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ABSTRACT21

One goal of personalized medicine is leveraging the emerging tools of data science to guide medical
decision-making. Achieving this using disparate data sources is most daunting for polygenic traits
and requires systems level approaches. To this end, we employed random forests (RF) and neural
networks (NN) for predictive modeling of coronary artery calcification (CAC), which is an intermediate
end-phenotype of coronary artery disease (CAD). Model inputs were derived from advanced cases
in the ClinSeq R© discovery cohort (n=16) and the FHS replication cohort (n=36) from 89th-99th CAC
score percentile range, and age-matching controls (ClinSeq R© n=16, FHS n=36) with no detectable CAC
(all subjects were Caucasian males). These inputs included clinical variables (CLIN), genotypes of 57
SNPs associated with CAC in past GWAS (SNP Set-1), and an alternative set of 56 SNPs (SNP Set-2)
ranked highest in terms of their nominal correlation with advanced CAC state in the discovery cohort.
Predictive performance was assessed by computing the areas under receiver operating characteristics
curves (AUC). Within the discovery cohort, RF models generated AUC values of 0.69 with CLIN, 0.72
with SNP Set-1, and 0.77 with their combination. In the replication cohort, SNP Set-1 was again more
predictive (AUC=0.78) than CLIN (AUC=0.61), but also more predictive than the combination (AUC=0.75).
In contrast, in both cohorts, SNP Set-2 generated enhanced predictive performance with or without CLIN
(AUC>0.8). Using the 21 SNPs of SNP Set-2 that produced optimal predictive performance in both
cohorts, we developed NN models trained with ClinSeq R© data and tested with FHS data and replicated
the high predictive accuracy (AUC>0.8) with several topologies, thereby identifying several potential
susceptibility loci for advanced CAD. Several CAD-related biological processes were found to be enriched
in the network of genes constructed from these loci. In both cohorts, SNP Set-1 derived from past CAC
GWAS yielded lower performance than SNP Set-2 derived from “extreme” CAC cases within the discovery
cohort. Machine learning tools hold promise for surpassing the capacity of conventional GWAS-based
approaches for creating predictive models utilizing the complex interactions between disease predictors
intrinsic to the pathogenesis of polygenic disorders.
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BACKGROUND46

Informed medical decision making through the effective use of clinical and genomic data is one of the47

promising elements of personalized precision medicine (Ginsburg and Willard, 2009) in which predictive48

models enable the systematic assessment of alternative treatment approaches taking into account the49

genomic variability among different patients (Völzke et al., 2013). Predictive models not only play a50

pivotal role in utilizing the genomic data for generating predictions regarding the disease risk and state51

(Cui and Lincoln, 2015; Jiang et al., 2012; Khorana et al., 2008; Hood et al., 2004; Bellazzi and Zupan,52

2008; Nevins et al., 2003; West et al., 2006), but they may also generate biological insights into the53

mechanisms behind complex diseases (Lee et al., 2013), such as coronary artery disease (CAD) that54

claims the lives of millions of people globally as the leading cause of death (Santulli, 2013). In CAD, the55

arteries of the heart, which supply oxygen rich blood to the cardiac muscle, lose their ability to function56

properly due to atherosclerosis. CAD is a multifactorial disease (Poulter, 1999; Schwartz et al., 2012) that57

has been associated with a large number of clinical and demographic variables, and major risk factors58

such as high blood pressure, high levels of blood lipids, smoking and diabetes. Our main focus in this59

study, namely coronary artery calcification (CAC), is an intermediate end-phenotype of CAD (McClelland60

et al., 2014) and a strong predictor of cardiac events including myocardial infarction (MI) (Forster and61

Isserow, 2005; Williams et al., 2014; Liu et al., 2013; Wayhs et al., 2002; Budoff et al., 2009, 2013). This62

predictive feature of CAC has been a major driving force behind research on its statistical characterization63

as an intermediate phenotype for CAD in recent years (Sun et al., 2008; McGeachie et al., 2009; Natarajan64

et al., 2012).65

The key mechanism behind coronary artery calcification is the phenotypic modulation of vascular66

cells into a mineralized extracellular matrix (ECM) (Johnson et al., 2006). This modulation is triggered67

by stimuli including oxidative stress, increased rate of cell death (Proudfoot et al., 2000; Kim, 1994),68

and high levels of inflammatory markers (Rutsch et al., 2011; Johnson et al., 2006). The genetics behind69

coronary calcium deposition is fairly complex, which is not surprising given that it is a commonly70

observed phenomenon (common disease phenotypes are typically multigenic (Swan, 2010)). Several71

important genes involved in vascular calcification have been previously identified through mouse model72

studies (Nitschke and Rutsch, 2014; Rutsch et al., 2011), studies on rare human diseases that lead to73

excessive calcification (Rutsch et al., 2011), as well as through elucidation of the links between bone74

mineralization and CAC (Marulanda et al., 2014). Several genome-wide association studies (GWAS)75

have also previously focused on CAC (Ferguson et al., 2013; Wojczynski et al., 2013; van Setten et al.,76

2013; O’Donnell et al., 2007, 2011; Polfus et al., 2013). Some of the human genomic loci associated with77

CAC through GWAS are 9p21, PHACTR, and PCSK9, all of which have been also linked to CAD and MI78

(van Setten et al., 2013; Kathiresan et al., 2009; Dubuc et al., 2010). Several past studies have combined79

clinical variables and genotype data in order to improve predictions for CAD. Some examples include80

implementation of Cox regression models (Morrison et al., 2007; Brautbar et al., 2012; Kathiresan et al.,81

2008) and the use of allele counting, logistic regression, and support vector machines in (Davies et al.,82

2010). Even though multiple studies showed statistically significant improvements in predicting CAD by83

combining traditional risk factors with SNPs linked to CAD in past GWAS, the reported improvements84

have been at best incremental (Ioannidis, 2009). Similar results have been compiled in a recent review85

(Liao and Tsai, 2013) for type 2 diabetes (a strong risk factor for CAD) where marginal improvements86

were observed in some studies.87

Recently, there has been increasing interest in the application of machine learning methods for88

predicting disease phenotypes by utilizing genomic features (Goldstein et al., 2016). These methods89

provide increased ability for integrating disparate sources of data while utilizing interactions (both linear90

and nonlinear) between genomic features (e.g., gene-gene interactions) unlike conventional regression91

approaches (Chen and Ishwaran, 2012). Machine learning methods also eliminate a major limitation of92

GWAS, which is the need for multiple testing correction required in statistical association tests that treat93

each predictor separately, while also avoiding biases that could originate from model misspecification94

since machine learning typically aims at identifying model structures that are optimal for the training data95

(Li et al., 2015).96

In this study, we utilized machine learning tools for predictive modeling of advanced coronary97

calcification among Caucasian males by integrating clinical variables and genotype data. Our study98

focused on Caucasian males due to higher coronary calcium scores observed among men compared to99

women (Raggi et al., 2008; Maas and Appelman, 2010), as well as higher prevalence of coronary calcium100
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among white Americans compared to black Americans (Lee et al., 2003). Using random forest modeling,101

which is a decision tree based machine learning method (Breiman, 2001) established as an effective tool102

for addressing the complexity of modelling with genomic data (Sun, 2009; Yang et al., 2010b; Dietterich,103

