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Abstract 
Noncoding regulatory variants play an important role in the genetics of complex traits. Although 
quantitative trait locus (QTL) mapping is a powerful approach to identify these variants, many 
genetic effects may remain unobserved when cells are sampled in only one of a large number of 
possible environments. Using a novel induced pluripotent stem cell-derived system, we mapped 
QTLs regulating chromatin accessibility and gene expression in macrophages in four conditions 
mimicking the interplay between interferon-gamma response and Salmonella infection. We 
found that approximately 50% of condition-specific effects on gene expression altered chromatin 
accessibility prior to stimulation. Furthermore, 6% of the chromatin accessibility QTLs regulated 
multiple neighbouring regions and these interactions were modulated by stimulation, 
occasionally producing condition-specific changes in gene expression. Profiling additional states 
also doubled the number of expression QTLs that could be confidently colocalised with disease 
associations. Thus, a substantial fraction of disease-associated variants may affect ‘primed’ 
regulatory elements in naive cells. 
 
Main text 
Genetic differences between individuals can profoundly alter how their immune cells respond to 
environmental stimuli, influencing the amount of cytokines that the cells produce (1) and their 
gene expression patterns (2–5). These differences in cellular behaviour can subsequently 
modulate an individual's risk of developing complex immune-mediated disorders. Although 
many interactions between genotype and environment have been identified in primary immune 
cells (2–5), only a limited number of primary cells can be obtained from a single individual, 
limiting both the number of stimuli and phenotypes that can be studied. However, for any given 
cell type, there can be scores of relevant stimuli, combinations of stimuli or timepoints at which 
stimulus response can be measured, each state potentially revealing different sets of regulatory 
variants whose functions are otherwise hidden in the unstimulated cells. 
 
The limitation of cell numbers does not apply to cultured cells, such as human lymphoblastoid 
cell lines (LCLs). LCLs have been profiled on multiple levels including RNA sequencing (6, 7), 
chromatin accessibility (8, 9) and histone modifications (10, 11), elucidating how the effects of 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/102392doi: bioRxiv preprint 

https://doi.org/10.1101/102392
http://creativecommons.org/licenses/by/4.0/


 

genetic variation propagate from chromatin to gene expression in a single environment (8–10). 
However, since LCLs are immortalised by infection with Epstein-Barr virus, they are not a 
suitable model for studying response to immunological stimuli. A promising new approach is to 
differentiate induced pluripotent stem cells (iPSC) into the cell type of interest. Human iPSCs 
have recently been derived from large number of unrelated individuals (12, 13) and 
differentiation protocols for many cell types are available. Macrophages, phagocytic cells of the 
immune system that have evolved to respond to a wide range of environmental signals (14), can 
now be differentiated relatively robustly from iPSCs (15, 16). Furthermore, we and others have 
recently shown that iPSC and monocyte derived macrophages exhibit highly correlated 
transcriptional response to inflammatory stimuli (16, 17). 
 
We obtained iPSC lines from 123 healthy donors from the HipSci project (12) and differentiated 
them to macrophages using an established protocol (15). After rigorous quality control, we 
obtained highly pure (fig. S1) macrophages from 86 individuals (table S1). We used RNA-seq to 
measure gene expression of the differentiated macrophages in four experimental conditions: 
naive (N),18 hours IFNɣ stimulation (I), 5 hours Salmonella enterica serovar Typhimurium 
(Salmonella) infection (S), and IFNɣ stimulation followed by Salmonella infection (I+S). We also 
profiled chromatin accessibility with ATAC-seq (18) in a subset of 31-42 donors in the same four 
conditions (Fig. 1A). We chose these stimuli because they activate distinct, well characterised 
signalling pathways (Fig. 1B) and pre-stimulating macrophages with IFNɣ prior to bacterial 
infection is known to lead to enhanced microbial killing and stronger activation of the 
inflammatory response (19, 20).  
 
First, we examined global changes in gene expression and chromatin accessibility to test the 
faithfulness of our iPSC-derived macrophages as a model to study immune response. The first 
two principal components separated the four experimental conditions, and explained 59% of the 
variance in gene expression and 44% of the variance in chromatin accessibility (fig. S2). 
Consequently, 8,758 genes (55% of those expressed) were > 2-fold differentially expressed 
between naive and at least one of the stimulated conditions. Similarly, the accessibility of 
63,430 (22%) chromatin regions changed > 4-fold between the conditions, highlighting that both 
gene expression and chromatin accessibility are highly dynamic. 
 
To better understand the response to different stimuli, we clustered the differentially regulated 
genes and accessible chromatin regions identified above into distinct activity patterns (Fig. 1C-
D). We found that differential gene expression and chromatin accessibility patterns closely 
recapitulated known aspects of macrophage immune response. For example, genes 
upregulated by Salmonella (cluster 1, Fig. 1C) were enriched for tumor necrosis factor (TNF) 
signalling and cell death pathways whereas genes upregulated by IFNɣ (cluster 5, Fig. 1C) were 
enriched for IFNɣ response and antigen presentation pathways. Similarly, open chromatin 
regions in clusters 1 and 2 that became accessible after Salmonella infection were specifically 
enriched for NF-κB and AP-1 motifs (Fig. 1D), two main TFs activated downstream of toll-like 
receptor 4 (TLR4) signalling (21). In contrast, clusters 4 and 5 showed increased accessibility 
after IFNɣ stimulation and were enriched for IRF and STAT1 motifs, consistent with the 
activation of STAT1 and IRF1 downstream of IFNɣ signalling (22). An important biological role 
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of macrophages enhanced by IFNɣ is presentation of antigens to adaptive immune cells. 
Consistent with this, we found that the master regulator of MHC class II genes, CIITA, was 
upregulated by IFNɣ (fig. S3) and open chromatin regions displaying increased accessibility 
after IFNɣ stimulation were enriched for experimentally measured CIITA binding sites in IFNɣ-
stimulated monocytes (fig. S3) (23).  
 

 
Fig. 1. Dynamics of gene expression and chromatin accessibility in macrophage immune 
response. (A) Overview of the experimental design. (B) TLR4 recognises lipopolysaccharide 
(LPS) on Salmonella cell wall and activates NF-κB, AP-1 and IRF3 TFs (21). IRF3 stimulates 
IFNβ production that culminates with the activation of STAT1-STAT2-IRF9 complex. IFNɣ binds 
to IFNɣ receptor and activates STAT1 and IRF1 TFs (22). (C) Left panel: heatmap of 8758 
differentially expressed genes clustered into nine distinct expression patterns. Right panel: 
Selection of Gene Ontology terms enriched in each cluster. Only enrichments with p < 1×10-8 
are shown in the figure. (D) Left panel: heatmap of 63,350 differentially accessible regions 
clustered into seven distinct patterns. Right panel: enrichment of TF motifs in four groups of 
similar clusters relative to all open chromatin regions. 
 
Next, to identify common genetic variants that were associated with either gene expression 
(eQTLs) or chromatin accessibility (caQTLs), we used an allele-specific method implemented in 
RASQUAL (8) and compared it to a standard linear model. We found that RASQUAL detected 
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1.3-2x more QTLs at the same 10% FDR level (Fig. 2A, fig. S4). To assess the how condition-
specific eQTLs and caQTLs were, we focussed on all genes (regions) that had a significant QTL 
in at least one condition. For each gene (region), we asked how often the same lead variant or 
one in strong linkage disequilibrium with it (R2 > 0.8) was detected in another condition, even if 
the p-value was below the significance threshold (see Methods). On average, 47% of eQTL lead 
variants and 73% of caQTL lead variants were shared between any two pairs of conditions (Fig. 
2B). Next, we used a statistical interaction test followed by strict filtering on effect size to identify 
individual, condition-specific associations (see Methods). We identified 612 associations with 
gene expression and 2464 associations with chromatin accessibility that were hidden in the 
naive state and only appeared in one or more stimulated conditions (Fig. 2D). An example of an 
IFNɣ-specific genetic effect on NXPH2 expression is shown in Fig. 2C. Interestingly, while 
genes with condition-specific genetic effects showed similar mean expression across conditions, 
chromatin regions with stimulation-specific QTLs were predominantly inaccessible in 
unstimulated cells and became accessible only in the condition in which the genetic effect 
appeared (Fig. 2E, fig. S5), suggesting that they are at least partly driven by TFs that only bind 
to DNA after stimulation. Thus, even with a relatively small sample size we were able to identify 
thousands of QTLs that could only be detected in specific cellular states. 
 
