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Abstract 
 
Achieving a mechanistic explanation of brain function requires understanding causal relationships 

among regions. A relatively new technique to assess effective connectivity in fMRI data is 

Dynamic Causal Modeling (DCM). As DCM is more frequently used, it becomes increasingly 

important to further validate the technique and understand its limitations. With DCM, Bayesian 

Model Selection (BMS) is used to select the most likely causal model. We conducted simulations 

to test the degree to which BMS is robust to two types of challenges when applied to DCMs, 

those inherent to data (Category 1) and those inherent to model space (Category 2). Category 1 

challenges tested properties of the data (low signal-to-noise, different response magnitudes and 

shapes across regions) that could either blur the distinction between models or potentially bias 

model selection. These challenges are impossible or difficult to measure and control in real data, 

so investigating their effect upon BMS through simulation is critical. Category 2 challenges 

tested properties of model space that create subsets of confusable models. Our results suggest that 

given data that conform to the prior assumptions of DCM, BMS is robust to challenges from 

Category 1. However, in the face of Category 2 challenges (when a more homogenous model 

space was tested) the false positive rate rose above an acceptable level. We show that such errors 

are neither trivial nor easily avoided with existing approaches. However, we argue that it is 

possible to detect Category 2 challenges, and avoid inappropriate interpretations by conducting 

simulations prior to applying DCM. 
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Acronyms 
 
DCM: Dynamic Causal Modeling 
BMS: Bayesian Model Selection 
fMRI: functional magnetic resonance imaging 
BOLD: blood oxygen level dependent 
FMC: Family Model Comparison 
HRF: hemodynamic response function 
ROI: region of interest 
SNR: signal to noise ratio 
R1: region 1 
R2: region 2 
U1: input 1 
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1. Introduction 

The primary goal of cognitive neuroscience is to characterize the neural substrates of 

cognition. Investigators try to identify those substrates noninvasively by using functional MRI to 

measure two things: selective changes in the magnitude of focal brain activity, and selective 

changes in the coupling among regions. Studies of functional coupling among regions have 

increased in prevalence because of advancements in technology and the recognition that cognition 

cannot be fully explained by mapping one function to one region (Poldrack, 2006). Furthermore, 

achieving a mechanistic explanation of brain function requires understanding causal relationships 

among regions. If two regions are coupled in the service of some function, is one region driving 

the other, or is there a third region that is driving both of them? In what order is information 

processed by given brain regions? These are questions of effective connectivity, or of the 

directional influence among regions.  

One technique designed to assess effective connectivity is Dynamic Causal Modeling 

(DCM) (Friston, Harrison, & Penny, 2003). While DCM can be applied to either 

electrophysiological or functional MRI data, we will consider here its application to fMRI studies. 

DCM is a generative modeling approach that detects experimentally induced changes in effective 

connectivity. A traditional Dynamic Causal Model is composed of regions that have neural 

“states,” directional intrinsic connections between these regions so that the past state of one 

region may influence the future state of another, and inputs (i.e., experimental manipulations) that 

can either influence regions directly (direct inputs), or modulate intrinsic connections between 

regions (modulatory inputs) (Friston et al., 2003). Specifying regions, connections, and inputs 

defines what is called the model structure. The model structure constitutes a hypothesis about 

how the neural network mediates cognitive processes.  
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Given such a model, a differential state equation (Appendix A) is integrated to generate 

predicted “neural” timecourses for each region. These timeseries of “hidden neural activity” do 

not correspond to a specific measure of neural activity (e.g., spiking) but rather a theoretical 

measure of causal interactions that underlie the BOLD signal. Therefore, they are transformed 

into predicted BOLD timeseries using a biophysically motivated and region-specific 

hemodynamic forward model (Friston, Mechelli, Turner, & Price, 2000). The neural and 

hemodynamic parameters of the model are estimated simultaneously using an expectation 

maximization algorithm (Dempster, Laird, & Rubin, 1977; Friston, 2002; Friston, Mattout, 

Trujillo-Barreto, Ashburner, & Penny, 2007). This algorithm iteratively identifies the parameter 

values that optimize model evidence (i.e., the probability of the actual data given the model). This 

is generally done across a set of competing models (the model space), and Bayesian Model 

Selection (BMS) is used to compare evidences of hypothesis-consistent and -inconsistent models 

(Allen et al., 2010; Penny, 2012; Stephan, Harrison, Kiebel, David, Penny, & Friston, 2007a; 

Stephan, Penny, Daunizeau, Moran, & Friston, 2009a; Stephan, Weiskopf, Drysdale, Robinson, 

& Friston, 2007b). 