2000), we first tested the collective ability of a set of SNPs derived from previous GWAS on CAC (SNP104

Set-1) in predicting advanced CAC with data from the ClinSeq R© study (Biesecker et al., 2009) previously105

published in (Sen et al., 2014b,a). Upon deriving an alternative SNP set (SNP Set-2) and comparing its106

predictive ability to SNP Set-1 within the ClinSeq R© discovery cohort with and without clinical data,107

we used data from the Framingham Heart Study (FHS) to test whether we could replicate the observed108

predictive patterns. Then, in order to identify a set of potential susceptibility loci for advanced CAD109

pathogenesis, we derived the subset of SNPs in SNP Set-2 that led to optimal predictive performance in110

both cohorts. Using this subset of SNPs, we developed neural network models trained with data from the111

ClinSeq R© discovery cohort and tested with data from the FHS replication cohort under a wide range of112

network topologies, assessed the predictive performances of these models, and identified the biological113

processes enriched in the network of genes constructed from the predictive loci.114

METHODS115

Overview of the computational analysis116

As illustrated in Figure 1, the overall strategy of our analysis was to initially use only clinical data for117

predicting advanced CAC in a discovery cohort, then to combine clinical data with a GWAS-based set118

of SNPs to test for improved predictive performance in a discovery cohort. We also aimed to derive an119

alternative set of SNPs that are collectively more predictive in this discovery cohort and to test if the120

observed predictive patterns were replicable with or without clinical data in an independent replication121

cohort. In order to achieve these objectives, we took the following steps as shown in Figure 2. First, we122

developed random forest models that predict advanced CAC within the ClinSeq R© cohort that served as our123

“discovery cohort” using traditional risk factors (or clinical variables) and a set of GWAS-identified SNPs124

(or “SNP Set-1”) previously associated with coronary calcium. We assessed the predictive performance by125

using only clinical data (to establish a baseline performance) or genotype data, as well as their combination.126

We then derived a second set of SNPs (or “SNP Set-2”) as an alternative to SNP Set-1 using data from the127

discovery cohort utilizing a selection criterion based on the nominal correlations between SNP genotypes128

and the advanced CAC state.129

Upon comparing the random forest based predictive patterns generated by the clinical variables, SNP130

Set-1, and SNP Set-2 in the ClinSeq R© discovery cohort and the FHS replication cohort, we identified131

the subset of SNPs in the more predictive set that generated optimal performance in random forest132

models of both cohorts. We trained neural network models with the genotypes of these SNPs among133

all ClinSeq R© subjects and tested with the genotypes of the same SNPs among all FHS subjects with134

the aim of obtaining high predictive accuracy values under a wide range of neural network topologies.135

We then utilized GeneMANIA (Warde-Farley et al., 2010; Zuberi et al., 2013; Montojo et al., 2014) to136

create a functional interaction network composed of genes on which this subset of SNPs was located,137

as well as additional genes known to be most closely related to these genes. GeneMANIA uses linear138

regression to maximize the connectivity between the genes within the network while minimizing the139

interactions with the genes that are excluded. Two types of links between gene pairs were found to be140

present in this network: co-expression (correlated expression levels) and genetic interactions (effects141

of a gene perturbation can be changed by a second perturbed gene). Gene Expression Omnibus (GEO)142

and BioGRID are the main sources of co-expression and genetic interaction datasets, respectively in the143

GeneMANIA database. Finally, using the list of genes within this network derived by GeneMANIA,144

we performed function and disease enrichment analysis to demonstrate the relevance of these advanced145

coronary calcium susceptibility loci to cardiovascular disease based on the existing knowledge in the146

literature.147

Coronary calcification scores and binary CAC states148

The models we developed in this study aimed at predicting the binary case-control statuses of Caucasian149

male patients. Hence, we first transformed the CAC scores (measured by Agatston method (Agatston150

et al., 1990)) of the 32 Caucasian male subjects from the ClinSeq R© study that formed our discovery151

cohort (data previously published in (Sen et al., 2014a,b)) into binary CAC states. 16 control subjects in152

this cohort had zero CAC scores corresponding to state “0”, whereas the 16 age-matching cases had high153
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 Machine learning models  
predicting advanced CAC state 

in a discovery cohort 

Identify predictive performance 
by only using clinical data 

Test for improved predictive  
performance by combining 
 clinical and genotype data 

Identify loci more predictive  
than GWAS-based loci previously  

associated with CAC 

Test predictive patterns  
with an independent  

replication cohort 

CLINICAL 
DATA 

GENOTYPE 
DATA 

LITERATURE 
ON CAC 

Figure 1. Overall strategy of the analysis.

CAC scores (ranging between 500 and 4400) corresponding to state “1”. These binary case-control states154

served as the true class labels and were later used for training and testing of the developed classification155

models. Based on the Multi-Ethnic Study of Atherosclerosis (MESA) cohort standards (McClelland156

et al., 2006; Dat, 2015), a percentile value for each case was computed using the online MESA calculator157

(Dat, 2015) that takes age, gender, race and CAC score as its inputs. The case subjects in the ClinSeq R©158

discovery cohort, two of which were diabetic, fell within the 89th-99th CAC score percentile range.159

The replication cohort from FHS comprised of 36 controls and 36 age-matching Caucasian male case160

subjects (including three diabetic cases) also within the 89th-99th CAC score percentile range. Additional161

122 cases from FHS within 29th-88th CAC score range were split into two distinct sets of 61 cases within162

29th-68th and 69th-88th percentile ranges and were age-matched with two sets of 61 controls. These two163

equal-sized subcohorts were then used to test whether the predictive patterns generated by the discovery164

(ClinSeq R©) and replication (FHS) cohorts were specific to the 89th-99th percentile CAC score range and165

not replicable with lower levels of coronary calcium. Two classes of model variables were used in this166

study as predictors of coronary calcium, namely clinical variables and genotypic variables, as described167

below.168

Clinical variables169

Nine clinical variables available from all subjects in both cohorts were utilized as predictors of coronary170

calcium. These variables included body mass index (BMI), cholesterol levels (LDL, HDL, and total171

cholesterol), triglycerides, blood pressure (systolic and diastolic), fasting blood glucose level, and172

fibrinogen. All subjects were non-smoker Caucasian males in both ClinSeq R© and FHS cohorts. The173

detailed description of each clinical variable is given in Table S1, whereas the mean and standard deviation174

values among cases vs. controls, along with their p-values are listed in Tables S2 and S3 for ClinSeq R©175

and FHS cohorts, respectively.176
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Figure 2. Schematic of the modeling approach.