Previous studies have shown that most genetic effects on chromatin have no observable 
downstream consequences on gene expression (9–11). While limited statistical power often 
reduces the extent of overlap between QTLs, some genetic effects on chromatin may indeed be 
truly ‘non-functional’, reflecting for example redundant TF binding. Alternatively, some caQTLs 
may have downstream effects on gene expression that only manifest in specific cell states or 
conditions (11). Our data provided an unique opportunity to quantify the hidden functional 
consequences of genetic effects on chromatin accessibility. We found that for a surprisingly 
large fraction of genes (approximately 50%) with IFNɣ-specific and Salmonella-specific eQTLs 
the corresponding caQTL (see Methods) was already present before stimulation (Fig. 2F). For 
example, a genetic variant in an intron of NXPH2 modulated the accessibility of a regulatory 
element both in naive and stimulated cells, but became associated with gene expression only 
after IFNɣ stimulation (Fig. 2G, Fig. 2C).  
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Fig. 2. Condition-specific genetic effects on gene expression and chromatin accessibility. 
(A) Number of eQTLs and caQTLs detected in each experimental condition using either a linear 
model (FastQTL) or RASQUAL. (B) Proportion of lead QTL variants shared between all pairs of 
conditions for both eQTLs and caQTLs. (C) IFNɣ-specific eQTL regulating the expression of 
NXPH2. (D) Six groups of condition-specific eQTLs and caQTLs identified by k-means 
clustering of the QTL relative effect sizes across conditions. (E) Distribution of mean gene 
expression (or chromatin accessibility) in the naive condition and in the condition where the 
condition-specific QTL had the largest relative effect size (marked by black rectangles on panel 
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D). TPM, transcripts per million. (F) Comparison of relative effect sizes between condition-
specific eQTLs and their corresponding caQTLs after IFNɣ stimulation (right panel) and 
Salmonella infection (left panel). Approximately 50% of the caQTLs are already active in the 
naive state. (G) Constitutive caQTL in the intron of NXPH2 that becomes associated with the 
expression of the gene after IFNɣ stimulation. 
 
Recent evidence suggests that that single genetic variants can modulate the activity of multiple 
neighbouring regulatory elements within regions enriched for three-dimensional interactions (8, 
10, 11, 24). One plausible mechanism for these broad associations is that a single causal 
variant may directly regulate the accessibility of a “master” region, which subsequently 
influences neighbouring “dependent” regions (Fig 3A) (8), potentially in a condition specific 
manner (25, 26). Our dataset provided an unique opportunity to discover these hierarchies 
between regulatory elements by studying the dynamics of master-dependent region 
relationships between conditions. First, we developed a heuristic approach to identify master 
and dependent regions from caQTL summary statistics. For each caQTL region, we defined its 
credible set of causal variants as those with R2 > 0.8 to the lead variant. We then classified the 
focal caQTL region as a master region (i - Fig 3A), if the credible set overlapped the region itself 
(Fig. 3A). Alternatively, if the credible set overlapped some other regulated region put not the 
focal region, then we classified it as a dependent region (ii - Fig. 3A). We also excluded 
ambiguous cases where the credible set overlapped either multiple regulated regions (iii - Fig 
3A) or it did not overlap any regulated regions (iv-v - Fig. 3A).  
 
With this approach, we identified 2934 master-dependent region pairs (Fig. 3A). While 77% of 
the master regions had a single dependent region (Fig. 3D) only a few kb away (Fig. 3F), the 
master caQTL in the NXPH2 locus had 18 dependent regions spanning a 100 kb stretch of DNA 
(Fig. 3D), six of which appeared only after IFNɣ stimulation (Fig. 3D). Notably, this caQTL also 
became an eQTL for NXPH2 after IFNɣ stimulation, together with the appearance of additional 
dependent regions (Fig. 3E). Using a linear model followed by strict filtering (see Methods), we 
found a total of 64 condition-specific dependent regions genome-wide, two of which are 
highlighted in Fig. S6. Thus, caQTL mapping in multiple conditions is a promising approach to 
uncover temporal hierarchical relationships between regulatory elements. 
 
The relatively short length of accessible regions (median 231 bp, fig. S7) suggests that they 
might aid fine mapping causal variants for caQTLs as well as colocalised eQTLs. We tested this 
hypothesis in the NXPH2 locus, where we noticed that only 2 of the top 10 most associated 
variants overlapped the master caQTL region and only one of them (rs7594476) was predicted 
to alter PU.1 TF binding in a direction consistent with the caQTL effect (Fig. 3F). Furthermore, 
the same region overlapped a PU.1 ChIP-seq peak in macrophages (27), suggesting that 
rs7594476 is the causal variant that alters chromatin accessibility of the region by disrupting 
PU.1 binding. To explore this systematically, we focused on master caQTL regions identified 
above (Fig. 3A) and found that 7,877 (72%) of them contained only a single associated variant 
and 10,558 (96%) contained up to three variants (Fig. 3G), suggesting that in those cases we 
might be able to identify a small set of plausible causal variants. To test accuracy of these 
predictions, we focussed on Salmonella-specific and IFNɣ-specific master caQTL regions, 
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speculating that variants in those regions should be enriched for disrupting binding sites for TFs 
that are activated by the two stimuli (Fig. 1B). Consistent with this hypothesis, we found that 
variants overlapping Salmonella-specific caQTL master regions were enriched for disrupting 
NF-κB and AP-1 motifs whereas IFNɣ-specific variants were enriched for disrupting the IRF 
motif (Fig. 3H), compared to other master caQTL regions that did not belong to these clusters. 
Thus, a substantial fraction of the master caQTLs could be narrowed down to ≤ 3 plausible 
causal variants.  
 

 
Fig. 3. Identifying caQTLs that multiple regions simultaneously and fine mapping putative 
causal variants. (A) Classifying caQTLs into master regions (i), dependent regions (ii) and 
ambiguous cases where the credible set overlaps either multiple regulated regions (iii) or does 
not overlap any regulated regions (iv-v). (B) Histogram of the number of associated dependent 
regions for each master region. (C) Distribution of distance between master and dependent 
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region pairs. (D) Multiple open chromatin regions regulated by a single caQTL at the NXPH2 
locus. Master caQTL region is marked by the red dotted line and IFNɣ-specific dependent 
regions are highlighted by black arrows. FPM, fragments per million. (E) Master caQTL on panel 
D becomes associated with NXPH2 expression after IFNɣ stimulation. (F) Fine mapping the 
causal variant for the master caQTL. Only one of the two variants overlapping the master region 
is predicted to disrupt the PU.1 motif. None of the associated variants overlap the two IFNɣ-
specific dependent regions (black arrows). Master caQTL region overlaps a PU.1 ChIP-seq 
peak from (27). (G) Histogram of the number of associated variants overlapping master caQTL 
regions. (H) Salmonella-specific contains master regions from clusters 2 and 3 in Fig. 2D while 
IFNɣ-specific contains master regions from clusters 5 and 6. 
 
To explore the utility of iPSC-derived macrophages in interpreting GWAS associations, we first 
used GARFIELD (28) to identify immune-mediated disorders whose GWAS hits were enriched 
among macrophage QTLs. As a negative control, we used type 2 diabetes (T2D), reflecting our 
belief that macrophages are not likely to be the most relevant cell type for a metabolic disease. 
We found that both expression and chromatin accessibility QTLs were strongly enriched among 
GWAS hits for inflammatory bowel disease (IBD) (33 fold), rheumatoid arthritis (RA) (14 fold) 
and systemic lupus erythematosus (11 fold) (Fig. 4A, table S2), consistent with the reported role 
of myeloid cells in those disorders (29). In contrast, T2D together with type 1 diabetes, multiple 
sclerosis, narcolepsy and celiac disease showed only moderate enrichment (3-5 fold), which is 
probably driven by QTLs shared by multiple cell types (Fig. 4A).  
 