BMS is a critical step in DCM analyses. First, any measure of model evidence represents a 

tradeoff between accuracy and generalizability – models can fit data well because they accurately 

model the measured phenomenon and/or because they fit noise specific to that dataset (Allen et 

al., 2010; Pitt & Myung, 2002). This means there is no threshold for “truth.” However, BMS 

allows one to test a hypothesis by contrasting a hypothesis-consistent model with a set of feasible 

alternative models. Additionally, the Bayesian nature of BMS is an effective solution to the 

Identifiability problem common to any generative modeling approach. That is, optimal model 

parameter values (and model structure) might not be uniquely determined by the data (Valdes-
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Sosa, Roebroeck, Daunizeau, & Friston, 2011). BMS mitigates this problem because if two 

equally complex models make identical predictions, they will have equal evidence, and neither 

will win over the other (Valdes-Sosa et al., 2011). Finally, BMS is a necessary step even if one is 

only interested in particular parameter values rather than model structure because inferences 

about parameter estimates are contingent upon model structure (Stephan et al., 2010). Because 

BMS is such a fundamental part of implementing DCM, we will refer to the “DCM approach” to 

imply the inclusion of BMS. We reserve the term DCM to refer specifically to model estimation 

alone. It is important to note that our inferences about BMS are specific to its use with DCM, and 

not to BMS more generally. 

As the DCM approach is used more frequently, it becomes increasingly important to 

further validate the technique and understand its limitations, especially given an ongoing debate 

about whether or measuring causal interactions among regions is feasible in fMRI (David, 2011; 

Friston, 2011; Roebroeck, Formisano, & Goebel, 2011a; 2011b; Valdes-Sosa et al., 2011). For 

example, a sophisticated simulation study recently tested a variety of non-DCM techniques and 

showed that they often perform very poorly under plausible conditions, e.g., after including 

variability in hemodynamic-neural coupling (S. M. Smith et al., 2011a; but see Ramsey, Hanson, 

& Glymour, 2011). Some argue that DCM is a better technique and have demonstrated its validity 

and reliability (David et al., 2008; Reyt et al., 2010; Schuyler, Ollinger, Oakes, Johnstone, & 

Davidson, 2010). Furthermore, a few studies have actually demonstrated the face validity of BMS 

specifically (Penny, 2012; Stephan, Harrison, Kiebel, David, Penny, & Friston, 2007a; Stephan, 

Penny, Daunizeau, Moran, & Friston, 2009a; Stephan, Weiskopf, Drysdale, Robinson, & Friston, 

2007b). However, some investigators remain cautious, pointing to biophysical and statistical 

concerns (Daunizeau, David, & Stephan, 2011a), and even question DCM’s fundamental validity 
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(Lohmann, Erfurth, Müller, & Turner, 2012). A critical gap in the literature supporting the DCM 

approach is research showing that BMS is robust to certain plausible challenges (outlined below). 

This is especially important because there is reason to believe that BMS is sometimes more 

susceptible than is parameter estimation alone (Daunizeau et al., 2011a). 

There are two categories of challenges for BMS that we define and consider in the current 

paper. Theoretically, BMS will successfully select the best model when each model makes unique 

predictions, and when the quality of the data allows a fair comparison of the data to those unique 

predictions. Any application of BMS, even outside the context of DCM, will face some of the 

same challenges, but assessing those concerns is beyond the scope of the current paper. We will 

refer to errors in which BMS fails to select any model, including the correct one, as “false-

negative” errors, and to those in which BMS selects an incorrect model as “false-positive” errors.  

1.1 Challenges in Category 1: Properties of data 

This category includes properties of the data that may either blur the distinction between 

models or create a biased model space. By “biased model space,” we mean a situation in which 

not all models have an equal probability of being correctly selected when true, or incorrectly 

selected when false. Here, we consider three properties of the data that could cause problems.  

First, a poor signal-to-noise ratio (SNR) would decrease the evidence of all models 

making it harder to identify the most likely one (false-negative error). Friston et al. (2003) 

demonstrated that parameter estimation of a single model is robust to low SNR; however, when 

models are very similar (see Category 2), a physiologically implausible high SNR might be 

needed to distinguish between them (Penny, 2012). The inability to distinguish between some 

models in model space (false-negative errors) is an accepted possibility, and so investigators must 

rely on additional techniques (e.g., Family Model Comparison and Bayesian Model Averaging 
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(Penny et al., 2010)), to make broader inferences about model structure or about parameter 

strengths. It may be unlikely for low SNR to directly lead to false-positive errors, but it could do 

so indirectly by making BMS more susceptible to other challenges like those listed below.  

Second, unmodeled systematic differences in the response magnitude across regions of 

interest (ROIs) can disrupt parameter estimation and therefore BMS. Response magnitudes might 

vary for interesting reasons, such as different engagement in the neural network, or for 

uninteresting reasons, such as differences in local vasculature or in susceptibility to signal drop 

out. Only the first cause is modeled in DCM, so presence of the others can inappropriately affect 

parameter estimation. Indeed, (Friston et al., 2003) found that a large degree of signal-drop-out in 

one region can distort neural parameter estimates, but no one has evaluated the degree to which 

subsequent BMS is affected. Importantly, a model is penalized during estimation for parameter 

estimates that are far from their prior means (Stephan, Tittgemeyer, Knösche, Moran, & Friston, 

2009b). Given the relatively large prior covariance of direct inputs, BMS may favor models in 

which relatively high-magnitude regions are driven by direct inputs (potentially leading to false-

positive errors).  

Third, systematic differences in the shape of the hemodynamic response function (HRF) 

across ROIs (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Sloan et al., 2010; S. 

Smith et al., 2011b) may also cause BMS to inappropriately favor models with a certain structure. 