Genotypic variables177

For the ClinSeq R© cohort, SNP genotyping was performed using the HumanOmni2.5 Illumina BeadChip178

arrays. Genotyping was carried out with in accordance with the Illumina Infinium assay protocol. In brief,179

this involved amplification of DNA by WGA, hybridization of the WGA product to the BeadArray, an180

array-based enzymatic reaction that extends the captured SNP targets by incorporating biotin-labeled181

dNTP nucleotides into the appropriate allele specific probe, and, finally, detection and signal amplification182

to read the incorporated labels. The BeadChips were scanned using the Illumina iScan system and183

processed with the GenomeStudio v2011.1 Genotyping module. The BeadChips consist of specific 50-184

mer oligonucleotide probe arrays at an average of 30-fold redundancy. The design of the HumanOmni2.5185

BeadChips incorporates around 2.5 million markers. GenomeStudio output files were processed using a186

custom Perl script to derive the nucleotides at each SNP position for each subject.187

For the FHS cohort, genotyping data was compiled from three resources. More than 276,000 variants188

from the Illumina Infinium Human Exome Array v1.0 was genotyped and jointly called as part of189

the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (PMID190

23874508). The Framingham SNP Health Association Resource (SHARe) project (Dat, 2016a) used191

the Affymetrix 500K mapping array and the Affymetrix 50K supplemental gene focused array resulted192

in 503,551 SNPs with successful call rate >95% and Hardy-Weinberg equilibrium (HWE) P>1.0E-6.193

Additional genotype imputation was conducted based on this SHARe data using Minimac with reference194

panel from the 1000 Genomes Project (Version Phase 1 integrated release v3, April 2012, all population).195

Best-guessed genotypes with imputation quality >0.3 were used for markers that were not available from196

the first two actual genotyping platforms.197

We compiled a set of 57 SNPs (listed in Table S4) that were associated with coronary calcium in198

previous GWAS (Ferguson et al., 2013; Wojczynski et al., 2013; O’Donnell et al., 2011, 2007; Polfus et al.,199

2013; van Setten et al., 2013) and named this set “SNP Set-1”. From the the ClinSeq R© genotype data, we200

also generated a second set of SNPs (“SNP Set-2”), approximately the same size (56) as the “SNP Set-1”,201

by using a genotype-phenotype correlation criterion as listed in Table S5. Genotypes of the 113 biallelic202
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SNPs in both SNP sets were coded as 0 or 2 (homozygous for either allele) or 1 (heterozygous) using the203

same reference alleles in both ClinSeq R© and FHS cohorts.204

Predictive modeling using random forests and neural networks205

We implemented the random forest classification method using the Statistics and Machine Learning206

ToolboxTM of Matlab R© (MATLAB, 2013) for predicting the binary CAC state. Predictive accuracy is207

computed by generating ROC curves (true positive rate vs. the false positive rate obtained using several208

classifier output thresholds) and quantifying the areas under these curves (AUC). Due to the randomized209

nature of the classification method, we performed 100 runs (per set of features or model inputs) and210

reported the mean AUC (AUC distributions were normal based on the Anderson-Darling tests (Stephens,211

1974)) and its p-value that is derived empirically (Ojala and Garriga, 2010; Sun et al., 2008) by performing212

1000 runs with randomly permuted case-control statuses and computing the fraction of AUC values below213

the mean AUC value generated when the case-control statuses are not permuted (i.e., the actual data),214

an approach commonly used for computing the statistical significance of AUC in ROC-based predictive215

modeling studies. Per decision tree, approximately two-thirds of the data (this ratio varied up to ±15%216

among different runs) is retained to be used for model training, whereas the remaining data is used for217

model testing. These test samples are referred to as ”out-of-bag” (OOB) samples, whereas the training218

samples are expanded by bootstrapping (Efron, 1979) (or sampling with replacement) up to the sample219

size of the original data (Dasgupta et al., 2011) prior to model training. Classification of the test samples220

are based on the complete ensemble of trees (a total of 100 trees) with a voting scheme. For example, a221

test sample is predicted to be “CAC positive” if the number of trees that predict “State 1” is higher than222

the ones that predict “State 0”. Predictive importance is computed for each input variable by permuting223

its values corresponding to the test subjects and finding the change in the prediction error (or the fraction224

of incorrectly classified subjects). One error value is computed for each tree and the ratio of the average225

value of this change is divided by the standard deviation. Features are ranked with respect to this ratio (i.e.,226

features that are stronger predictors have higher values of this ratio compared to the weaker predictors).227

After ranking all features in each distinct feature set (e.g., all clinical variables), we decreased the number228

of features gradually by leaving out weaker predictors to identify the optimal predictive performance229

and the corresponding optimal set of features. We repeated this procedure to compare the predictive230

performances of models trained and tested by combining clinical and genotype data, as well as using each231

layer data in isolation. By identifying the predictive SNPs in GWAS-based SNP Set-1 and the alternative232

SNP Set-2, we were also able to compare the cumulative predictive importance scores from SNP-risk233

factor and SNP-CAD related phenotype associations (tied to each SNP set) based on past studies. The234

predictive patterns generated by data from the ClinSeq R© discovery cohort were also compared with the235

patterns generated by the independent FHS replication cohort. Finally, random forest models were also236

used to identify a subset of SNPs in SNP Set-2 that generated the optimal predictive performance in both237

ClinSeq R© and FHS cohorts.238

Upon identifying the subset of SNPs in SNP Set-2 that generate random forest models with optimal239

performance in both cohorts, we implemented a neural-network-based classification approach using240

the Neural Network ToolboxTM of Matlab R© (MATLAB, 2013). We trained three-layer feedforward241

networks using backpropagation (Fausett, 1994) with sigmoid transfer functions in two hidden layers and242

a linear transfer function in the output layer. In both hidden layers, the number of nodes was varied from243

one to 20 with increments of one, thereby leading to a total of 400 network configurations individually244

used for training and testing. In short, the inputs into each network layer (initial input is the genotype245

data) are weighted and the sum of the weighted inputs transformed by the transfer functions of the246

hidden layers are used to generate model outputs (or the case/control status) (Mehrotra et al., 1997).247

We trained all network configurations with the genotypes of the optimal subset of SNPs within SNP248

Set-2 from all subjects in the ClinSeq R© discovery cohort (approximately 20% of these samples include249

the “validation” samples used for minimizing overfitting during training with the remaining 80% of250

the samples) and subsequently performed model testing with the genotype data from all subjects in the251

FHS replication cohort. Predictive accuracy was once again assessed with ROC curves. For each neural252

network configuration, we computed the median AUC value (AUC distributions were non-normal based253

on the Anderson-Darling tests (Stephens, 1974)) among 100 independent runs and empirically derived254

the p-value as the fraction of AUC values from 1000 runs with randomly permuted case-control statuses255

below the median AUC value obtained when the case-control statuses are not permuted (i.e., actual data).256
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RESULTS257

Models built with clinical variables and GWAS-based SNP Set-1258

We first built random forest models using all of the nine clinical variables from the ClinSeq R© discovery259

cohort and identified that three of them had positive predictive importance values as listed in Table260