Next, we quantified how many additional overlaps with GWAS hits we could find by including 
eQTLs from stimulated conditions. To avoid spurious overlaps in regions with a large number of 
linked variants, we used coloc (30) to identify cases where the gene expression and trait 
association signals were consistent with a model of a single, shared causal variant. In total, we 
identified 24 eQTLs (table S3) that showed evidence of colocalisation with at least one disease 
(see Methods). Consistent with the enrichment analysis above, we found the largest number of 
overlaps with IBD and RA (Fig. 4B). Interestingly, we found that only 11/24 of the colocalised 
eQTLs were detected in the naive cells and each additional stimulated state increased the 
number of overlap by approximately 30% (Fig. 4C). For example, we found an eQTL for TRAF1 
that was undetectable in the naive cells but colocalised with a RA GWAS hit in the IFNɣ + 
Salmonella condition (Fig. 4D). 
 
Finally, we focussed on colocalisation between caQTLs and GWAS hits. While we detected 23 
caQTLs that colocalised with a GWAS hit (table S4), only two of them also colocalised with an 
eQTL (PTK2B eQTL with Alzheimer’s disease (fig. S8) and WFS1 eQTL with T2D), suggesting 
that most caQTLs might regulate gene expression in some other yet unknown cell type or 
condition. Fig. 4E highlights a constitutive caQTL near the ICOSLG gene that is colocalised with 
a GWAS hit for ulcerative colitis, but does not regulate the expression of any nearby genes. The 
lead GWAS variant (rs7282490) has previously been associated with the expression of ICOSLG 
in monocyte-derived dendritic cells (31), but in our data the lead eQTL variant was clearly 
independent from the GWAS signal (R2 = 0.14) with coloc assigning 99% of the posterior 
probability (PP3) to a model supporting two independent causal variants, suggesting that the 
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colocalised caQTL might become an eQTL in some as of yet unknown condition. Although, 
22/23 of the caQTL overlaps were detected in the naive condition (Fig. 4C), this is also 
confounded with a smaller ATAC-seq sample size in Salmonella and IFNɣ + Salmonella 
conditions that limited our power to detect colocalisation.  
 

 
Figure 4. Identifying eQTLs and caQTLs that colocalise with complex disease risk loci. 
(A) Fold enrichment of eQTLs and caQTLs among GWAS hits for ten complex diseases. (B) 
Total number of colocalised GWAS hits identified for each of the 10 traits across four conditions. 
(C) Cumulative number of colocalised GWAS hits identified by starting with overlaps in the naive 
condition and sequentially adding IFNɣ, Salmonella and IFNɣ + Salmonella. (D) Salmonella-
specific eQTL for TRAF1 colocalised with a GWAS hit for rheumatoid arthritis (RA). (E) TRAF1 
expression in naive and IFNɣ + Salmonella conditions stratified by the lead GWAS variant. (F) 
GWAS hit for ulcerative colitis (UC) near ICOSLG that colocalises with a caQTL in all four 
conditions, but is independent from the constitutive eQTL of the same gene. FPM, fragments 
per million. Disease acronyms: IBD, inflammatory bowel disease; RA, rheumatoid arthritis; SLE, 
systemic lupus erythematosus; AD, Alzheimer’s disease; SCZ, schizophrenia; T2D, type 2 
diabetes; MS, multiple sclerosis; NAR, narcolepsy; CEL, celiac disease; T1D, type 1 diabetes. 
 
Multiple studies have highlighted that human disease loci identified in association studies are 
strongly enriched in regulatory elements (29, 32). Despite this, only a small fraction of GWAS 
hits can be explained by current eQTL mapping studies (33–35). Our results show that a large 
fraction of eQTLs, including those confidently colocalised with GWAS hits, remain hidden in the 
naive, unstimulated cells. Approximately 50% of these hidden eQTLs already manifest at the 
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chromatin level in naive cells. Furthermore, we found a number of caQTLs that colocalised with 
GWAS hits but did not seem to regulate the expression of nearby genes. Thus, our results 
indicate that a fraction of GWAS hits influence the activity of primed enhancers, but their effect 
on gene expression might become apparent only in very specific cellular states or conditions.  
 
The mechanisms by which genetic variants that only regulate chromatin accessibility in naive 
cells also start to influence gene expression following stimulation are not clear. One possible 
model is that cell-type specific pioneer TFs (such as PU.1 in macrophages) set up an accessible 
chromatin landscape that then guides the binding of TFs activated by stimulation and leads to 
activation of gene expression. There are multiple lines of evidence to support this model. For 
example, NF-κB activated by TLR4 signalling in mouse macrophages predominantly binds to 
enhancers that are already occupied by PU.1 before stimulation (36, 37) and genetic variants 
that disrupt NF-κB binding often do so indirectly by disrupting PU.1 binding in the naive cells 
(36). Similar hierarchies between cell type specific pioneer factors and signal-specific TFs have 
also been observed in TGFβ (38), BMP and Wnt signalling pathways (39). Furthermore, 
analysis of DNAse-seq data has shown that pioneer TFs (such as PU.1) have an intrinsic 
capacity to independently open up chromatin whereas the binding of other TFs (such as NF-κB) 
is largely determined by the accessible chromatin landscape of the cell (40).  
 
However, hierarchical TF binding is not necessarily limited to single regulatory elements. For 
example, some regulatory elements can act as “seed” enhancers that allow other neighbouring 
enhancers to become activate after stimulation and lead to upregulation of gene expression 
(25). The concept of seed enhancers is consistent with our observation that some constitutive 
master caQTLs have dependent regions that only appear after stimulation, highlighting that prior 
accessibility of one regulatory element is required for the others to become accessible (Fig. 3D). 
For example, in the NXPH2 region we observed that the appearance of multiple additional 
dependent regions after IFNɣ stimulation correlated with the caQTL also becoming associated 
with gene expression. However, some clustered enhancers seem to act independently of each 
other (41) and it is not yet well understood, how common the seed enhancers are. Furthermore, 
testing potential seed enhancers using direct editing is currently not feasible genome-wide. 
Thus, better powered future caQTL mapping studies in multiple cell types and conditions have a 
potential to systematically identify these hierarchical relationships between enhancers without 
the need for exhaustive genome editing experiments.  
 
Our study illustrates how pre-existing genetic effects on chromatin propagate to gene 
expression during immune activation, and highlights the relevance of these hidden genetic 
effects for deciphering the molecular architecture of disease-associated variants. A major 
implication of our results is that, while many risk variants may have constitutive effects on 
chromatin structure, downstream changes on gene expression are likely to be highly context-
specific, perhaps requiring expression assays in scores of alternative cell states to identify. 
Finally, our study is also the first that we are aware of to utilise an iPSC-based cell culture 
system to study genetic effects in immune response. We believe a major future use of this 
system will be the systematic exploration of gene-environment interactions across large 
numbers of cell states. Furthermore, because iPSCs are readily engineered, the identity of 
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causal variants and their downstream consequences can be directly tested in exactly the same 
cell types and conditions where they were discovered.  
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Materials and Methods 

Cell culture and reagents 

Donors and cell lines 
Human induced pluripotent stem cells (iPSCs) from 123 healthy donors (72 female and 51 
male) (table S1) were obtained from the HipSci project (12). Of these lines, 57 were initially 
grown in feeder-dependent medium and 66 were grown in feeder-free E8 medium.  

