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Abstract

Fitness is typically represented in heavily simplified terms in evolutionary genetics, often
using constant selection coefficients. This excludes fundamental ecological factors such as
dynamic population size or density-dependence from our most genetically-realistic treatments
of evolution, a problem that inspired MacArthur’s influential but problematic r/K theory.
Following in the spirit of r/ K-selection as a general-purpose theory of density-dependent se-
lection, but grounding ourselves empirically in “primary strategy” trait classification schemes
like Grime’s triangle, we develop a new model of density-dependent selection which revolves
around territorial contests. To do so, we generalize the classic lottery model of territorial
acquisition, which has primarily been used for studying species co-existence questions, to
accommodate arbitrary densities. We use this density-dependent lottery model to predict
the direction of trait evolution under different environmental conditions and thereby provide
a mathematical underpinning for Grime’s verbal scheme. We revisit previous concepts of
density-dependent selection, including » and K selection, and argue that our model distin-
guishes between different aspects of fitness in a more natural and intuitive manner.
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“...the concept of fitness is probably too complex to allow of a useful mathematical
development. Since it enters fundamentally into many population genetics considerations, it
is remarkable how little attention has been paid to it.” — Warren J. Ewens, Mathematical
Population Genetics I, 2004

Introduction

Evolutionary models differ greatly in their treatment of fitness. In models of genetic evolu-
tion, genotypes are typically assigned constant (or frequency-dependent) selection coefficients
describing the change in their relative frequencies over time due to differences in viability.
This considerably simplifies the mathematics of selection, facilitating greater genetic realism,
and can be justified over sufficiently short time intervals (Ewens, 2012, p. 276). However,
the resulting picture of evolution does not include even basic elements of the ecological
underpinnings of selection, including dynamic population size and density-dependence.

By contrast, models of phenotypic trait evolution represent the change in phenotypic
abundances over time using absolute fitness functions which describe how those traits af-
fect survival and reproduction in particular ecological scenarios. This approach is powerful
enough to model eco-evolutionary feedbacks between co-evolving traits, but is generally
problem-specific and restricted to only a few traits at a time.

Far less work has been done to generalize beyond particular traits or ecological scenarios
to models of fitness that still capture key distinctions between different forms of selection.
Perhaps this is not surprising given that fitness is such a complex quantity, dependent on
all of a phenotype’s functional traits (Violle et al., 2007) as well as its biotic and abiotic
environment. In most cases, a detailed, trait-based, predictive model of fitness would be
enormously complicated and have narrow applicability. It is therefore easy to doubt the
feasibility of a simplified, general mathematical treatment of fitness (Ewens, 2012, p. 276).
For example, MacArthur’s famous r/K scheme (MacArthur, 1962; MacArthur and Wilson,
1967) is now almost exclusively known as a framework for understanding life-history traits,
and judged on its failure in that role (Pianka, 1970; Stearns, 1977; Boyce, 1984; Reznick et al.,
2002). The r/K scheme’s original purpose was as an extension of the existing population-
genetic treatment of selection to account for population density (MacArthur, 1962), but few
attempts have been made to develop it further as a mathematical analysis of the major
different forms of selection.

Nevertheless, there are strong indications there are broader principles governing the op-
eration of selection. In many groups of organisms, including corals (Darling et al., 2012),
insects (Southwood, 1977), fishes (Winemiller and Rose, 1992), zooplankton (Allan, 1976)
and plants (Grime, 1988; Westoby, 1998), different species can be divided into a small num-
ber of distinct trait clusters corresponding to fundamentally distinct “primary strategies”
(Winemiller et al., 2015). The most famous example is Grime’s plant trait classification
scheme (Grime, 1974, 1977, 1988). Grime considered two broad determinants of population
density: stress (persistent hardship e.g. due to resource scarcity, unfavorable temperatures
or toxins) and disturbance (intermittent destruction of vegetation e.g. due to trampling,
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Figure 1: Schematic of Grime’s triangle. The two axes show increasing levels of environmen-
tal stress and disturbance, respectively. Survival is not possible if the combination of stress
and disturbance is too large (dashed line). This creates a triangle, each corner of which
corresponds to a “primary strategy”.

herbivory, pathogens, extreme weather or fire). The extremes of these two factors define
three primary strategies denoted by C/S/R respectively (Fig. 1): competitors “C” excel
in low stress, low disturbance environments; stress tolerators “S” excel in high stress, low
disturbance environments; and ruderals “R” excel in low stress, high disturbance environ-
ments. Survival is not possible in high-stress, high-disturbance environments. Grime showed
that measures of C, S and R across a wide range of plant species are anti-correlated, so that
strong C-strategists are weak S and R strategists, and so on. Thus, plant species can be
classified on a triangular C/S/R ternary plot (Grime, 1974). Trait classification schemes for
other organisms are broadly analogous to Grime’s scheme (Winemiller et al., 2015).