1. These predictors included HDL Cholesterol (a major risk factor for coronary calcium (Allison and261

Wright, 2004; Parhami et al., 2002)), systolic blood pressure, and fibrinogen that has been previously262

associated with vascular calcification (Bielak et al., 2000; Rodrigues et al., 2010) as a critical parameter263

for inflammation (Davalos and Akassoglou, 2012) and atherosclerosis (Smith, 1986). Within the FHS264

replication cohort, five clinical variables including total cholesterol, systolic and diastolic blood pressure,265

fibrinogen and fasting blood glucose (a glycemic trait previously associated with high coronary calcium266

levels (Schurgin et al., 2001)) had positive predictive importance values. The aggregate of the clinical267

variables with predictive power in the discovery and replication cohorts formed a combination of lipid and268

glycemic traits with a blood coagulation trait reflecting a “metabolic syndrome” picture (Eckel et al., 2005;269

Nieuwdorp et al., 2005). As we varied the number of predictors between one to nine, the optimal AUC270

values were 0.69 (p-value=0.015) and 0.61 (p-value=0.080) for ClinSeq R© and FHS cohorts, respectively271

(Figure 3A). These AUC values were within the range of 0.60-0.85, which is the previously reported AUC272

range compiled from 79 studies predicting CAD or cardiac events based on the Framingham risk score273

(FRS) (Tzoulaki et al., 2009), despite our inability to use age and gender in predicting advanced CAC due274

to the design of our study.275

We next built random forest models for the ClinSeq R© discovery cohort using the genotypes of the 57276

SNPs in “SNP Set-1” as model inputs and identified 17 SNPs with positive predictive importance. In past277

GWAS, 11 of the 17 predictive SNPs have previously been associated with 18 CAD risk factors forming278

28 SNP-risk factor pairs (Table S6), whereas six of them have been linked to CAD, MI, stroke, and aortic279

valve calcium (Table S7). For a detailed discussion of these associations and loci (including PCSK9 and280

9p21), we refer the reader to Supplementary Text (Section 1).281

To compare the predictive patterns generated by the discovery and replication cohorts based on the282

SNP Set-1 genotype data, we next developed random forest models for the FHS replication cohort and283

identified 19 SNPs among SNP Set-1 with positive predictive importance in this cohort. Figure 3B284

shows the AUC ranges as 0.68-0.72 and 0.71-0.78 for the ClinSeq R© and FHS cohorts with the top 6-19285

predictors (without clinical variables), respectively. Despite a small degree of overlap between these two286

ranges, only five of the 17 predictive SNPs (29%) from the ClinSeq R© discovery data were replicated with287

the FHS data and only one of these five SNPs had predictive importance values in FHS and ClinSeq R© data288

sets with magnitudes within 10% of each other (difference divided by the maximum value) pointing to a289

fairly low degree of replication between the two cohorts when only the GWAS-based SNP Set-1 is used290

for predicting advanced CAC. In order the test whether the combination of the two groups of predictors291

(nine clinical variables and SNP Set-1) resulted in improved predictive performance, we merged the two292

groups of model inputs with the ClinSeq R© discovery data set. We observed a significant improvement293

in the AUC range from 0.68-0.72 (only SNP Set-1) to 0.72-0.77 (combined set of inputs) with the top294

6-19 predictors as shown in Figure 3B. In contrast, when we used the FHS replication data set in the same295

way, AUC range declined from 0.71-0.78 to 0.69-0.75. Hence, the improvement of predictive accuracy296

we observed within the ClinSeq R© discovery cohort, by adding clinical variables to SNP Set-1, was not297

observed with the FHS replication cohort (Table 2). This outcome pointed out another limitation of the298

past GWAS-based SNP Set-1 since the improvement of accuracy observed in the discovery cohort by299

combining clinical variables and SNP Set-1 as model inputs was not replicated in the FHS cohort.300

Selection of SNP Set-2 based on genotype-phenotype correlation within the ClinSeq R©301

discovery cohort302

Previous GWAS and meta-analyses studies on CAC focused on the presence of coronary calcium (in-303

cluding low levels of CAC), rather than its extreme levels. Since our discovery and replication cohorts304

both included cases with CAC scores within 89th-99th percentile range, we next targeted the ClinSeq R©305

discovery cohort genotype data to identify SNPs highly predictive of advanced CAC in order to utilize the306

advantages provided by random forest models (ability to identify optimal model structure for training data307

while utilizing interactions between SNPs without multiple testing penalty) over GWAS and conventional308

regression approaches. Expecting a correlation between the SNP genotype and the binary advanced CAC309

state (healthy control vs. 89th-99th percentile CAC score range) for such predictive SNPs, we used a310
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Figure 3. Predictive performance vs. number of predictors in ClinSeq R© and FHS cohorts with only
clinical variables in (A) and the combination of clinical variables and SNPs from SNP Set-1 in (B).

genotype-phenotype correlation criterion to identify an additional SNP set with approximately the same311

size as the SNP Set-1 from the ClinSeq R© discovery cohort data. First, we verified the rationale behind the312

implemented genotype-phenotype correlation criterion. As shown in Figure 4, the predictive importance313

values of the SNPs in SNP Set-1 and the correlation between each SNP’s genotype and the case-control314

statuses of our subjects were highly correlated with each other. Here, the Pearson-based correlation315

coefficient was computed as 0.73 with a p-value of 2.61E-10 estimated by a two-tailed t-test. In simple316

terms, for any SNP within SNP Set-1, a higher correlation between the genotype and the case-control317

statuses of the 32 subjects led to a higher predictive importance value. Using this rationale, we identified318

an alternative “SNP Set-2” (56 SNPs not associated with CAC in past studies) whose genotypes had the319

highest correlation values with the case-control status. Within the ClinSeq R© discovery cohort, the range320

of genotype-phenotype correlation among the SNPs in SNP Set-2 was 0.63-0.73, whereas the same range321

was 0-0.51 among the SNPs in SNP Set-1. Hence, there was no overlap between the two sets of SNPs.322

Upon incorporating the genotypes of SNP Set-2 within the ClinSeq R© discovery cohort into random323

forest models, the AUC value turned out to be 0.9975, thereby verifying the superb ability of this set of324

markers. As shown in Table S8, 42 of these 56 predictive SNPs have been previously associated with a325

total of 18 risk factors, whereas the total number of SNP-risk factor pairs was 86 with many individual326

SNPs being associated with multiple risk factors. This was in contrast to only 11 of the 17 predictive327

SNPs in SNP Set-1 that were associated with a total of 18 risk factors forming 28 SNP-risk factor pairs.328

In addition, the susceptibility score, which is computed as the cumulative predictive importance values of329

SNPs tied to CAD risk factors in previous GWAS, increased from 446 to 1229 aligning with the improved330

predictive accuracy from 0.72 (maximum AUC in Figure 3B for SNP Set-1 in the ClinSeq R© discovery331

cohort) to ≈1.00 as we moved between the two sets of predictors, namely SNP Set-1 and SNP Set-2.332

Table S9 shows that ten of the predictive SNPs in Set-2 that have been associated with stroke and aortic333

valve calcium in past GWAS, a trend we also observe with three SNPs in SNP Set-1 (Table S7). Two of the334

predictive SNPs in Table S9 have also been linked to mitral annular calcium, another disease phenotype335

related to coronary artery calcification along with aortic valve calcification, all of which are considered as336

common elements of atherosclerosis (Atar et al., 2003). The aggregate of the associations listed in Tables337

S8 and S9 suggests that the highly predictive SNPs identified from the ClinSeq R© discovery cohort data338

(or SNP Set-2) could be potential susceptibility loci for advanced CAC.339
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Figure 4. Predictive importance of the SNPs in SNP Set-1 vs. SNP genotype-binary CAC phenotype
within the ClinSeq R© discovery cohort. The strong correlation is indicated by the high Pearson’s
correlation coefficient value and its corresponding p-value.