Feeder-free iPSC culture 
Feeder-free iPSCs were grown on tissue culture treated plates coated with vitronectin (VTN-N) 
(Gibco, cat. no. A14700) in Essential 8 (E8) medium (Gibco). The cells were dissociated from 
the plates using Gentle Cell Dissociation Buffer (Stemcell Technologies, cat. no. 07174) and 
passaged every 3-5 days. Prior to macrophage differentiation, the feeder-free iPSCs were first 
transferred to feeder-dependent media and propagated for at least two passages. This step was 
necessary because multiple attempts to differentiate macrophage directly from feeder-free 
iPSCs with our protocol failed. 

Feeder-dependent iPSC culture   
Feeder-dependent iPSCs were grown on irradiated CF-1 mouse embryonic fibroblast (MEF) 
feeder cells (AMS Biotechnology) in Advanced DMEM-F12 (Gibco) supplemented with 20% 
Knock-Out Serum Replacement (KSR) (Gibco), 2mM L-glutamine (Sigma), 50 IU/ml penicillin 
(Sigma), 50 IU/ml Streptomycin (Sigma) and 50µM β-Mercaptoethanol (Sigma M6250). The 
media was supplemented with 4 ng/ml recombinant human fibroblast growth factor (rhFGF) 
basic (R&D, 233-FB-025) to maintain pluripotency and was changed daily. MEFs were seeded 
on 0.1% gelatine-coated tissue-culture treated plates (Corning 6-well or 10 cm plates) 24 hours 
prior to passaging iPSCs at a cell density of 2 million cells/6-well or 10-cm plate in Advanced 
DMEM-F12 supplemented with 10% FBS (labtech), 2mM L-glutamine (Sigma), 50 IU/ml 
Penicillin and 50 IU/ml Streptomycin (Sigma). Prior to passaging or embryoid body formation, 
iPSCs were dissociated from the plates using 1:1 mixture of collagenase (1 mg/ml) and dispase 
(1 mg/ml) (both Gibco). 
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Macrophage differentiation protocol 
iPSCs were differentiated into macrophages using a previously published protocol (15) involving 
3 stages: i) embryoid body (EB) formation, ii) generation of monocyte-like myeloid progenitors 
from the EBs and iii) terminal differentiation of the progenitors into macrophages. For EB 
formation, iPSC colonies were treated with 1:1 mixture of collagenase (1 mg/ml) and dispase (1 
mg/ml) and intact colonies were transferred to low-adherence plates (Sterilin). The colonies 
were cultured in feeder-dependent iPSC medium without rhFGF for 3 days. On day 3, the EBs 
were harvested and transferred to gelatinised tissue-culture treated 10 cm plates in serum-free 
haematopoietic medium (Lonza X-VIVO 15), supplemented with 2 mM L-glutamine (Sigma), 50 
IU/ml penicillin, 50 IU/ml streptomycin (Sigma), 50 µM β-Mercaptoethanol (Sigma M6250), 50 
ng/ml macrophage colony stimulating factor (M-CSF) (R&D) and 25 ng/ml interleukin-3 (IL-3) 
(R&D). EBs were maintained in these plates with media changes every 3-5 days for 4-6 weeks 
until the progenitor cells appeared in the supernatant. Progenitor cells were harvested from the 
supernatant, filtered through a 40µm cell strainer (BD 352340), centrifuged at 1200 rpm for 5 
minutes, counted, and plated in RPMI 1640 (Gibco) supplemented with 10% FBS (labtech), 
2mM L-glutamine (Sigma) and 100 ng/ml hM-CSF (R&D) at a cell density of 150,000 cells per 
well on a 6-well plate and differentiated for another 7 days. 

Differentiation outcomes 
We performed 138 macrophage differentiation attempts from 123 distinct HipSci iPSC lines 
(table S1). We were able to differentiate macrophages from 101/123 (82%) of the iPSC lines. 
Successful differentiation means that we obtained at least some proportion of cells that 
exhibited characteristic spindle-like macrophage morphology. For 97/101 lines, we further 
confirmed the cell surface expression of CD14, CD16 and CD206 macrophage markers using 
flow cytometry. However, some of the differentiated lines did not produce enough macrophages 
to perform all of the experimental assays or the differentiated cells were not pure enough to be 
used in stimulation experiments. In total, we obtained high quality RNA-seq data from 89 
differentiations corresponding to 85 unique donors and ATAC-seq data from up to 42 unique 
donors in up to four experimental conditions (table S1).  

Salmonella infection and IFNɣ stimulation 
Two wells of a 6-well plate were used per condition to ensure sufficient amount of RNA. On day 
6 of macrophage differentiation, medium was changed for all wells with half of the wells 
receiving macrophage differentiation media (with M-CSF) and the other half of the cells 
receiving macrophage differentiation media supplemented with 20 ng/ml IFNɣ (R&D) and M-
CSF. After 18 hours, cells from two wells of the naive and IFNɣ conditions were harvested for 
RNA extraction. The remaining two wells from each condition were additionally infected with 
Salmonella enterica serovar Typhimurium SL1344 (hereafter Salmonella) for 5 hours.  
 
Two days before infection, Salmonella culture was inoculated in 10 ml low salt LB broth and 
incubated overnight in a shaking incubator (200 rpm) at 37°C. Next morning, the culture was 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/102392doi: bioRxiv preprint 

https://doi.org/10.1101/102392
http://creativecommons.org/licenses/by/4.0/


 

diluted 1:100 into 10 ml of fresh LB broth and incubated again in a shaking incubator. In the 
afternoon the culture was diluted once more 1:100 into 45 ml of LB broth and kept overnight in a 
static incubator. In the morning before infection, the culture was centrifuged at 4000 rpm for 10 
minutes, washed once with 4°C PBS and resuspended in 30 ml of PBS. Subsequently, optical 
density at 600 nm was measured and Salmonella was diluted in macrophage differentiation 
media (without MCSF) at multiplicity of infection (MOI) 10 assuming 300,000 cells per well. To 
infect the cells, old media was removed and replaced with 1 ml of media containing Salmonella 
for 45 minutes. Subsequently, the cells were washed twice with PBS and replaced in fresh 
medium with 50 ng/ml gentamicin (Sigma) to kill extracellular bacteria. After 45 minutes the 
medium was changed once again to fresh medium containing 10 ng/ml gentamicin. 
 
For RNA extraction, cells were washed once with PBS and lysed in 300 μl of RLT buffer 
(Qiagen) per one well of a 6-well plate. Lysates from two wells were immediately pooled and 
stored at -80°C. RNA was extracted using RNA Mini Kit (Qiagen) following manufacturer’s 
instructions and eluted in 35 µl nuclease-free water. RNA concentration was measured using 
NanoDrop and RNA integrity was measured on Agilent 2100 Bioanalyzer using RNA 6000 Nano 
total RNA kit. 

Flow cytometry 
We used flow cytometry to measure the cell surface expression of three canonical macrophage 
markers: CD14, CD16 (FCGR3A/FCGR3B) and CD206 (MRC1). Macrophages were cultured in 
10 cm tissue-culture treated plates and detached from the plates by incubation in 6 mg/ml 
lidocaine-PBS solution (Sigma L5647) for 30 minutes followed by gentle scraping. From each 
cell line we harvested between 300,000-500,000 cells. Detached cells were washed in media, 
centrifuged at 1200 rpm for 5 minutes and resuspended in flow cytometry buffer (2% BSA, 
0.001% EDTA in D-PBS) and split into two wells of a 96-well plate. Nonspecific antibody binding 
sites were blocked by incubating cells with Human TruStain FcX (Biolegend) for 45 minutes and 
washing with flow cytometry buffer. Half of the cells were stained for 1 hour with the PE-isotype 
control (BD 555749) antibody. The other half of the cells were co-stained for 1 hour with the 
following three antibodies: CD14-Pacific Blue (BD 558121), CD16-PE (BD 555407), CD206-
APC (BD 550889). After staining, the cells were washed three times. Resuspended cells were 
filtered through cell-strainer cap tubes (BD 352235) and measured on the BD LSRFortessa Cell 
Analyzer. The raw flow cytometry data has been deposited to Zenodo (doi: 
10.5281/zenodo.234214).  