Trait classification schemes show empirically that, beneath the complicated details of
trait variation, even among closely-related species, fitness is predominantly determined by
a few key factors such as intrinsic reproducive rate or stress-tolerance. However, while trait
classification schemes are firmly grounded in trait data, they are verbal and descriptive rather
than mathematical, a recognized hinderance to their broader applicability (e.g. Tilman
2007).

The aim of this paper is explore the interplay between some major dimensions of fitness
in a simplified, spatially-homogeneous model of genotype growth, dispersal and competition.
Building on the earlier r/K and C/S/R schemes, a central question is how fitness depends
on the interaction between population density, intrinsic birth/death rates and competitive
ability.

We broadly follow the spirit of MacArthur’s r/K selection scheme in that our model is
intended to account for fundamentally different forms of selection without getting entangled
in the intricacies of particular ecological scenarios. However, rather than building directly on
MacArthur’s formalism and its later extensions using Lotka-Volterra equations to incorpo-
rate competition (“a-selection”) (Gill, 1974; Case and Gilpin, 1974; Joshi et al., 2001), our
model is devised more with Grime’s C/S/R scheme in mind, and represents a quantitative
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formalization of how C/S/R manifests at the level of within-population genotype evolution
(as opposed to phenotypic divergence between species). This choice is motivated in part by
the substantial empirical support for C/S/R-like schemes, and in part by the failings of the
r/K low/high density dichotomy — many growth ability traits will confer advantages at
both low and high densities (more details in the Discussion).

As we will see, a generalized version of the classic lottery model of Chesson and Warner
(1981) is well suited for this purpose. The lottery model gets its name from the way in
which it represents competition: the growth of each type depends on how many territories
it secures from a fixed territorial stock, which is determined by the number of contestants
that it produces relative to the other types in the population weighted by a coefficient for
each type representing competitive ability. This is much simpler than having coefficients for
the pairwise effects of types on each other (e.g. the a coefficients in the generalized Lotka-
Volterra equations), or than modeling resource consumption explicitly (Tilman, 1982). The
classic lottery model breaks down at low absolute abundances at the scale of territorial
contests (section “Mean field approximation”), but this was not important for its original
application to reef fishes, where a huge number of larvae from each type compete to secure
territories each generation (Chesson and Warner, 1981). Here we analytically extend the
classic lottery model to correctly account for low density behavior.

In the section “Model”, we introduce the basic assumptions of our generalized lottery
model. Analytical expressions for the change in genotype abundances over time are intro-
duced in section “Mean field approximation”, with mathematical details relegated to the
Appendices. The following two sections discuss the behavior of rare mutants and our treat-
ment of Grime’s triangle.

Model

We assume that each individual in a population requires its own territory to survive and
reproduce (a site-occupancy model). All territories are identical, and the total number of
territories is 7. Time ¢ advances in discrete iterations, each representing the average time
from birth to reproductive maturity. In iteration ¢, the number of reproductively mature
individuals (henceforth called “adults”) of the i’th genotype is n;(t), the total number of
adults is N(t) = >, n,(t), and the number of unoccupied territories is U(t) =T — N(t).
Each iteration, adults produce m; new offspring (henceforth called “propagules”). We
assume adults cannot be ousted from occupied territories, and only propagules landing on
unoccupied territories are included in m;. Propagules disperse at random, independently
of each other, and without spatial restrictions; each propagule has an equal probability
of landing on any of the U unnocupied territories. Thus, there is no interaction between
propagules (e.g. avoidance of territories crowded with propagules). Loss of propagules during
dispersal is subsumed into m; (m; only counts propagules which go on to contest the territory
they land in). In general, m; will increase with n;, and will also depend on population density
N. For example, if b; is the number of propagules produced per individual from genotype 1,
then m; = b;(1 — N/T)n; would reflect the loss of propagules due to dispersal to occupied
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Figure 2: Each iteration of our lottery model has three main elements.

First, propagules

are produced by adults which are dispersed at random over the unoccupied territories (only
propagules landing on unoccupied territories are shown). Lottery competition then occurs
in each unoccupied territory (only competition in one territory is illustrated): each genotype

has a probability proportional to

bin;c; of securing the territory. Then occupied territories

are freed up by adult mortality. In Eq. (2) and most of the paper, only adults can die (red

crosses), but we will also consider
strategies and Grime’s triangle”).

the case where juveniles die (blue cross; section “Primary
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territories. We assume m; = b;n;, meaning that all propagules land on unoccupied territories
(a form of directed dispersal). This choice is not biologically motivated; it simplifies the
mathematics without seriously restricting the generality of our analysis, since the results
presented here are not sensitive to the specific functional form of m;.