Indeed, variation in HRF across regions is a common concern for all effective connectivity 

techniques (Ramsey et al., 2010). Immunity to this issue is one of the main purported advantages 

of the DCM approach (Friston, 2009; Stephan et al., 2007a) compared to techniques such as 

Granger Causality (Goebel, Roebroeck, Kim, & Formisano, 2003). Theoretically, DCM can deal 

with the HRF problem in two ways. First, an intrinsic and constant HRF difference across regions 
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should not bias model selection across models that vary modulatory inputs only. Second, DCM 

flexibly and independently models the HRF of each region so that their intrinsic responses may 

vary (Friston, 2009). To date there is one study that shows that parameter estimation in DCM is 

robust to systematic differences in HRFs (Friston et al., 2003). Even if additional studies continue 

to support the idea that DCM is robust to HRF variability, the robustness of the DCM approach is 

still unknown. 

Note, that these three conditions in Category 1 are impossible or difficult to measure and 

control in real data, so investigating their effect on BMS through simulation is critical. 

The general approach to investigate these challenges involved simulating data from a 

model and testing BMS’ ability to select that model over others. To generate data, we set model 

parameter values at a reasonable level by randomly sampling from their prior distributions (i.e., 

expected values for each parameter). Our initial results indicated that BMS performed very well 

when the model parameters were selected in this way. We therefore conducted a second series of 

simulations in which the parameters were chosen from the extremes of the prior distributions. In 

this second series, the neural parameters were instead set to a level of 1 Hz1. According to the 

prior expectation built into DCM software (see Appendix), connection strengths of at least 1 Hz 

are unlikely (probability = 0.05). However, as other researchers decide whether or not to use the 

DCM approach, it is important to know how robust the technique is to circumstances that violate 

its assumptions scarcity of empirical evidence supporting these assumptions about parameter 

value distributions).  

                                                       
1 In this case, this makes model selection more difficult primarily by changing the modal intrinsic connection 

strength from 0.4Hz to 1.0Hz. From equation (1), at a given time point, if the driving region is rising at a rate of 

X Hz, then the target region will immediately begin rising at a rate of A*XHz where A is the driving�target 

intrinsic connection strength. Therefore, an intrinsic connection of 1Hz, instead of 0.4 Hz, will make the 

responses of the driving and target region much more similar (compare Figures 3 and 4). So, two models in 

which the roles of driving and target region are reversed will become less discriminable. 
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1.2 Challenges in Category 2: Properties of Model Space 

This category includes properties of model space that create subsets of confusable models. 

Some models make such similar predictions that it is difficult for BMS to distinguish them, 

resulting in false-negative errors.  Again, in this case, investigators can use Family Model 

Comparison (FMC) or Bayesian Model Averaging to collapse across a set of similar or probable 

models (Penny et al., 2010). Importantly, however, we will show that the model-similarity 

problem can cause false-positive errors as well. In this case, investigators are still likely to draw 

inappropriate conclusions from the model selection step, even if they continue on to do FMC or 

BMA. Furthermore, regarding FMC, it is not always immediately obvious which models will be 

confusable, and the dimensions along which BMS gets confused may not be the same as 

theoretical dimensions that would normally define families in FMC.  

Note, that model space construction is perhaps the most important and challenging aspect 

of implementing the DCM approach. We will argue that it is possible to detect Category 2 

challenges and avoid inappropriate interpretations. 

 In what follows we test the robustness of the DCM approach to these two categories of 

potential problems. Our perspective is that of a group of investigators who wish to use DCM as 

currently instantiated to investigate causal models. A full-fledged investigation of particular 

causes of success or failure is beyond the scope of the current paper. Nonetheless, we hope that 

our results will prompt productive discussions and work to that end.  
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2. Experimental Procedure 

We investigated these challenges for BMS by simulating data from models within simple 

but instructive model spaces. An overview of the method is illustrated in Figure 1. For each 

model in the model space (Step 1), we set parameter values and generated data after introducing 

the challenges from Category 1 or not (Steps 2-5; details in section 2.1). We then fit each model 

to the dataset (Step 6). For details on model estimation see Friston et al. (2003) and Friston 

(2002). After repeating for a group of 20 subjects, we conducted a fixed effects BMS to see how 

often it selected the correct or an incorrect model (Step 7). Finally, everything was repeated 100 

times to get a sense of BMS’ overall performance. Note that in each simulation there was a single 

true model structure that was used to generate all 2,000 datasets, which contributed to a single 

row in a table from the Results (Section 3). 

2.1 Generating data to test Category 1 challenges (properties of the data) 

We tested challenges from Category 1 using Model Space 1 (Figure 2). It includes two 

regions (R1 and R2) that both respond to one input (U1). Models in this model space differ in 

how information about U1 arrives at each region, thus testing the most fundamental idea of 

effective connectivity – direction. In Model 1, U1 drives R1, which then influences R2. In Model 

2, information “flows” the other direction; U1 drives R2, which then influences R1. In Model 3, 

an un-modeled region, represented by U1, drives both R1 and R2. 