RNA sequencing 
All of the RNA-seq libraries were constructed using poly-A selection. The first 120 RNA-seq 
libraries from 30 donors were constructed manually using the Illumina TruSeq stranded library 
preparation kit. The TruSeq libraries were quantified using Bioanalyzer and manually pooled for 
sequencing. For the remaining 216 samples, we used an automated library construction 
protocol that was based on the KAPA stranded mRNA-seq kit. The KAPA libraries were 
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quantified using Quant-iT plate reader and pooled automatically using the Beckman Coulter NX-
8. The first 16 samples were sequenced on Illumina HiSeq 2500 using V3 chemistry and 
multiplexed at 4 samples/lane. All of the other samples were sequenced on Illumina HiSeq 2000 
using V4 chemistry and multiplexed at 6 samples/lane. Sample metadata is presented in table 
S5. 

RNA-seq pre-processing and quality control 
RNA-seq reads were aligned to the GRCh38 reference genome and Ensembl 79 transcript 
annotations using STAR v2.4.0j (42). Subsequently, VerifyBamID v1.1.2 (43) was used to detect 
and correct any potential sample swaps and cross-contamination between donors. We did not 
detect any cross-contamination, but we did identify one sample swap between two donors. We 
used featureCounts v1.5.0 (44) to count the number of uniquely mapping fragments overlapping 
GENCODE (45) basic annotation from Ensembl 79. We excluded short RNAs and pseudogenes 
from the analysis leaving 35,033 unique genes of which 19,796 were protein coding. 
Furthermore, we only used 15,797 genes with mean expression in at least one of the conditions 
greater than 0.5 transcripts per million (TPM) (46) in all downstream analyses. We quantile-
normalised the data and corrected for sample-specific GC content bias using the conditional 
quantile normalisation (cqn) (47) R package as recommended previously (48). To detect hidden 
confounders in gene expression, we applied PEER (49) to each condition separately allowing 
for at most 10 hidden factors. We found that the first 3-5 factors explained the most variation in 
the data and the others remained close to zero. Although we performed replicate macrophage 
differentiations and RNA-seq from four iPSC lines, for simplicity we decided to use only one of 
the replicates in downstream analysis. We further excluded samples from one donor (qaqx_1) 
from downstream analysis because they appeared as outliers on the PCA plot. The final dataset 
consisted of 336 RNA-seq samples from 84 donors. 

Differential expression analysis 
We included 15,797 genes whose mean expression in at least one of the conditions was greater 
than 0.5 TPM into our differential expression analysis. For each gene, we used likelihood ratio 
test (test = “LRT”) implemented in DESeq2 (50) v1.10.0 to test if a model that allowed different 
mean expression in each condition explained the data better than a null model assuming the 
same mean expression across conditions. Overall, 8758 genes with Benjamini-Hochberg FDR < 
1% and fold change between naive and any one of the stimulated conditions greater than 2 
were identified as differentially expressed.  
 
To identify differentially expressed genes with specific expression patterns, we calculated mean 
quantile-normalised expression level in each condition and standardised the mean expression 
values across conditions to have zero mean and unit variance. Subsequently, we used c-means 
fuzzy clustering implemented in MFuzz v.2.28 (51) package with parameters ‘c = 9, m = 1.5, iter 
= 1000’ to assign the genes into 9 clusters. The number of clusters was chosen iteratively by 
trialing different numbers and observing which ones led to stable clustering results from 
independent runs. We ranked the genes in each cluster by their fold change between naive and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/102392doi: bioRxiv preprint 

https://doi.org/10.1101/102392
http://creativecommons.org/licenses/by/4.0/


 

highest expression conditions and used g:Profiler (52) R package with ‘max_set_size = 3000, 
ordered_query = TRUE, exclude_iea = TRUE’ options to identify pathways and Gene Ontology 
categories enriched in each cluster. 

ATAC-seq 

Experimental procedures 
Approximately 150,000 cells were seeded into 1 well of a 6-well plate and treated identically to 
the RNA-seq samples. After stimulation, cells were washed once with ice-cold Dulbecco’s 
phosphate buffered saline without calcium and magnesium and incubated for 12 minutes on ice 
in 500 µl freshly-made sucrose buffer (10 mM Tris-Cl pH 7.5, 3 mM CaCl2, 2mM MgCl2, 0.32 M 
sucrose). After 12 minutes, 25 µl of 10% Triton-X-100 (final concentration 0.5%) was added and 
the cells were incubated for another 6 minutes to release the nuclei. The lysate was transferred 
to 1.5 mL microfuge tube, vortexed briefly, and centrifuged at 300 g for 8 minutes at 4°C. All 
traces of the sucrose lysis buffer were removed before immediately resuspending the nuclei 
pellet in 50 µL of Nextera tagmentation master mix (Illumina FC-121-1030), comprising 25 µL 2x 
Tagment DNA buffer, 20 µL nuclease-free water and 5 µL Tagment DNA Enzyme 1. The 
tagmentation reaction mixture was immediately transferred to a 1.5 mL low adherence 
microfuge tube and incubated at 37°C for 30 minutes. The tagmentation reaction was stopped 
by the addition of 250 µL Buffer PB (Qiagen). The tagmented chromatin was then purified using 
the MinElute PCR purification kit (Qiagen 28004), according to the manufacturer’s instructions, 
eluting in 10 µL of buffer EB (Qiagen). Finally, size selection was performed using agarose gel 
and SPRI beads (8). Five samples were pooled per lane and 75 bp paired end reads were 
sequenced on Illumina HiSeq 2000 using the V4 chemistry.  

Read alignment 
Illumina Nextera sequencing adapters were trimmed using skewer v0.1.127 (53) in paired end 
mode. Trimmed reads were aligned to GRCh38 human reference genome using bwa mem 
v0.7.12 (54). Reads mapping to the mitochondrial genome and alternative contigs were 
excluded from all downstream analysis. Picard 1.134 MarkDuplicates was used to remove 
duplicate fragments. We used verifyBamID (43) 1.1.2 to detect and correct potential sample 
swaps between individuals. Fragment coverage BigWig files were constructed using bedtools 
v2.17.0 (55).  

Peak calling  
We used MACS2 (56) v2.1.0 with ‘--nomodel --shift -25 --extsize 50 -q 0.01’ to identify open 
chromatin regions (peaks) that were enriched for transposase integration sites compared to the 
background at 1% FDR level. With these parameters we detected between 31,658 and 208,330 
peaks per sample (table S6). We constructed consensus peak sets in each condition separately 
by pooling all of the peak calls from all of the samples. For each peak, we counted the number 
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samples in which that peak was identified and calculated the union of all peaks that were 
detected in at least three samples. Finally, we pooled the consensus peaks from all four 
conditions to obtain the final set of 296,220 unique peaks that were used for all downstream 
analyses. We used featureCounts (44) v.1.5.0 to count the number of fragments overlapping 
consensus peak annotations in each sample.  

Sample quality control 
We used the following criteria summarised in table S6 to assess the quality of ATAC-seq 
samples: 

● Assigned fragment count - the total number of paired end fragments assigned to peaks 
by featureCounts. 

● Mitochondrial fraction - fraction of total fragments aligned to the mitochondrial genome. 
● Assigned fraction - fraction of non-mitochondrial reads assigned to consensus peaks. A 

measure of signal-to-noise ratio. 
● Duplicated fraction - fraction of fragments that were marked as duplicates by Picard 

MarkDuplicates. 
● Peak count - number of peaks called by MACS2. 
● Length ratio - # of short fragments (< 150 nt) / # long fragments (>= 150 nt). This 

measures if the read length distribution has characteristic ATAC-seq profile with clearly 
visible mono-nucleosomal and di-nucleosomal peaks. 

We used these criteria to exclude 5 samples from downstream analysis (table S6). One sample 
was excluded because of very low assigned fraction (~10%) and peak count, two more were 
excluded because of extremely large length ratio (>7) and a fragment length distribution 
uncharacteristic for ATAC-seq library. The final two samples were excluded because they 
appeared to be outliers in the principal component analysis (PCA). 