Comparing predictive performance of SNP Set-2 using FHS and ClinSeq R© data sets340

In order to test whether the higher predictive performance of SNP Set-2 over the past GWAS-based SNP341

Set-1 was replicated in the FHS cohort, we trained and tested random forest models using the genotypes342

of SNP Set-2 from the replication cohort. We identified that the positive predictive importance values343

of 30 of the 56 predictive SNPs (54%) were replicated. The predictive importance values of five SNPs344

in the two data sets were within 10% of each other, whereas nine SNPs had values within 20% of each345

other. We also observed common patterns between the discovery and replication cohorts in terms of the346

predictive importance based rankings of the 30 SNPs with positive predictive importance in both cohorts.347

Nine of the top 18 SNPs overlapped between the two cohorts, whereas the top two SNPs (rs243170 and348

rs243172, both on FOXN3) were the same in both cohorts. FOXN3 is involved in transcription regulation349

at the cellular level and the G2/M phase of the cell cycle as a checkpoint suppressor. FOXN3 has also350

been linked to fasting blood glucose in past GWAS (Manning et al., 2012) and in a recent study through351

its overexpression in human liver cells and zebrafish (Karanth et al., 2016).352

Top 9-28 of the 30 SNPs with positive predictive importance generated AUC ranges of 0.80-0.85 and353

0.96-0.99 in the replication and discovery cohorts, respectively. Based on these results, and given that the354

SNP Set-1 failed to reach an AUC value of 0.8 in both cohorts even with the optimal number of SNPs, we355

concluded that the higher predictive accuracy of SNP Set-2 over SNP Set-1 in the ClinSeq R© discovery356

cohort was replicated in the FHS replication cohort. Combining the clinical variables and SNP Set-2 did357

not improve the predictive performance, consistently in both cohorts. In fact, there was a slight decline in358

the optimal AUC from 0.85 to 0.83 with the top 12-22 predictors in the FHS cohort, whereas no change in359

the optimal AUC was observed in the ClinSeq R© cohort with the combination of clinical variables and360

SNP Set-2.361

One potential explanation of the higher predictive performance of SNP Set-2 over SNP Set-1 in both362

cohorts is the broad CAC levels that were focused on past GWAS and meta-analyses (instead of highly363

advanced CAC) in order to reach adequate statistical power. Given that SNP Set-2 was derived from cases364

with extreme levels of CAC, it remained to be determined whether the predictive power of SNP Set-2 was365

specific to this extreme phenotype or whether it could be generalized to a broader range of CAC levels.366

Hence, we tested the collective predictive performance of the 30 SNPs in SNP Set-2 that had positive367

predictive power in both cohorts with genotype data from cases with lower levels of CAC. To achieve368
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this, we used the genotype data of 122 cases from FHS within 29th-88th percentile CAC score range.369

Among the 61 cases within the 29th-68th percentile range and the 61 age-matching controls, top 9-28370

markers generated an AUC range of 0.62-0.66, whereas only 20 of the 56 SNPs in SNP Set-2 had positive371

predictive performance. Utilizing the data from 61 cases within 69th-88th range and 61 age-matching372

controls, AUC range was approximately the same (0.61-0.66). Similarly, only 19 SNPs in SNP Set-2373

had positive predictive importance. These results further extended the robustness of our findings in both374

discovery and replication cohorts and demonstrated the specificity of the high predictive performance of375

SNP Set-2, which is derived from the cases in the ClinSeq R© discovery cohort within 89th-99th percentile376

CAC score range, to the advanced CAC phenotype.377

Identifying a subset of SNPs in SNP Set-2 leading to optimal predictive performance in378

both cohorts and function and disease enrichment analysis379

Table 3 shows the list of 21 SNPs in SNP Set-2 generated optimal predictive performance in ClinSeq R©380

and FHS cohorts. Using the genotypes of these 21 SNPs, we trained neural network models of 400381

distinct topologies with ClinSeq R© data and tested each topology with the FHS data. As shown in Figure382

5A, we obtained 36 model topologies with AUC values ranging between 0.80-0.85 with empirically383

derived p-values of less than 0.05, thereby utilizing a different machine learning approach to replicate the384

collective predictive ability of these SNPs in the FHS replication cohort. This result demonstrates the385

stable and consistent features of these 21 SNPs in predicting advanced CAC independent of the classifier386

strategy employed. The optimal neural network topologies have 9-20 nodes in their first hidden layers and387

6-20 nodes in their slightly less complex second hidden layers (Figure 5B).388
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Figure 5. Properties of 36 optimal neural network models trained with data from the discovery cohort
and tested with data from the replication cohort. A) Median AUC value for each network topology
(ranging between 0.8021 and 0.8515) and the corresponding p-values. AUC distributions (one AUC
distribution with 100 values per topology) were non-normal based on the Anderson-Darling tests
Stephens (1974). Third quartile AUC values among the different network topologies ranged between
0.8503 and 0.9074. B) The number of nodes in the two hidden layers for each of the 36 optimal neural
network topologies.

We identified a total of 13 genes that included the 21 SNPs leading to optimal predictive performance389

in both cohorts. Using GeneMANIA, we derived a network that included this group of 13 genes in addition390

to the 18 genes known to be linked to the first group based on coexpression and genetic interaction data391

from the literature (Warde-Farley et al., 2010). Figure 6 shows this network, whereas the abbreviated gene392
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symbols and the corresponding gene names are listed in Table S10. The proteins coded by the genes in393

the network have a wide range of roles. 12 of them are either a transcription factor or an enzyme, one is a394

translational regulator, and two are transmembrane receptors.395

Figure 6. Network derived from GeneMANIA based on 244 studies in humans. The connections in pink
are derived from gene coexpression data, whereas the connections in green are derived from genetic
interaction data from the literature. The inner circle is composed of genes on which the subset of SNPs in
SNP Set-2 leading to optimal performance in both cohorts are present, whereas the genes forming the
outer circle are additional genes identified by GeneMANIA. The thicknesses of the links (or edges)
between the genes are proportional to the interaction strengths, whereas the node size for each gene is
proportional to the rank of the gene based on its importance (or gene score) within the network.