DCM was developed primarily to detect experimentally induced changes in effective 

connectivity by comparing models that vary modulatory inputs. However, it is both practically 

and theoretically relevant to test whether or not the DCM approach can successfully compare 

models varying in intrinsic connectivity. First, determining the most likely intrinsic connectivity 

pattern can supplement difficult anatomical mapping of the human brain (Penny, Stephan, 
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Mechelli, & Friston, 2004). Second, researchers often do vary intrinsic connections across their 

model spaces to test a specific hypothesis when applying the DCM approach (Ethofer et al., 2006; 

Fairhall & Ishai, 2007). 

All data were generated using the function spm_dcm_generate.m in DCM10, available in 

SPM8 (Appendix A). To test our hypotheses, we controlled the values of the direct inputs, 

intrinsic connections, and two hemodynamic parameters (Hemodynamic Transit Time, and Rate 

of Signal Decay from Table 1 in Friston et al. (2003). For each dataset, the value of each 

parameter was randomly sampled from its prior distribution (see the left side of Figure 1). We 

then forced direct inputs and intrinsic connections between regions to be positive by taking the 

absolute value. The means of these new positive distributions were used to generate the example 

data shown in the top panels of Figure 1 and of Figure 3. We later refer to these as “typical” 

predictions for each model. Each simulated 5-minute run had a TR of 2 seconds and contained 15 

events with the stimulus timing shown in Figure 2.  

To test how robust BMS is to Category 1 challenges, we simulated data under 

“Optimistic” and then “Pessimistic” conditions (see the top and bottom paths in Figure 1). The 

Optimistic scenario included data with a relatively high SNR (of 1), and similar response 

magnitudes and HRFs across regions. The Pessimistic scenario included data with an SNR of 0.5, 

and different response profiles across regions. Specifically, in the Pessimistic scenario, we 

introduced a bias towards Model 2. In this model, R2 is the driving region and R1 is the target 

region. So, while generating data from Models 1 and 3, the HRF of R2 was made to respond more 

quickly and strongly to a stimulus whereas R1 was made to respond more slowly and weakly. 

This was done by sampling from opposite sides of the hemodynamic parameters’ prior 

distributions for each region (Figure 1). Finally, for the Pessimistic Scenario, the signal of R1 was 
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scaled to 75% of its original magnitude. This was done before adding noise to ensure a consistent 

SNR of 0.5. We chose 75% based on earlier work (Friston et al., 2003), which tested the effect of 

scaling a region’s response to 50% - 150% the magnitude of another region. (Note, we could have 

manipulated the magnitude of a region’s response by manipulating the size of the direct input or 

intrinsic connection to that region; however, doing so would have defeated our purpose of 

determining how well the DCM approach handles situations in which unmodeled sources of 

variance distort parameter estimation.) Example trials with these hemodynamic and magnitude 

challenges introduced are shown in Figure 3 (the bias is easiest to see in Model 3 because of the 

initially identical response of R1 and R2). 

Notice that the typical predictions of Model 1 and Model 2 are so different that even the 

challenges described above do not make Model 1 closely resemble Model 2 (compare the three 

left-most panels of Figure 3). The predictions of Models 1 and 2 are so different because the prior 

distribution for intrinsic connections has relatively low covariance, and so a typical value is rather 

small (0.4 Hz) (Figure 1). The weak rather than strong (e.g., 1 Hz) positive intrinsic connection 

decreases the extent to which the target region resembles the driving region, making the 

predictions of Models 1 and 2 relatively distinct. If the direct inputs and intrinsic connections are 

set to be 1Hz instead, the predictions of Models 1 and 2 become much more similar (Figure 4). 

We repeated all of the above simulations for Model Space 1 after setting direct inputs and 

interregional intrinsic connections to a value of 1Hz instead of sampling from their prior 

distributions. This allowed us to test the robustness of the DCM approach to deviations from its 

prior assumptions.  

 

2.2 Generating data to test Category 2 challenges (properties of the model space) 
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We tested Category 2 challenges using a procedure identical to that for the Optimistic 

Scenario described above (with all parameters sampled from their prior distributions). The only 

difference was that we simulated data using Model Space 2, which included pairs of potentially 

confusable models. Specifically, we added models that were the same as those in Model Space 1, 

except that they had bidirectional intrinsic communication (Figure 5). We expected pairs of 

models that included similar parameters to be confused (e.g., Model 4 with Model 1, 5, or 6). 

However, it is of course possible that these models will be distinguishable – models that similarly 

varied the presence of feedback were identifiable in previous simulation work (Penny et al., 

2004). 

2.3 Bayesian Model Selection (BMS) 

 Given a set of plausible models, BMS is the method for determining the optimal model, a 

critical step in any application of the DCM approach. The measure used to compare models by 

BMS is the negative free energy, which is optimized during model estimation (Friston et al., 

2007). This measure is an approximation of model evidence that balances accuracy and 

complexity, and is optimal for selecting between nested and full models (Penny, 2012). It is 

obviously desirable to select a model with high accuracy, but a cost for model complexity must be 

included to avoid over-fitting (Pitt & Myung, 2002).  

We used a fixed effects approach to compare the negative free energy of each model 

because it was safe to assume that the best model structure was constant across “subjects” (Allen 

et al., 2010). This procedure yields, among other things, a posterior probability for each model. 