Differentially accessible regions 
We used limma voom v3.26.3 (57) with TMM normalisation to identify 63,430 peaks that were 
more than 4-fold differentially accessible (FDR < 0.01) between naive and any one of the 
stimulated conditions. We only included high quality samples from 16 donors (64 samples) 
(table S6) in the analysis, because we noticed that limma voom was sensitive to additional noise 
in the lower quality samples. Subsequently, we quantile-normalised the peak accessibility data 
using cqn (47), calculated the mean accessibility of each peak in each condition and used 
Mfuzz v.2.28 (51) to cluster the peaks into seven distinct activity patterns. 

Motif enrichment 
We downloaded the CIS-BP (58) human TF motif database from the MEME website and used 
FIMO (59) to identify the occurrences of all TF motifs within the ATAC consensus peaks with 
FIMO threshold p-value < 1x10-5. We also performed the same motif scan for 2 kb promoter 
sequences upstream of 21,350 human genes (downloaded from the PWMEnrich (60) R 
package) and used this as the background set. We used Fisher’s exact test to identify motifs 
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that occurred significantly more often in macrophage open chromatin regions compared to the 
background promoter sequences. Because the CIS-BP database contains many redundant 
motifs, we manually selected 21 representative motifs for downstream analysis corresponding to 
the major TFs important in macrophage biology: AP-1, IRF-family, ETS-family (PU.1, ELF1, 
FLI1), NF-κB, CEBPα, CEBPβ, ATF4, CTCF, STAT1, MAFB, MEF2A and USF1. We used 
Fisher’s exact test to identify motifs that were specifically enriched in each cluster of 
differentially accessible peaks compared to the background of all macrophage ATAC-seq 
peaks. 

ChIP-seq data analysis 
Human macrophage PU.1 ChIP-seq data (27) (75bp single-end reads) were downloaded from 
GEO (accession GSE66594), RFX5 and CIITA ChIP-seq data from naive and IFNɣ-stimulated 
monocytes (23) (51 bp paired-end reads) were downloaded from ArrayExpress (accession E-
MTAB-2424) and macrophage C/EBPβ ChIP-seq data (61) (50 bp paired-end reads) were 
obtained from GEO (accession GSE54975). Single-end datasets were aligned to the GRCh38 
reference genome using bwa aln v0.7.12 and paired-end datasets were aligned to the same 
reference using bwa mem v0.7.12 with the -M flag set. For paired-end datasets, only properly 
paired reads were used for downstream analysis. Duplicate reads were removed with Picard 
v1.134 MarkDuplicates with the ‘REMOVE_DUPLICATES=true’ parameter set. We used 
bedtools v2.17.0 (55) to construct genome wide read (single-end) or fragment (paired-end) 
coverage tracks in BigWig format. Finally, we called peaks using MACS2 v2.1.0 with ‘-q 0.01’ 
option. 

Peak overlap analysis 
We used a permutation-based approach implemented in the Genomic Association Test (GAT) 
(62) software to test if the overlap between two sets of genomic annotations (such as ATAC-seq 
peaks and CIITA TF ChIP-seq peaks) was larger than expected by chance.  

QTL mapping 
Preparing genotype data 
We obtained imputed genotypes for all of the samples from the HipSci (12) project. We used 
CrossMap v0.1.8 (63) to convert variant coordinates from GRCh37 reference genome to 
GRCh38. Subsequently, we filtered the VCF file with bcftools v.1.2 to retain only bi-allelic 
variants (both SNPs and indels) with IMP2 score > 0.4 and minor allele frequency (MAF) > 0.05 
in our 86 samples. The same VCF file was used for all subsequent analyses. The genotype data 
for 52 managed access lines is available from the European Genome-phenome Archive (EGA) 
(EGAD00010000773), the data for the remaining 34 open access lines is deposited in the 
European Nucleotide Archive (ENA) (ERP013161). The VCF file was imported into R using the 
SNPRelate (64) R package.  
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Quantifying allele-specific expression and chromatin accessibility 
We used ASEReadCounter (65) from the Genome Analysis ToolKit (GATK) to count the number 
of allele-specific fragments overlapping each variant in the RNA-seq and ATAC-seq datasets. 
We used the following flags with ASEReadCounter: ‘-U ALLOW_N_CIGAR_READS -dt NONE -
-minMappingQuality 10 -rf MateSameStrand’. We removed indels from the VCF file prior to 
quantifying allele-specific expression because they are not supported by the RASQUAL model.  

Detecting QTLs using RASQUAL 
We wrote a collection of python scripts and a rasqualTools R package to simplify running 
RASQUAL on large number of samples and work with large RASQUAL output files. This 
software is available on GitHub (https://github.com/kauralasoo/rasqual). We used the  
vcfAddASE.py script to add allele-specifc counts calculated in the previous step into the VCF 
file. We ran RASQUAL (8) independently for each experimental condition using sex and first two 
PEER factors as covariates (sex and first 3 PCs for caQTLs). In contrast to standard linear 
model, covariates seemed to have only a minor effect on the number of QTLs detected by 
RASQUAL. We only included variants that were either in the gene body or within +/-500 kb from 
the gene (+/- 50kb from the peak). We specified ‘--imputation-quality > 0.7’. As a result, variants 
with imputation quality of < 0.7 were used as feature SNPs in allele-specific analysis but were 
not considered as possible causal variants. We also used RASQUAL’s GC correction option to 
correct for sample-specific GC bias in the feature-level read count data. To correct for multiple 
testing, we picked one minimal p-value per feature, used eigenMT (66) to estimate the number 
of independent tests performed in the cis-region of each feature and then performed Bonferroni 
correction to obtain the corrected p-value. We also ran RASQUAL once with the ‘--random-
permutation’ option to obtain empirical null p-values from data with permuted sample labels. We 
performed the same eigenMT multiple testing procedure on the permuted p-values and 
compared the true association p-values to the the empirical null distribution to identify QTLs with 
FDR < 10%. 

Detecting QTLs using a linear model 
We used linear regression implemented in the FastQTL (67) software to map cis QTLs in each 
experimental condition. We used the ‘--permute 100 10000’ option to obtain permutation p-
values for each association. The size of the cis windows was set to +/-500 kb around each gene 
and +/- 50kb around each ATAC-seq peak. Prior to to QTL mapping, the read count data was 
quantile normalised using the cqn package with GC-content of the feature (gene or peak) 
included as a covariate. For eQTL analysis, we used sex and the first six PEER factors as 
covariates in the model. For caQTL analysis we used sex and the first three principal 
components (PCs) as covariates in the model. Although FastQTL reported feature-level 
permutation p-values, obtaining those was computationally not feasible for RASQUAL. 
Therefore, to be able to faithfully compare the number of QTLs detected by FastQTL and 
RASQUAL we decided to apply exactly the same multiple testing correction procedure 
(eigenMT + single permutation of sample labels) to both methods. We further restricted the 
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comparison to features what were tested by both methods. This affected a small number of 
genes that were tested by FastQTL but filtered out by RASQUAL, because the raw read count 
was exactly zero in all samples. 

Detecting condition-specific QTLs with a linear model 
In each condition, we first identified all features (genes or peals) and corresponding lead 
variants that displayed significant association at 10% FDR level from RASQUAL. For each 
feature, we retained only independent lead variants (R2 < 0.8). Finally, we used all independent 
pairs of features and corresponding lead variants to test if the QTL effect size was significantly 
different between conditions. This was equivalent to testing the significance of the interaction 
term between condition and lead QTL variant for each feature. Specifically, we used ANOVA to 
compare two models for each feature and lead variant pair: 
 
H0: expression ~ genotype + condition + covariates 
H1: expression ~ genotype + condition + genotype:condition + covariates 
 
We calculated the p-value of rejecting H0 and performed Benjamini-Hochberg FDR correction to 
identify condition-specific QTLs that were significant at 10% FDR level. For both gene 
expression and chromatin accessibility analysis we used the same normalised data sets and 
covariates that were used for QTL mapping in each condition separately. 