In order to identify whether our list of genes was enriched in any biological functions or processes396

associated with CAD, we used two bioinformatics resources, namely DAVID (Huang et al., 2009) and397

Ingenuity Pathway Analysis (IPA, Qiagen, Redwood City, CA, USA). Through their associations with398

blood magnesium levels (NRG3, WDR70, and EMC2), type-2 tumor necrosis factor receptors (NRG3 and399

ARID5B), HDL cholesterol (NRG3, MICU2, ARID5B, and FBXL17), BMI (AIMP1, MARCH6, FOXN3,400

and FAM172A), CAD (RETN, NNT, PAIP1, and MACC1), respiratory function tests (NRG3, EDEM1,401

and FAM172A), and adiponectin (NRG3 and FBXL17), 17 of the 31 genes in our network are associated402

with only one disease class, namely cardiovascular disease with a fold-enrichment of 1.9 and a p-value of403

0.0025 (modified Fisher’s exact test) based on DAVID (Huang et al., 2009) and the Genetic Association404

Database.405

Through mouse and rat models, six genes in our network have been previously associated with cardio-406

vascular disease processes and risk factors. Several mouse models have linked ARID5B (a transcription407

factor involved in smooth muscle cell differentiation and proliferation) to obesity, differentiation of408

adipocytes, amount of white and adipose tissue, percentage body fat, and abnormal morphology of fat409

cells (Whitson et al., 2003; Rankinen et al., 2006; Yamakawa et al., 2008; Lahoud et al., 2001; Hata et al.,410
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2013). Similarly, multiple mouse models (Rankinen et al., 2006; Xie et al., 2004; Xu et al., 2011; Zhang411

et al., 2010) showed that CYB5R4 (involved in endoplasmic reticulum stress response pathway and glucose412

homeostasis) is associated with mass of adipose tissue, hypoinsulinemia, hyperglycemia, secretion of413

insulin, rate of oxidation of fatty acid, hyperlipidemia, timing of the onset of hyperglycemia, and diabetes.414

Similarly, using mouse model-based studies, EGLN1 (involved in the regulation of angiogenesis, oxygen415

homeostasis, and response to nitric oxide) and its paralog EGLN3 have been linked to the necrosis of416

heart tissue, apoptosis of cardiomyocytes in infarcted mouse heart, stabilization of HIF1-alpha protein417

in left ventricle from mouse heart, functional recovery of heart, hepatic steatosis (fatty liver disease),418

angiectasis (abnormal dilation of blood vessels), and dilated cardiomyopathy (reduced ability of heart419

to pump blood due to enlarged and weakened left ventricle) (Hölscher et al., 2011; Eckle et al., 2008;420

Takeda et al., 2006; Minamishima et al., 2009; Takeda et al., 2007). Through mouse and rat models, RETN421

(a biomarker for metabolic syndrome, atherosclerosis, and insulin-dependent diabetes, and a regulator422

of collagen metabolic process and smooth muscle cell migration) has been linked to insulin resistance,423

hyperinsulinemia, glucose intolerance, quantity of D-Glucose, quantity of circulating free fatty acid,424

LDLR, reactive oxygen species, and triglycerides (Satoh et al., 2004; Rajala et al., 2003; Steppan et al.,425

2001; Sato et al., 2005; Pravenec et al., 2003; Kim et al., 2004). Several rat and mouse models showed that426

TLR5 (a transmembrane receptor involved in inflammatory response, nitric oxide biosynthesis, and cellular427

response to lipopolysaccharide) is associated with obesity, hypertension, insulin resistance, autoimmune428

diabetes, cholesterol and triglyceride levels, systolic and diastolic blood pressure in systemic artery, and429

inflammation (Vijay-Kumar et al., 2010; Guo et al., 2006; Feuillet et al., 2006). Finally, NRG3 serves as a430

ligand of the tyrosine kinase receptor ErbB4 that has been shown to affect the development of heart and431

the flow of blood in heart in multiple mouse models (Elenius and Paatero, 2008; Carpenter, 2003; Yarden432

and Sliwkowski, 2001; Tidcombe et al., 2003).433

Table 4 shows the 22 cardiovascular disease related biological functions and phenotypes, which are434

identified by IPA based on Fisher’s exact test (p-value<0.01), enriched within our network of genes.435

Several of these functions and phenotypes are involved in biological processes associated with “vascular436

aging”, which is highly relevant to CAC, since aged vascular smooth muscle cells (VSMCs) are known to437

have less resistance against phenotypic modulations promoting vascular calcification (Shanahan, 2013).438

In fact, along with seven traditional risk factors (age, gender, total cholesterol, HDL cholesterol, systolic439

BP, smoking status, hypertension medication status), the Agatston CAC score is used as a parameter440

in quantifying “vascular age” in the MESA arterial age calculator (Dat, 2016b). Among our network441

genes previously linked to biological processes related to “accelerated” arterial aging, TLR5 is a member442

of the TLR (toll-like receptor) family as an established mediator of atherosclerosis due to its role in443

immune response through the induction of inflammatory cytokines (Kim et al., 2016) along with RETN,444

ARID5B, NIPBL, EGLN1, and CYB5R4 affecting the adipose tissue quantity, an important driver of445

vascular pathology (Berg and Scherer, 2005; Demer and Tintut, 2011).446

MICU2 plays a critical role in Ca2+ homeostasis as the gatekeeper of mitochondrial Ca2+ uniporter447

(MCU) (Patron et al., 2014) that is responsible for Ca2+ uptake into mitochondrial matrix, whereas448

blocking MCU leads to suppression of ROS production in the mitochondria (Pei et al., 2016). The449

disruption of Ca2+ homeostasis is an essential element of metabolic diseases and has been previously450

linked to endoplasmic reticulum (ER) stress (Arruda and Hotamisligil, 2015). Two genes in our network451

(EDEM1 and MARCH6), are involved in the endoplasmic-reticulum-associated protein degradation452

(ERAD) pathway that targets and degrades misfolded proteins under stress conditions in order to prevent453

their accumulation. The importance of ERAD in the heart has previously been established (Razeghi and454

Taegtmeyer, 2005; Wang and Robbins, 2006) especially for proper functioning of cardiomyocytes. In more455

recent studies, improving ERAD has been shown to preserve heart function and reduce cardiomyocyte456

death with mouse models of cardiac hypertrophy (Doroudgar et al., 2015) and MI (Belmont et al., 2010),457

respectively.458

Through ROS activity, macrophages that contain lipid molecules (or foam cells) accumulate in the459

artery walls and promote atherosclerosis (Stocker and Keaney, 2004). EMR2, which is one of our network460

genes that promotes the release of inflammatory cytokines from macrophages, has been reported to be461

highly expressed in foamy macrophages handling lipid overload in atherosclerotic vessels (van Eijk et al.,462

2010). Excessive ROS generation (previously linked to vascular calcification (Johnson et al., 2006))463

also leads to reduced levels of nitric oxide (NO) (Muzaffar et al., 2005), molecule with cardioprotective464

features. The reduced form of NADP (NADPH) is required for the synthesis of cholesterol (Lieberman465
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et al., 2013) as a cofactor in all reduction reactions and also for the regeneration of reduced glutathione466