The number of individuals of the i’th genotype landing in any particular territory is
denoted x;. Random dispersal implies that in the limit 7" — oo, with n;/T held fixed, z; is
Poisson distributed with mean territorial propagule density [; = m;/U (this dispersal Poisson
distribution is denoted p;(z;) = ['e~' /x;!). Although T is finite in our model, we assume
that T" and the n; are large enough that x; is Poisson-distributed to a good approximation
(details in Appendix A). Note that the large n;, large T" approximation places no restrictions
on our densities n; /T, but it does preclude consideration of demographic stochasticity when
n; itself is very small (this will be discussed further in Section “Invasion of rare genotypes
and coexistence”).

When multiple propagules land on the same territory, they compete to secure the territory
as they develop. This territorial contest is modeled as a weighted lottery: the probability that
genotype ¢ wins a territory by the next iteration, assuming that at least one of its propagules
is present, is ¢;x;/ > ; ¢, where ¢; is a constant representing relative competitive ability.

The increase in n; over one iteration due to territorial acquisition, A n;, is the sum of
genotype ¢’s victories over all U unoccupied territories. The expected proportion of unoc-
cupied territories with xq,...,xzg of the respective propagules is pi(x1) ...pg(xg) (G is the
number of genotypes present), and the probability of ¢ winning in each of these territories is
cix;/ Zj c;xj. As above, we assume that 7" and the n; are large enough that we can ignore
fluctuations in the proportion of unoccupied territories as well as the number of victories,
which implies

Ayng(t) = Z Zcf;xj 1(21) - pa(ze), (1)
where the sum only includes territories with at least one propagule present.

In addition to propagule birth and competition, occupied territories become unoccupied
due to mortality. For the majority of this manuscript we assume that mortality only occurs in
adults (setting aside the deaths implicit in territorial contest), and at a constant, genotype-
specific per-capita rate d;, so that the overall change in genotype abundances is

Tl XG

This is reasonable approximation in the absence of disturbances; when we come to con-
sider the effects of disturbances (Section “Primary strategies and Grime’s triangle”), we will
incorporate disturbance-induced mortality in competing juveniles (Fig. 2).

Note that the competitive ability coefficients ¢; represent a strictly relative aspect of
fitness in the sense that they only influence population size N indirectly by changing genotype
frequencies; that may in turn change the population mean birth and death rates. This can
be seen by summing Eq. (2) over genotypes to get the change in population size N,

AN =U(1—-e* Zdnz, (3)
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which is independent of ¢; (here L = )" ;1j is the overall propagule density).

Results

Mean Field Approximation

Eq. (2) gives little intuition about the dynamics of density-dependent lottery competition,
since (1) involves an expectation over the random dispersal distributions p;, which depend
on how the n; change over time. We now evaluate this expectation using a “mean field”
approximation; the intuition behind this approximation is as follows.

If the unoccupied territories are saturated with propagules from every genotype (I; > 1
for all genotypes), the fluctuations in the x; are small compared to their means [; (since the z;
are Poisson distributed), and so the composition of propagules in a territory will only rarely
differ appreciably from the mean composition [y, ls,...,lg. Consequently, we can replace x;
with [; in Eq. (1). This gives the classic lottery model (Chesson and Warner, 1981),

c;m; 1 C;
- _ _ — bznzZTa
> M c

where ¢ = ;G /M is the mean propagule competitive ability for a randomly selected
propagule (M = }_.m; is the total number of propagules).

However, in general the [; are not all large, and the z; cannot simply be replaced by their
means in Eq. (1). Indeed, Eq. (4) is nonsensical if [; is sufficiently small: genotype i can
win at most m; territories, yet Eq. (4) demands a fraction ¢;m;/ ), ¢jm; of the unoccupied
territories U, no matter how large U is. The source of this pathological behavior when [; < 1
is that z; = 1 in the few territories where ¢ propagules do land, and so 7’s growth comes
entirely from territories which deviate appreciably from the mean.