Filtering and clustering QTLs based on effect size 
Next, we focussed on all significant feature-variant pairs that were detected with the interaction 
test above. We extracted the RASQUAL QTL effect size estimates π for each feature-variant 
pair in each condition and converted them to log2 fold changes between the two homozygotes 
using the formula log2FC = -log2(π/(1-π)). For an eQTL to be considered condition specific we 
required the log2FC in the naive condition to be less than 0.59 (1.5-fold) and the difference in 
log2FC between naive and any one of the stimulated conditions to be greater than 0.32 (~1.25 
fold). Since caQTL effect sizes were generally larger than eQTL effect sizes, we used slightly 
more stringent criteria for filtering caQTLs: naive log2FC < 0.59 and difference in log2FC 
between any two conditions > 0.59 (1.5-fold). We further required the log2FC to be greater than 
0.59 in at least one condition. For both eQTLs and caQTLs, we divided the log2FC values in 
each condition by the maximal log2FC value observed across conditions. This scaling was 
necessary to make QTLs with different absolute effect sizes comparable to each other for the k-
means algorithm. Finally, we used k-means clustering to identify six groups of QTLs that had 
similar activity patterns between conditions. 

QTL replicability between conditions 
To quantify the extent of QTL sharing between two conditions (e.g. A and B), we identified all 
features (genes or peaks) with the nominal p-value of the lead variant < 1x10-6 in condition A 
and then counted how often was a linked lead variant (R2 > 0.8) for the same feature detected in 
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condition B, irrespective of its nominal p-value in condition B. We also repeated the analysis by 
starting with significant QTLs identified in condition B and replicating in condition A.  

Motif disruption analysis 
We limited motif disruption analysis to caQTL peaks that did not contain associated indels and 
had <= 3 overlapping SNPs in them. For each SNP and peak pair we focussed on the sequence 
+/- 25 bp from the SNP. We constructed both reference and alternative versions of the 
sequence and used TFBSTools v1.10.4 (68) to calculate the relative binding scores for both 
alleles (expressed as percentage between 0-100%). We considered the variant to be motif 
disrupting if the difference in relative binding score between the two alleles was > 3 percentage 
points. We also required the relative binding score for at least one of the alleles to be >= 85% of 
the theoretical maximum. This filter was necessary to exclude potential motif disruption events 
in very weak motif matches that are not likely to correspond to binding in vivo and is similar to 
the default recommended by TFBSTools. We used Fisher’s exact test to identify motifs that 
were significantly more often disrupted in one of the six condition-specific caQTL clusters 
compared to all caQTLs.  

Identifying condition-specific dependent peaks 
To identify condition-specific dependent peaks, we tested if the effect size of the caQTL 
changed differently for master and dependent peaks between two pairs of conditions. This was 
equivalent to testing the significance of a three-way interactions between genotype, peak 
(master or dependent) and condition. We implemented this as the comparison of two standard 
linear models in R: 
 
H0: y ~ peak + condition + peak*condition + genotype*peak + genotype*condition + covariates 
H1: y ~ peak + condition + peak*condition + genotype*peak + genotype*condition + 
genotype*condition*peak + covariates 
 
Similarly to condition-specific caQTL analysis, we used the first three principal components 
calculated separately for each condition as covariates in the model. We identified all master-
dependent peak pairs that showed significant interaction at 10% Benjamini-Hochberg FDR 
level. We used the log2FC from RASQUAL as the measure of caQTL effect size. To identify true 
condition-specific dependent peaks, we further filtered the results by requiring the absolute 
log2FC of the master peak to be > 0.59 (1.5-fold) in the naive condition and the change in the 
log2FC for the dependent peak between the naive and stimulated condition to be > 0.59.  

Linking condition-specific eQTLs to caQTLs 
First, we identified eQTLs that appeared either after IFNɣ stimulation or Salmonella infection by 
using similar log2FC cut-offs that we used for clustering eQTLs. Specifically, we required the 
log2FC in the naive condition to be < 0.59 and the difference in log2FC between naive and the 
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stimulated (either IFNɣ or Salmonella) conditions to be > 0.32. We also required the absolute 
log2FC in the stimulated condition to be > 0.32. Next, for each gene with a condition-specific 
eQTL, we used RASQUAL to test for association between the lead eQTL variant and all ATAC-
seq peaks within +/-100 kb window from the lead variant. We performed the association test in 
the condition in which the eQTL was active (i.e. IFNɣ for IFNɣ-specific eQTLs and Salmonella 
for Salmonella-specific eQTLs). We used Bonferroni correction to account for multiple peaks 
tested per gene and filtered the peak-gene pairs at Benjamini-Hochberg FDR < 10%. For each 
condition-specific eQTL we retained only one peak that had the lowest association p-value. 
Finally, we required the lead eQTL and caQTL variants to be in high LD with each other (R2 > 
0.8). With this approach, we identified a corresponding caQTL for 58/164 (35%) IFNɣ-specific 
eQTLs and 82/323 (25%) Salmonella-specific eQTLs. The smaller relative overlap with 
Salmonella-specific eQTLs was likely due to smaller ATAC-seq sample size and less caQTL 
identified in the Salmonella condition. 

Overlap with genome-wide association studies 
We obtained full summary statistics for ten immune-mediated disorders: inflammatory bowel 
disease (IBD) including ulcerative colitis (UC) and Crohn’s disease (CD) (69), Alzheimer’s 
disease (AD) (70), Rheumatoid arthritis (RA) (71), systemic lupus erythematosus (SLE) (72), 
type 1 diabetes (T1D) (73), Schizophrenia (SCZ) (74), multiple sclerosis (MS) (75), celiac 
disease (CEL) (76) and narcolepsy (NAR) (77). In addition, we used summary statistics from 
type 2 diabetes (T2D) (78) as a negative control for a trait that should not be specifically 
enriched in macrophages. Summary statistics for T1D, CEL, IBD, RA, AD, MS and SLE were 
downloaded in 2015. SCZ, T2D and NAR were downloaded in 2016. T2D summary statistics 
were converted from GRCh36 to GRCh37 coordinates using the LiftOver tool, all of the other 
summary statistics already used GRCh37 coordinates. 
 
Summary statistics for Alzheirmer’s disease were downloaded from International Genomics of 
Alzheimer's Project (IGAP). IGAP is a large two-stage study based upon genome-wide 
association studies (GWAS) on individuals of European ancestry. In stage 1, IGAP used 
genotyped and imputed data on 7,055,881 single nucleotide polymorphisms (SNPs) to meta-
analyse four previously-published GWAS datasets consisting of 17,008 Alzheimer's disease 
cases and 37,154 controls (The European Alzheimer's disease Initiative – EADI the Alzheimer 
Disease Genetics Consortium – ADGC The Cohorts for Heart and Aging Research in Genomic 
Epidemiology consortium – CHARGE The Genetic and Environmental Risk in AD consortium – 
GERAD). In stage 2, 11,632 SNPs were genotyped and tested for association in an 
independent set of 8,572 Alzheimer's disease cases and 11,312 controls. Finally, a meta-
analysis was performed combining results from stages 1 & 2. 

Enrichment analysis 
In each of the four conditions, we took all variants that were associated with either gene 
expression or chromatin accessibility with nominal p-value < 1x10-5 and used that set of variants 
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as a custom annotation track. We then used GARFIELD (28) to test if GWAS hits for the ten 
traits described above were enriched among the QTL variants. We excluded the MHC region 
(GRCh37: 6:20,000,000-40,000,000) from the GWAS summary statistics prior to enrichment 
testing, because this region was found to significantly inflate estimates of fold enrichment. In the 
main text, we reported fold enrichment at 1x10-5 GWAS significance threshold. 