(GSH) (Gorrini et al., 2013) that providing protection against ROS activity (Murphy, 2012). Two of our467

network genes, NNT and CYB5R4, are involved in NADPH metabolism. Taken together, these findings468

show that several biological processes and risk factors previously linked to cardiovascular disease, and469

particularly to vascular aging, are enriched within the network we derived from the loci of SNPs that are470

highly predictive of advanced CAC.471

DISCUSSION472

Understanding the drivers of accelerated CAD pathogenesis hold great potential for providing novel473

pathobiological insights into biological events, including inflammatory and immune responses (Björkegren474

et al., 2015; Libby et al., 2009; Hansson, 2005), beyond conventional mediators, such as the dysregulation475

of lipid metabolism or blood pressure (Björkegren et al., 2015; Roberts, 2014). A major goal in the476

cardiovascular disease field is identifying individuals who are at greatest risk of accelerated CAD477

pathogenesis. Recognizing that the utility of traditional risk factors (particularly those driven by age)478

is not sufficiently robust to identify all patient groups with accelerated CAD (Thanassoulis and Vasan,479

2010), turning to genomic data and utilizing non-traditional statistical tools for building predictive models480

of CAD is a fairly recent avenue in biomedical research (Völzke et al., 2013). To this end, our study is an481

example of a machine learning-based predictive modeling approach that utilizes clinical and genotype482

data to identify a panel of SNPs providing improved predictive performance over traditional risk factors483

and a past GWAS-based panel in a replicable manner in two independent cohorts.484

Recent literature suggests that the implementation of regression models using a log additive (or485

multiplicative) approach when integrating multiple SNPs together for making predictions (Yoo et al.,486

2015) is a potential pitfall in previous attempts to improve the risk prediction accuracy for complex487

diseases. Alternative modeling approaches that utilize SNPs while taking into account gene-gene and488

gene-environment effects are some of the promising potentials of “recursive partitioning methods”489

(Breiman, 2001; Ruczinski et al., 2003) including random forest models (Yoo et al., 2015). In our490

study, using random forests, we observed significantly improved predictive performance upon combining491

traditional risk factors with a past GWAS based SNP panel (SNP Set-1) in the discovery cohort as opposed492

to only using clinical data or SNP Set-1. On the other hand, in the replication cohort, combining clinical493

data with SNP Set-1 led to a slight decline in predictive performance compared to using only SNP Set-1,494

but resulted in a significant improvement as opposed to using only clinical data. Furthermore, we observed495

no predictive improvement in either cohort as we combined these clinical variables with the alternative set496

of SNPs (SNP Set-2) derived from the discovery cohort based on genotype-phenotype correlation. Taken497

together, our results are in accord with majority of the previous results in the literature since combining498

both layers of data have not generated a consistent improvement in our discovery and replication cohorts.499

We note that in a previous predictive modeling study on CAC (McGeachie et al., 2009), authors have500

significantly improved the ability for predicting the presence of coronary calcium by combining clinical501

variables with 13 predictive SNPs from 13 different genes identified among 2882 candidate SNPs from502

231 genes that were proposed by a group of MESA investigators. However, the data used in (McGeachie503

et al., 2009) came from a patient group with significantly different characteristics. Half of the patients in504

(McGeachie et al., 2009) were females, whereas our patients in both ClinSeq R© and FHS cohorts were all505

males with much higher levels of coronary calcium. In fact, the CAC scores of our male case subjects506

were within 89th to 99th percentile range based on the Multi-Ethnic Study of Atherosclerosis (MESA)507

cohort (McClelland et al., 2006; Dat, 2015), whereas majority of the male data in (McGeachie et al., 2009)508

came from subjects with CAC scores within 60th-70th percentile range based on the reported average age509

and the CAC score range. Hence, our case definition that is based on the presence of advanced coronary510

calcium, rather than its mere presence, in addition to the differences in the gender composition between511

cohorts, are plausible explanations for the discord between our study and (McGeachie et al., 2009) in512

terms of the changes in predictive performance upon combining clinical and genotype data.513

In a recent review by Björkegren et al. (Björkegren et al., 2015), authors discuss the importance of514

nominally significant (p-value<0.05) SNPs that fail to reach genome-wide significance (p-value< 10−8)515

in terms of collectively explaining the genetic variability in CAD. The effectiveness of this approach516

has previously been shown in the context of the heritability of human height in (Gibson et al., 2010;517

Yang et al., 2010a). Nominally significant (also called “context-dependent”) SNPs show their impact on518

disease phenotypes only under certain conditions (Schadt and Björkegren, 2012), such as above a certain519
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BMI threshold (Lyssenko et al., 2008) or below some physical activity level (Rankinen et al., 2007). In520

(Björkegren et al., 2015), such variants are described as potential key drivers of CAD in later stages as521

opposed to GWAS significant loci that promote early development of CAD. Based on this argument522

(also supported by a recent study (Roberts, 2014)) early CAD development is driven mainly by genetics523

rather than environmental factors, as opposed to the context-dependent variants that drive later stages524

of CAD and are typically unable to reach genome-wide significance. However, as demonstrated in past525

studies (Björkegren et al., 2015; Schadt and Björkegren, 2012), it’s possible to utilize context-dependent526

variants for building predictive disease models by integrating multiple layers of omics data with clinical527

variables. Our study is an example of such an integrative approach and the results in Tables S6 and S8528

demonstrate the emergence of several SNPs previously associated with several CAD risk factors (mostly529

at nominal significance) in driving advanced CAC levels as demonstrated by the cumulative predictive530

scores attached to each risk factor. In addition, the associations between the predictive SNPs in SNP Set-2531

with CAD-related phenotypes (Table S9) identified in previous GWAS were all nominally significant532

contrary to the predictive SNPs from SNP Set-1 derived from past GWAS on CAC, many of which reached533

genome-wide significance previously in GWAS on CAD-related phenotypes (Table S7). In (Björkegren534

et al., 2015), the recommended approach for predicting CAD and related phenotypes (especially beyond535

early disease stages) is dividing case subjects into subcategories based on the level of disease measured by536

imaging or histological measures (measured CAC scores in our study) to identify subphenotype-specific537

integrative models. We implement a similar approach in our predictive modeling study by just focusing on538

case subjects within the 89th-99th percentile CAC score range and age-matching controls. The replication539

of the highly predictive loci identified from the ClinSeq R© discovery cohort in the FHS cohort and the fact540

that we observe enrichment of several biological processes previously linked to cardiovascular disease at541

the network level demonstrates the effectiveness of our machine learning based approach.542

CONCLUSIONS543

In this study, we used a combination of clinical and genotype data for predictive modeling of advanced544

coronary calcium. Our models demonstrated the limited predictive capabilities of traditional risk factors545

and a past GWAS-based SNP panel, whereas an alternative SNP set, with approximately the same size as546

the GWAS-based panel, produced higher predictive performance in a discovery cohort from ClinSeq R©547

study and in a replication cohort from FHS. 75% of the SNPs in this alternative set have previously been548

associated with a total of 18 risk factors (a total of 88 associations), whereas 18% of them have reached549

nominal significance levels in a previous GWAS on mitral annular and aortic valve calcium that suggested550

potentially strong susceptibility to CAD as well as coronary calcium among our subjects with advanced551

CAC. Upon identifying a subset of 21 SNPs from this alternative set that led to optimal predictive552

performance in both cohorts, we developed neural network models trained with the ClinSeq R© genotype553

data and tested with the FHS genotype data and obtained high predictive accuracy values (AUC>0.8)554

under a wide range of network topologies, thereby replicating the collective predictive ability of these555