Our mean field approximation is similar to the high-/; approximation leading to Eq. (4)
in that we replace the x; with appropriate mean values. The key distinction is that territories
with a single propagule from the focal genotype, whose behavior is critical at low densities,
are handled separately. In place of the requirement of [; > 1 for all ¢, our approximation
only requires that there are no large discrepancies in competitive ability (specifically, that
we do not have ¢;/c; > 1 for any two genotypes; further discussion in section “Discussion”).
We obtain (details in Appendix B)

Apng(t) = U(t) (4)

C
where
R celi(1 — e~ (bmh)) (6)
i = — e—L cL—c;l; ’
¢+ EaeT
and B L
A — c(l—eh) ‘ (1)

1.

1—ehi 1 1—e—L 1—e" ki
1—(141;)e b Clll + L—1; <L 1—(1+L)e L ll 1_(1+li)e*li> Zj;éi CJZJ
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Comparing Eq. (5) to Eq. (4), the classic lottery per-propagule success rate ¢;/¢L has
been replaced by three separate terms. The first, e~%, accounts for propagules which land
alone on unoccupied territories; these territories are won without contest. The second, R;c;/¢
represents competitive victories when the ¢ genotype is a rare invader in a high density
population: from Eq. (6), R; — 0 when the ¢ genotype is abundant (I; > 1), or other
genotypes are collectively rare (L — [; < 1). The third term, A;c;/¢, represents competitive
victories when the i genotype is abundant: A; — 0 if [; < 1. The relative importance of
these three terms varies with both the overall propagule density L and the relative propagule
frequencies [;/L. If I; > 1 for all genotypes, we recover the classic lottery model (only the
A,c; /¢ term remains, and A; — 1/L). Thus, Eq. (5) generalizes the classic lottery model to
account for arbitrary propagule densities for each genotype.

Fig. 3 shows that Eq. (5) (and its components) closely approximate direct simulations of
random dispersal and lottery competition over a wide range of propagule densities (obtained
by varying U). Two genotypes are present, one of which has a c-advantage and is at low
frequency. The growth of the low-frequency genotype relies crucially on the low-density
competition term R;c;/¢, and also to a lesser extent on the high density competition term
Ajc;/e if [y is large enough (Fig. 3b). On the other hand, R;c;/¢ is negligible for the high-
frequency genotype, which depends instead on high density territorial victories (Fig. 3d).

Invasion of rare genotypes and coexistence

In our model (section “Model”), each genotype is defined by three traits: b, ¢ and d. To
determine how these will evolve in a population where they are being modified by mutations,
we need to know whether mutant lineages will grow (or decline) starting from low densities.
In this section we discuss the behavior of rare genotypes predicted by Eq. (5).

Suppose that a population with a single genotype 7 is in equilibrium. Then R; = 0, ¢ = ¢;
and An; = 0, and so Eq. (5) gives

bi (e + 4;) —d; =0, (8)

where A; = (1 — (1+ L)e 1)/L. Now suppose that a new genotype j, which is initially rare,
appears in the population. Then A; < R;, [; = 0 and ¢ = ¢;, and so, from Eq. (5), n; will
increase if

@<6L+&%)—@>0, (9)

where R; ~ (1 — e 1)/ (Z—J + %)

Combining Egs. (8) and (9), we see that j will invade if it is superior in any one of the
three traits, but is otherwise identical to 7. If the new genotype has the same competitive
ability ¢; = ¢;, then R; ~ A; and Egs. (8) and (9) imply that invasion occurs when
bjd; — b;d; > 0, and in particular when b; > b; with d; = d;, or when d; < d; with b; = ;. In
the case that the new genotype has a different competitive ability but the same b; and d;,
Egs. (8) and (9) imply that invasion occurs when R;c;/c; > A;; it is not hard to verify that
this occurs if and only if ¢; > ¢; using the simplified expressions for A; and R; given after

9
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Figure 3: The change in genotype abundances in a density dependent lottery model is closely
approximated by Eq. (5). Ayn;/m; from Eq. (5) (and its separate components) are shown,
along with direct simulations of random dispersal and lottery competition over one iteration
over a range of propagule densities (varied by changing U with the m; fixed). Two genotypes
are present. (a) and (b) show the low-frequency genotype with c-advantage (m;/M = 0.1,
c1 = 1.5), (c) and (d) show the high-frequency predominant genotype (mq/M = 0.9, ¢y = 1).
Simulation points are almost invisible in (c¢) and (d) due to near exact agreement with Eq.

(5).
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Egs. (8) and (9) respectively. Moreover, if j invades in any of these cases, it will eventually
exclude 7, since it is strictly superior.