Convention says that a model with a posterior probability of at least 95% can be considered to 

have strong evidence of being the most likely model (Penny et al., 2004). For each simulation, we 

conducted BMS for each of the 100 groups of 20 subjects. Then we calculated the percentage of 
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times that the correct model obtained a posterior probability of at least 95%. To get an indication 

of the false-positive rate, we also calculated how often each incorrect model obtained a posterior 

probability of at least 95%. 

2.4 Family Model Comparisons (FMC) 

 Consistent with the suggestion of Penny (2012), we conducted Family Model Comparison 

(FMC) analyses in cases where BMS failed to select the correct model. FMC allows researchers 

to define and compare sub-sets, or families, of models. These families vary on only one 

dimension of interest (Penny et al., 2010). Investigators can then test hypotheses about a specific 

causal relationship while remaining agnostic to irrelevant parameters. It seems reasonable to 

define families either by the rows or the columns from Model Space 2. So we did the FMC 

analysis twice, defining families both ways. As with the BMS analyses, we did FMC 100 times, 

across groups of 20 subjects, counting how often the correct or incorrect family won. We defined 

a winning family as correct if the model that was used to generate the data was a member of that 

family.  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2017. ; https://doi.org/10.1101/102293doi: bioRxiv preprint 

https://doi.org/10.1101/102293
http://creativecommons.org/licenses/by-nc-nd/4.0/


Challenges for BMS of DCMs 

  McCarthy, G.M. 

16

3. Results 

3.1 Category 1 Challenges: (properties of the data) 

BMS performance was excellent when distinguishing between models in Model Space 1 

under Optimistic conditions (Table 1A). The correct model was always selected, and an incorrect 

model was never selected. This impressive pattern remained even when connectivity parameters 

were set to 1Hz instead of being randomly sampled from prior distributions (Table 1B). 

BMS performance remained excellent even when distinguishing between models in 

Model Space 1 under Pessimistic conditions (Table 1C). However, BMS was much more 

susceptible to the challenges from Category 1 when data were generated by setting connectivity 

parameters to 1 Hz (Table 1D). In this case, Model 3 was selected more often than Model 1, even 

when Model 1 was true. 

 

Table 1: BMS performance for Model Space 1. 
 
 Parameters from prior distributions  Neural parameters set to 1 Hz 

 % M1 wins % M2 wins % M3 wins  % M1 wins % M2 wins % M3 wins 

M1 100% 0% 0% M1 100% 0% 0% 
M2 Redundant Redundant Redundant M2 Redundant Redundant Redundant 
M3 0% 0% 100% M3 0% 0% 100% 

  A    B  

        
 % M1 wins % M2 wins % M3 wins  % M1 wins % M2 wins % M3 wins 

M1 100% 0% 0% M1 30% 0% 39% 
M2 Irrelevant Irrelevant Irrelevant M2 Irrelevant Irrelevant Irrelevant 
M3 0% 0% 100% M3 0% 2% 90% 

  C    D  
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3.2 Category 2 Challenges: Properties of Model Space 

Even under Optimistic conditions, BMS performance was worse when confusable models 

were included in the model space (Table 2). BMS frequently failed to select the correct model. 

More concerning is the fact that in some simulations BMS never selected the correct model and 

sometimes selected an alternative model instead (rows 4 and 5). Of course when more models are 

added to a model space, posterior probabilities will be diluted across the model space, and a true 

model will be less likely to reach the threshold for selection (Penny et al., 2010). However, a 

closer look at the results suggests that this cannot explain all of the errors. Figure 6 shows the 

performance of Models 1 and 4 across the 100 instances of BMS when Model 1 was true (top), 

and the 100 instances of BMS when Model 4 was true (bottom). As one would expect, when 

Model 1 was true, it always gained at least as much posterior probability as Model 4. Strikingly, 

this pattern reversed when Model 4 was true such that Model 1 almost always gained more 

posterior probability than Model 4 (Figure 6). Note that BMS was confused in a consistent 

manner; pairs of similar models always shared all of the posterior probability, which explains the 

symmetrical nature of the histograms.  

Table 2: BMS performance for Model Space 2. 
 
True 
Model 

% M1 wins % M2 wins % M3 wins % M4 wins % M5 wins % M6 wins 

M1 47%   *   
M2  34%   *  
M3   100%    
M4 10%   *   
M5  9%   *  
M6   *   97% 
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3.3 Family Model Comparison 

 To cope with similar models in a relatively large model space, researchers can use FMC to 

collapse across similar models. Knowing the BMS results from Model Space 2, one might predict 

that model families defined along columns of Figure 5 will be very distinguishable, whereas 

families defined along rows will be less so. Indeed, FMC did extremely well when families were 

defined based on the first (“Forward”), second (“Backward”), and third (“Balanced”) columns of 

Figure 5 (Table 3A). However, FMC did not do very well when families were defined based on 

the top (“Simple”) and bottom (“Complex”) rows in Figure 5. In this case, the Simple family 

sometimes won when data were generated from a Complex model (Table 3B). Without running 

the above simulations one would not necessarily know to collapse across similar models as 

defined by columns instead of rows. After all, in terms of complexity Model 4 is as similar to 

Model 1 as it is to Model 6. Conceptually, too, Model 4 is similar to both Models 1 and 6.  