SNPs in FHS and identifying several potential susceptibility loci for advanced CAD pathogenesis. At the556

gene network level, several biological processes previously linked to cardiovascular disease, including557

differentiation of adipocytes, were found to be enriched among these loci.558

A potential extension of our modeling study is the expansion of the panel of SNPs that are highly559

predictive of advanced coronary calcium levels around their loci for building more comprehensive models.560

Subsequently, we can assess these loci as predictors of rapid CAC progression and early onset of MI561

with longitudinal data in independent cohorts, especially for cases poorly predicted by traditional risk562

factors. To conclude, our study on CAC, a cardiovascular disease phenotype and a predictive marker of563

future cardiac events, demonstrates the limited capability of the GWAS-based set of markers in predicting564

advanced CAC, while illustrating the potential of combining multiple machine learning methods as565

informative and accurate diagnostic tools. Our results also suggest that utilizing markers specific to a566

particular range of coronary calcium, rather than its complete spectrum previously studied in past GWAS,567

can be an effective approach for building accurate predictive models for personalized medicine efforts568

that require disease-level specific risk prediction and prevention.569
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TABLES950

Table 1. Predictive importance values of clinical variables in ClinSeq R© and FHS cohorts. Only the
instances with positive predictive importance are reported.

Clinical Predictive
variable importance

Total cholesterol 8.60 (FHS)
Systolic blood pressure 6.24 (FHS), 12.94 (ClinSeq R©)
Diastolic blood pressure 2.88 (FHS)

Fibrinogen 1.81 (FHS), 3.50 (ClinSeq R©)
Fasting Blood Glucose 0.024 (FHS)

HDL cholesterol 18.39 (ClinSeq R©)

Table 2. Predictive performances of RF models (quantified by the mean ± standard deviation values of
AUC) trained and tested with different predictor sets in the ClinSeq R© and FHS cohort data. AUC
distributions were normal based on the Anderson-Darling tests (Stephens, 1974). “CLIN” corresponds to
the nine clinical variables listed in Table S1 (all variables except age and gender).

Predictors Optimal # markers Optimal AUC p-value
(ClinSeq R©, FHS) (ClinSeq R©, FHS) (ClinSeq R©, FHS)

CLIN 3, 3 0.69±0.02, 0.61±0.02 0.015, 0.080
SNP Set-1 6, 16 0.72±0.02, 0.78±0.02 0.021, <0.001

CLIN+SNP Set-1 7, 12 0.77±0.03, 0.75±0.02 0.013, <0.001
SNP Set-2 21, 21 0.99±0.01, 0.85±0.02 <0.001, <0.001

CLIN+SNP Set-2 21, 18 0.99±0.01, 0.83±0.01 <0.001, <0.001
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Table 3. Predictive importance values of the set of SNPs that generate optimal predictive performance in
both cohorts. Nearest genes are listed for intergenic SNPs (marked with asterisk). Predictive importance
values of 12 of the 21 SNPs in the two cohorts are within 30% of each other (difference divided by the
maximum value). In terms of predictive importance, five of the top 11 SNP predictors (with 65% of the
cumulative predictive importance) are common, whereas nine of the top 14 SNP predictors (with 76% of
the cumulative predictive importance) overlap between two cohorts.

SNP Locus Predictive importance Predictive importance
(ClinSeq R©) (FHS)

rs13159307 FBXL17* 28.83 21.64
rs8107904 EMR2* 36.95 21.83
rs571797 NRG3 17.68 6.86
rs2390285 MACC1 22.86 17.27
rs342393 NRG3 18.04 15.34

rs13429160 LOC101927701 35.68 16.89
rs11674863 LOC101927701 26.18 15.74
rs514237 NRG3 19.09 24.81

rs6860493 NNT 20.72 26.39
rs10054519 C5orf28 21.17 25.25
rs12521249 PAIP1* 21.17 25.44
rs10065689 NNT 20.45 25.55
rs2241097 TLR5 34.02 24.11
rs10059993 NNT-AS1 20.82 24.77
rs12645809 ANTXR2 22.1 25.33
rs480220 NRG3 19.76 24.01

rs1366410 NNT 21.15 23.77
rs11767632 YAE1D1* 32.09 20.94
rs7713479 NNT-AS1 21.11 37.48
rs243172 FOXN3 34.9 46.17
rs243170 FOXN3 35.91 51.20
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Table 4. Enriched diseases and biological functions (in the network of genes derived from
GeneMANIA) with p-values ranging between 1.0E-4 and 1.0E-2 as identified by IPA based on Fisher’s
exact test. 51 additional enriched diseases and biological functions (statistically less significant) with
p-values ranging between 1.0E-2 and 5.0E-2 are listed in Table S11.

Category Disease or Function Genes p-value
Connective Tissue Development and Function Quantity of adipose tissue ARID5B, CYB5R4 3.58E-4

RETN, TLR5
Connective Tissue Development and Function Differentiation of adipocytes ARID5B, EGLN1 8.82E-4

NIPBL, RETN
Cardiovascular Disease Angiectasis of blood vessel EGLN1 9.87E-4

Cardiovascular System Development and Function Area of capillary vessel EGLN1 9.87E-4
Hematological System Development and Function Cell division of AIMP1 9.87E-4

peripheral blood lymphocytes
Cardiovascular Disease, Endocrine System Disorders, Susceptibility to insulin RETN 9.87E-4

Metabolic Disease resistance-related hypertension
Cardiac Necrosis, Cell Death and Survival Cell death of heart tissue EGLN1 1.97E-3

Cellular Movement Migration of connective tissue cells AIMP1, ARID5B 2.14E-3
RETN

Carbohydrate Metabolism, Cellular Function Homeostasis of D-glucose CYB5R4, RETN 2.46E-3
and Maintenance TLR5

Nucleic Acid Metabolism Conversion of NAD+ NNT 2.96E-3
Cardiovascular System Development and Function Tethering of endothelial cell lines FUT3 2.96E-3

Cellular Compromise, Inflammatory Response Degranulation of beta islet cells CYB5R4 3.94E-3
Cardiovascular System Development and Function Density of blood vessel tissue AIMP1 3.94E-3

Endocrine System Disorders, Hematological Disease Onset of hyperglycemia CYB5R4 3.94E-3
Metabolic Disease

Carbohydrate Metabolism Tolerance of D-glucose CYB5R4 4.93E-3
Cardiovascular System Development and Function Angiogenesis of heart EGLN1 5.91E-3
Cardiovascular System Development and Function Density of blood vessel AIMP1, EGLN1 5.96E-3
Immune Cell Trafficking, Inflammatory Response Adhesion of neutrophils ADGRE2 (EMR2) 7.52E-3
Hematological System Development and Function TLR5

Endocrine System Development and Function Insulin sensitivity of liver RETN 7.87E-3
Hepatic System Development and Function

Nucleic Acid Metabolism Metabolism of NADPH CYB5R4 7.87E-3
Connective Tissue Development and Function Quantity of visceral fat RETN 8.85E-3

Carbohydrate Metabolism Binding of chondroitin sulfate ADGRE2 (EMR2) 9.83E-3
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