect absorption corresponds to uptake of all glucose molecules that collides with the bacteria. Cell division takes place

based on mass doubling (absorbing 900 fg of glucose). The calculated doubling times for uptake using Michaelis-Menten

kinetics and perfect absorption was found to be 90 minutes and 6.5 minutes respectively. The latter doubling time is too

fast for practical purposes.
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Figure S16: Comparison of cell division for different ways of glucose uptake for minmax tumble rate in swarm ring

experiment.
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Figure S17: Comparison of glucose uptake using different ways for minmax tumble rate in swarm ring experiment.
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Growth advantage of chemotactic bacteria
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Figure S18: Growth advantage of chemotactic (green line) over non-chemotactic (red line) bacteria over 8 hours experiment

time starting with (a) 10%, (b) 30%, (c) 50% chemotactic population. Black line represents the total population.
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