 These results do support using FMC to avoid making false-negative errors. However, they 

also suggest that undetected false-positive errors will persist after an inexhaustive or uninformed 

FMC analysis. 

Table 3: FMC results with families from Model Space 2. 
 
True 
Model 

% Forward 
Family wins 

% Backward 
Family wins 

% Balanced 
Family wins 

 % Simple 
Family wins 

% Complex 
Family wins 

M1 100%    47%  
M2  100%   34%  
M3   100%  100%  
M4 100%    10%  
M5  100%   9% 1% 
M6   100%   97% 
 A  

(Families defined by columns) 
 B 

(Families defined by rows) 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2017. ; https://doi.org/10.1101/102293doi: bioRxiv preprint 

https://doi.org/10.1101/102293
http://creativecommons.org/licenses/by-nc-nd/4.0/


Challenges for BMS of DCMs 

  McCarthy, G.M. 

19

4. Discussion 

 The simulations reported here addressed how robust BMS is to two kinds of challenges, 

those inherent to data (Category 1) and those inherent to model space (Category 2). Our results 

suggest that given data that conform to the prior assumptions of DCM, BMS is very robust to 

challenges from Category 1, even when different challenges occur simultaneously. However, a 

more homogenous model space can increase the false positive rate above an acceptable level, 

even under optimistic conditions. We argue that such errors were neither trivial nor easily 

avoidable. These points are discussed in more detail below. 

4.1 Category 1 Challenges (properties of data) 

 When data that conformed to prior assumptions of DCM were generated assuming 

Optimistic conditions, BMS always selected the correct model and never selected an incorrect 

model. This impressive performance remained even under Pessimistic conditions. The immunity 

of BMS to these challenges is encouraging, especially given the difficulty in measuring and 

controlling them. It is especially reassuring to see that BMS was robust to varying HRFs across 

regions. Our results offer important credibility to claims that this is a unique advantage of the 

DCM approach over other effective connectivity approaches (Friston, 2009). However, lingering 

concerns may be justified by a recent paper reviewing HRF variability (Handwerker, Gonzalez-

Castillo, D'Esposito, & Bandettini, 2012). Handwerker et al. (2012) review evidence and 

explanations of HRF variability across subjects, across scanning sessions, and to a limited extent, 

across ROIs (the relevant type of variability for DCM). They give an example of BMS selecting 

an incorrect model after introducing 1-second peak delay, 1-second onset delay, or post-stimulus 

undershoot differences across regions. However, in each case, they only tested a single simulated 

dataset, and did not discuss the likelihood of finding a 1-second timing difference across regions 
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specifically. Nonetheless, future work is needed to determine exactly how robust BMS is to 

plausible variations in the HRF across regions. Theoretically, such future work will show that the 

DCM approach is robust to HRF variability when detecting transient changes in effective 

connectivity (via modulatory inputs). Model selection between models that include or exclude 

modulatory inputs should not be biased by a constant difference in HRF across regions. 

 It is important to acknowledge that our results do not necessarily generalize to all 

implementations of the DCM approach, but rather, they offer additional evidence to support the 

validity of the technique. Similarly, these results are only informative insofar as the prior 

distributions assumed by DCM are plausible. Indeed when simulations from Model Space 1 were 

conducted using 1Hz as the value for all (positive) neural parameters, BMS performance was 

susceptible to challenges from Category 1. This is because the predictions of each model became 

less distinct (e.g., see Daunizeau et al., 2011b). Note that 1 Hz is within, but at the tail of the prior 

distributions of all neural parameters and BMS still performed extremely well under Optimistic 

conditions. The priors on intrinsic connections are said to be shrinkage priors because they are 

centered on zero and have low covariance; this makes it less likely to obtain unstable system 

dynamics (Friston et al., 2003). Additionally, there has been some work on using anatomical 

information, for example, from Diffusion Tensor Imaging, to inform priors of intrinsic 

connections (Stephan, Tittgemeyer, Knösche, Moran, & Friston, 2009b). Clearly the DCM 

approach is a powerful technique that allows us to investigate effective connectivity hypotheses in 

fMRI, but as with any Bayesian approach, its utility is constrained by prior assumptions. 

4.2 Category 2 Challenges (properties of model space) 

Using a model space with more confusable models, BMS often failed to select the correct 

model, and even sometimes selected an incorrect model. So, how much of a concern is model 
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similarity? The most striking error was when BMS selected a simpler model that did not include 

parameters from the true model. The parameters that were incorrectly absent from the selected 

models were, by design, relatively large and significantly different from zero. Finally, an 

application of FMC that was naïve to these simulation results would not solve the problem. 

Why is BMS susceptible to this challenge, and what can be done about it? There are a 

number of theoretical sources of error, and each amounts to potential inaccuracies in the 

estimation of model evidence – the input to BMS. First, the measure used to compare models, the 

negative free energy, provides only a lower bound on model evidence (Penny, 2012). 