Colocalisation analysis 
We used coloc v2.3-1 (30) to test for colocalisation between molecular QTLs and GWAS hits. In 
the colocalisation analysis we used summary statistics from the linear model (rather than 
RASQUAL), because RASQUAL summary statistics could not be easily converted to 
approximate Bayes factors required by coloc. We ran coloc on a 400kb region centered on each 
lead eQTL and caQTL variant that was less than 100kb away from at least one GWAS variant 
with nominal p-value < 1x10-5. We then applied a set of filtering steps to identify a stringent set 
of eQTLs and caQTL that colocalised with GWAS hits. Similarly to what was done in (35), we 
first removed all cases where PP3 + PP4 < 0.8, to exclude loci where we were underpowered to 
detect colocalisation. We then required PP4/(PP3+PP4) > 0.9 to only keep loci where coloc 
strongly preferred the model of a single shared causal variant driving both association signals 
over a model of two distinct causal variants. We excluded all colocalisation results from the 
MHC region (GRCh38: 6:28,510,120-33,480,577) because they were likely to be false positives 
due to complicated LD patterns in this region. We only kept results where the minimal GWAS p-
value was < 10-6. Finally, we manually excluded 11 potential eQTL overlaps and 6 potential 
caQTL overlaps where on visual inspection the LD block exceeded the 400kb window that we 
used for colocalisation testing. 

Software used 
Most figures were made in R using ggplot2 (79) and wiggleplotr 
(https://github.com/kauralasoo/wiggleplotr) was used to produce RNA-seq and ATAC-seq read 
coverage plots. List of software used in this study is presented below. 
 

Name Reference Link 

bedtools (v2.17.0) (55) http://bedtools.readthedocs.io/ 

BWA (v0.7.12) (54) http://bio-bwa.sourceforge.net/ 

skewer (v0.1.127) (53)  https://github.com/relipmoc/skewer 

MACS2 (v2.1.0) (56) https://github.com/taoliu/MACS 

Mfuzz (v.2.28)  (51) http://bioconductor.org/packages/Mfuzz/ 

coloc (v2.3-1) (30) https://github.com/chr1swallace/coloc 
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TFBSTools (v1.10.4)  (68) http://bioconductor.org/packages/TFBSTools/ 

RASQUAL (8) https://github.com/dg13/rasqual 

FastQTL (67) http://fastqtl.sourceforge.net/ 

ASEReadCounter (65) https://software.broadinstitute.org/gatk/ 

limma voom (v3.26.3) (57) https://bioconductor.org/packages/limma/ 

DESeq2 (v1.10.0) (50) https://bioconductor.org/packages/DESeq2/ 

FIMO (59) http://tools.genouest.org/tools/meme/ 

bcftools NA http://www.htslib.org/ 

SNPRelate (64) https://bioconductor.org/packages/SNPRelate/ 

samtools (80) http://www.htslib.org/ 

verifyBamID (v1.1.2) (43) http://genome.sph.umich.edu/wiki/VerifyBamID 

PEER (49) https://github.com/PMBio/peer 

STAR (v2.4.0j) (42) https://github.com/alexdobin/STAR 

cqn (47) http://bioconductor.org/packages/cqn/ 

GARFIELD (28) http://www.ebi.ac.uk/birney-srv/GARFIELD/ 

GAT (62)  http://gat.readthedocs.io/ 

Picard NA https://broadinstitute.github.io/picard/ 

eigenMT (66) http://joed3.github.io/eigenMT/ 

CrossMap (v0.1.8) (63) http://crossmap.sourceforge.net/ 

featureCounts (v.1.5.0) (44) http://subread.sourceforge.net/ 

LiftOver NA http://genome.sph.umich.edu/wiki/LiftOver 

ggplot2 (79) http://ggplot2.org/ 

wiggleplotr NA https://github.com/kauralasoo/wiggleplotr 
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Data availability 
All of the experimental data has been deposited in the following repositories: 
 

Data Managed access Open access 

Imputed genotypes EGAD00010000773 ERP013161 

RNA-seq / ATAC-seq EGAS00001002236 ERP020977 

Flow cytometry doi: 10.5281/zenodo.234214 

Processed read counts doi: 10.5281/zenodo.259661 
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Supplementary Tables 
Table S1: Metadata for all iPSC to macrophage differentiation attempts. 
Table S2: GARFIELD fold enrichments and p-values for 10 different GWAS traits. 
Table S3: List of eQTLs colocalised with GWAS associations. 
Table S4: List of caQTLs colocalised with GWAS associations. 
Table S5: Metadata for the RNA-seq samples. 
Table S6: Metadata for the ATAC-seq samples. 
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Supplementary Figures 

 
Figure S1: Purity of IPSC-derived macrophages. Macrophages were stained with antibodies for 
CD14, CD16 and CD206 and flow cytometry was used to estimate the proportion of cells 
stained positive for each of the three markers. The histogram shows the mean purity across the 
three markers.  
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Figure S2: Global overview of the the datasets. (A) Principal component analysis of the gene 
expression data. (B) Principal component analysis of the chromatin accessibility data. 
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Figure S3: Regulation of MHC class II expression in iPSC-derived macrophages. (A) Gene 
expression level of CIITA gene in the four experimental conditions. (B) Enrichment of RFX5 and 
CIITA ChIP-seq peaks (23) from human monocytes stimulated with IFNɣ in macrophage open 
chromatin regions that were differentially accessible between conditions. Numbers 1-7 
correspond to the seven differentially accessible peak clusters from Fig. 1D. Only clusters 4 and 
5 that become more accessible after IFNɣ stimulation in iPSC-derived macrophages show 
enrichment for RFX5 and CIITA peaks, consistent with the upregulation of CIITA after IFNɣ 
stimulation (panel A). 
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Figure S4: Quantile-quantile (Q-Q) plots of QTLs identified by linear (FastQTL) and 
combined (RASQUAL) models. On each plot, the solid line corresponds to the expected 
distribution of p-values under the null model of no association. The FastQTL and RASQUAL p-
values have been corrected for the number of independent variants tested using eigenMT (66). 
(A) Q-Q plots for eQTLs. (B) Q-Q plots for caQTLs. 
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Figure S5: Relationship between condition-specificity of QTLs and mean signal (gene 
expression or chromatin accessibility) of the corresponding features. (A) Distribution of mean 
gene expression in each of the six condition-specific eQTL clusters from Fig. 2D. (B) 
Distribution of mean chromatin accessibility in each of the six condition-specific caQTL clusters 
from Fig. 2D. 
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Figure S6: Two examples of condition-specific dependent peaks. (A) Dependent peak appears 
after Salmonella infection. (B) Dependent peak disappears after Salmonella infection. 
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Figure S7: Distribution of ATAC-seq peak lengths. 
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Figure S8: Dissecting the Alzheimer’s disease causal variant at the PTK2B locus. (A) 
Manhattan plots for the Alzheimer’s GWAS hit (top panel), colocalised caQTL (second panel) 
and colocalised eQTL for PTK2B gene (third panel). The bottom two tracks show all ATAC-seq 
peaks in the region as well was exons of the PTK2B gene. (B) ATAC-seq fragment coverage 
stratified by the lead caQTL and GWAS variant rs28834970. The lead variant was the only 
associated variant lying within the regulated caQTL peak, suggesting this is the most likely 
causal variant. The lead variant rs28834970 is a T/C polymorphism and the alternative C allele 
is predicted to increase the relative binding score of the CEBPβ TF motif (M2268_1.02 in CIS-
BP (Weirauch et al., 2014)) from 0.86 to 0.97. This is consistent with increased chromatin 
accessibility at the C allele (middle panel) as well as increased expression of the PTK2B gene 
(panel C). Furthermore, the variant also overlaps experimental CEBPβ ChIP-seq peak in 
primary human macrophages (bottom panel) (61). Together, this evidence suggests that 
rs28834970 is the likely causal variant for Alzheimer’s disease risk that influences PTK2B 
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expression by disrupting CEBPβ motif in an enhancer in the first intron of the gene. (C) RNA-
seq read coverage plot at the PTK2B gene stratified by the rs28834970 genotype. 
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