Inconsistencies across models in the accuracy of this approximation could lead to a false model 

being selected. Additionally, the Expectation Maximization algorithm used to estimate models is 

highly efficient, but it is also susceptible to identifying local optima instead of the global 

optimum (Daunizeau et al., 2011a). This means that the evidence for some models may be 

underestimated more than for others. Finally, although the negative free energy is the best 

approximation of model evidence for DCM (Penny, 2012), it could be that the cost for complexity 

that is included in its calculation is sometimes inadequate. In the present case, it may have been 

too large, but it could be too small in situations of higher non-white noise. Indeed, although it was 

not demonstrated here, these issues suggest the possibility of a more complex model being 

selected instead of a true simpler model.  

Not surprisingly, the susceptibility of BMS to these problems increases when sets of 

unidentifiable models are included in the model space. Computational solutions to these problems 

(e.g. using an exact method for estimation) are likely to be computationally expensive and 

impractical (Daunizeau et al., 2011a).  
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We emphasize that it is difficult to know exactly how these sources of error will manifest 

in each separate implementation of the technique. For example, it is likely that BMS would have 

performed better or worse with more/fewer stimulus events and higher/lower SNR, etc. This 

uncertainty prohibits a universal rule of thumb from being developed to guide interpretation of 

BMS results or the definition of model space. Although it may be tempting to conclude that 

model selection will succeed as long as you do not try to detect feedback connections, we think it 

is premature to draw such a conclusion. In section 4.4, we outline a few ideas about how one 

might use DCM and BMS conservatively.  

4.3 Limitations 

For practical reasons, we only investigated a limited set of model spaces under a limited 

set of conditions. To consider how each combination of all of our manipulations would influence 

a variety of different model spaces would result in a combinatorial explosion of simulations and is 

beyond the scope of this paper. Nonetheless we have provided critical evidence to support claims 

regarding the robustness of the DCM approach; still we offer a balanced perspective that warrants 

caution when comparing indistinguishable models. 

4.4 Recommendations 

Our simulations from Model Space 2 show that not all models are created equal. BMS 

made errors in favor of Models 1 and 2 when they were not true, and made no errors away from 

those models when they were true (Table 2). This highlights our primary concern – it is very 

difficult to look at a model space and know beforehand what biases exist in your particular 

experimental paradigm and neural network.  

We recommend that investigators conduct simulations similar to those we have done 

before analyzing their own data. They should simulate data from each model in their model space, 
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with an SNR that is reasonable given their task design and ROI size. Ideally, simulated data 

would emulate the real data in other respects too (e.g., perhaps one has evidence for different 

HRFs across regions). They can then use the results of their simulations to guide model space 

definition and/or BMS interpretation.  

Suppose your simulations show that BMS confuses a certain set of models. You may 

conclude that BMS made errors only in specific and uninteresting cases, and that they can be 

dealt with merely by tempering one’s interpretation. If the errors are intolerable, one could pair-

down the model space by choosing a representative model from the subset of confusable models 

(probably the most complex one to allow subsequent inference on parameters). A less restrictive 

option would be to define families of models such that confusable models are in the same family. 

This way, interpretations are made across models that are known to be distinguishable. This is 

similar to the brief recommendation of (Penny, 2012), but our suggestion calls for simulations to 

identify when FMC is needed, and how model families should be defined.  

While we have emphasized specific controllable and uncontrollable challenges to BMS, 

there are undoubtedly other factors that will influence BMS’ success – namely, experimental 

design. Indeed, investigators might find it most useful to combine our recommendation with that 

of Daunizeau et al. (2011b). They propose a way to optimize experimental design for the DCM 

approach by using the Laplace-Chernoff risk (an approximation of the probability of making a 

model selection error) (Daunizeau, Preuschoff, Friston, & Stephan, 2011b). 

 We hope that these recommendations will be helpful when defining model spaces and 

interpreting results of BMS. Perhaps they can also serve as a sort of model validation called for 

by Lohmann and colleagues (Lohmann et al., 2012). Such measures may be less critical for less 

common versions of DCM that do not involve BMS (Friston, Li, Daunizeau, & Stephan, 2011). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2017. ; https://doi.org/10.1101/102293doi: bioRxiv preprint 

https://doi.org/10.1101/102293
http://creativecommons.org/licenses/by-nc-nd/4.0/


Challenges for BMS of DCMs 

  McCarthy, G.M. 

24

However, we argue that any method relying on model selection, (Friston & Penny, 2011; Rosa, 

Friston, & Penny, 2012) should be tested against the types of challenges outlined here.  
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5. Conclusions 

We conclude that BMS is robust to challenges inherent to the data, which are relatively 

uncontrollable and immeasurable. However, a more homogenous model space can increase the 

false positive rate above an acceptable level, even under optimistic conditions. Fortunately, 

investigators have control over which models they will include in model space, and they should 

use simulations to inform those decisions. 
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Appendix A 
 
Differential state equation used in DCM 
 
 

    (1) 

A is an n x n matrix representing the intrinsic connections among all n regions. The Bj’s are n x n 
matrices representing the modulatory effect of inputs j = {1 … m} on those connections. C is an n 
x m matrix representing the direct effect of inputs on regions. The uj’s are vectors which indicate 
the presence of the inputs (Friston et al., 2003). 
 
Prior specification (from spm_dcm_fmri_priors.m in SPM8, DCM10): 
 

Parameter Prior Expectation Prior Covariance 
A (interregional connection) 1/64 0.25 
A (self connection) -1 0.3125 
B (modulation) 0 4 
C (direct effect) 0 4 
Hemodynamic (transit) 0 0.0183 
Hemodynamic (decay) 0 0.0183 
Hemodynamic (epsilon) 0 0.0183 
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Tables 
 
Table 1: BMS performance for Model Space 1. In each panel, rows represent which model was 

used to generate the data, and columns represent competing models that could get 0-100% 

posterior probability in each of the 100 simulations. Note that the percentage in each cell 

represents the percentage of times that a given model was selected (i.e. obtained at least 95% 

posterior probability), and does not represent the posterior probability itself. (A) Results for the 

Optimistic Scenario with parameters sampled from prior distributions. We did not simulate data 

using Model 2 because of the symmetry of Models 1 and 2. (B) Results for the Optimistic 

Scenario, but with neural parameters set to 1 Hz. (C) Results for the Pessimistic scenario with 

parameters sampled from prior distributions. We did not simulate data from Model 2 because the 

pessimistic conditions created a bias towards Model 2. (D) Results for the Pessimistic Scenario, 

but with neural parameters set to 1 Hz. 

 

Table 2: BMS performance for Model Space 2. Rows represent which model was used to 

generate the data. Columns represent competing models in model space that could get 0-100% of 

the posterior probability in each of the 100 simulations. The values in each row do not necessarily 

sum to 100 because there were often times that no single model obtained at least 95% posterior 

probability. In these cases, usually only two similar models (indicated by asterisks) shared all of 

the posterior probability (see Figure 6). To make the table easier to read, entries of 0% are blank. 

 

 

Table 3: FMC results with families from Model Space 2. Rows represent the model that 

generated the data. Columns represent the number of times (out of 100 instances of FMC) that 
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each model family won. To make the table easier to read, entries of 0% are blank. (A) FMC 

results when families were defined based on the columns of Figure 5. (B) FMC results when 

families were defined based on the rows of Figure 5. 
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Figure Captions 

Figure 1: Overview of general method. Step 1 is to define the model structure to generate data. 

Step 2 involves setting parameter values within that model structure. We did this by randomly 

sampling from the prior distributions of each manipulated parameter. Shown in black is the prior 

distribution of intrinsic connections, in blue is for direct inputs, and in green is for an example 

hemodynamic parameter. We then took the absolute value of the neural parameters. Next (steps 3 

– 5), we either introduced challenges from Category 1 or not. Details of this procedure are 

described in Section 2.1. In Step 6 the data from this single model were fit to all models within its 

model space. This was then repeated for 20 subjects to create 1 group on which to perform BMS, 

thus emulating a real experiment (Step 7). This was then repeated 100 times to get a sense of 

BMS’ overall performance.  

 

Figure 2: Models and input timing used to simulate data from Model Space 1. Top: Inputs are 

shown as ovals, regions are shown as rectangles, direct effects are shown as blue arrows, and 

intrinsic connections are shown as black arrows. Each model assumes that both R1 and R2 

respond to U1, but makes different predictions about how the information gets to each region. 

Bottom: The input timing across the 5-minute run.  
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Figure 3: Hemodynamic parameters and response magnitudes can be manipulated to generate 

data that start to resemble predictions of a contradictory model. The top panels show typical 

predictions of three separate models with no challenges introduced. The bottom panel shows 

predictions of Models 1 and 3 with biases towards Model 2. In each panel, an example trial (with 

no noise added) is shown for R1 (dotted line) and R2 (solid line). 

 

Figure 4: Typical predictions of models in Model Space 1 when neural parameters are set to 1Hz. 

The top panels show predictions of each model without introducing hemodynamic or magnitude 

biases. The bottom panel shows predictions of the outer models (1 and 3) with biases towards the 

center model (2). In each panel, an example trial (with no noise added) is shown for R1 (dotted 

line) and R2 (solid line). 

 

Figure 5: Models used to simulate data from Model Space 2. Inputs are shown as ovals, regions 

are shown as rectangles, direct effects are shown as blue arrows, and intrinsic connections are 

shown with black arrows. Each model assumes that both R1 and R2 respond to U1. Models 4-6 

(bottom) also assume bidirectional intrinsic connections between R1 and R2. The input timing for 

these simulations was the same as in Model Space 1 (Figure 2). 
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Figure 6: Histograms of posterior probabilities obtained by two similar models from Model 

Space 2. Each bin counts the number of times (out of 100 instances of BMS) a given model 

obtained a certain posterior probability. The true model is on the left, the competing model is on 

the right; the top row is from simulations where Model 1 was true; the bottom row is from 

simulations where Model 4 was true. Notice that the histograms are symmetrical, reflecting the 

fact that when Model 1 gained X% of posterior probability, Model 4 gained about 100-X%, or the 

remaining, posterior probability. This pattern is characteristic of each pair of confusable models. 
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