However, stable coexistence is possible between genotypes that are superior in different
traits. To illustrate, suppose that j is better at securing territories (¢; > ¢;), that ¢ is better
at producing propagules (b; > b;), and that d; = d;. Coexistence occurs if j will invade an i-
dominated population, but i will also invade a j-dominated population (“mutual invasion”).
It is not hard to show that this is possible, since if b; is so large that L > 1 when i is
dominant, and b; is so small that L < 1 when j is dominant, then, combining Eqs. (8) and
(9), we find that ¢ invades j because b; > b;, while j invades i provided that

bjCjRj — szzAz > 0. (10)

Thus, coexistence occurs if ¢;/¢; is large enough. Intuitively, the mechanism for coexistence
is that territorial contests are important in an i-dominated population (high L), ensuring
that the c-specialist j is not excluded, yet territorial contests are irrelevant in a j-dominated
population (low L), ensuring that the b-specialist i is not excluded. Fig. 7?7 shows an example
of this coexistence between b and ¢ specialists.

A similar argument applies for coexistence between high-c¢ and low-d specialists; again
coexistence occurs because the importance of territorial contests declines along with propag-
ule density L as the c-specialist increases in frequency. Mutual invasibility is not possible
between b- and d-specialists (although genotypes with exactly ¢; = ¢; and b;/d; = b;/d;
do not exclude each other — this follows from the fact that all propagules have the same
probability of success when ¢; = ¢; i.e. A, + R, = Aj + R;).

If the rare genotype j arises due to mutation, then its initial low-density behavior is
more complicated than the above invasion analysis suggests. The mutant lineage starts with
one individual n; = 1, and remains at low abundance for many generations after its initial
appearance. During this period, the mutant abundance n; will behave stochastically, and
the deterministic equations (1) and (5) do not apply (section “Model”). However, if n;
becomes large enough, its behavior will become effectively deterministic, and governed by
Eq. (5). For mutants with fitness greater than the population mean fitness, this occurs when
n; is of order 1/s (Desai and Fisher, 2007), where the selection coefficient s is the mutant’s
% —1). Here we do not consider the initial stochastic
behavior of novel mutants, and have restricted our attention to the earliest deterministic
behavior of rare genotypes. In particular, for beneficial mutations we have only considered
the case where s is large enough that deterministic behavior starts when n; < N.

fitness advantage (i.e. s =

Primary strategies and Grime’s triangle

We now discuss which changes in the traits b,¢ and d will be particularly favored under
different environmental conditions. Of specific interest are Grime’s “disturbance”, “stress”
and “ideal” environmental archetypes. To proceed, we need to map these verbal archetypes
to quantitative parameter regimes in our model.

The ideal environmental archetype is characterized by the near-absence of stress and
disturbance. Consequently, d; < 1, whereas b; is potentially much larger than 1. From Eq.

11
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(3), the equilibrium value of L only depends on the ratio of birth and death rates. For one
genotype, L/(1—e %) = b;/d;, and so the propagule density is high L ~ b;/d; > 1. Moreover,
since L = b~ = bil_} T by definition, population density is also high N/T" ~ 1. Thus,
almost every unoccupied territory will be heavily contested.

The disturbance archetype is characterized by unavoidably high extrinsic mortality caused
by physical destruction. Disturbances do not only affect adults as in Eq. (2), but also ju-
veniles in the process of territorial contest. These juvenile deaths can be represented as
a fractional reduction in the number of territories secured. To illustrate, we assume that
the disturbance is equally damaging to adults and juveniles, so that only (1 — d;)A;n;
rather than A n; territories are secured by genotype 7 each iteration. Then, the disturbance
archetype is characterized by d; being close to 1 for all genotypes (almost all adults and
juveniles are killed each iteration). From Eq. (3), the single genotype equilibrium is given
by L/(1 —e L) =d;/[(1 - d;)b;], and since L < 1 and N/T < 1 due to high mortality, we
have L ~ 2(1 — d;/[(1 — d;)b;]). Clearly b; must be exceptionally large to ensure population
persistence. The terms proportional to ¢;/¢ in Eq. (5) are then negligible, and A n; depends
primarily on b;.

The stress archetype is more ambiguous, and has been the subject of an extensive de-
bate in the plant ecology literature (the “Grime-Tilman” debate; Aerts 1999 and references
therein). Stressful environments severely restrict growth and reproduction, so that b < 1
Grime (1974, 1977). Mutations which appreciably improve b will be either non-existent or
extremely unlikely, so b is constrained to remain low. In Grime’s view, under these conditions
the rate at which propagules successfully develop to adulthood cannot appreciably exceed
the mortality rate. This implies b/d =~ 1 in our model, and so the propagule density L is
suppressed to such low levels that there are essentially no territorial contests occurring.

The alternative view is that, while stressful environments imply lower b and support a
lower number of individuals per unit area compared what is attainable in ideal environments,
stressed populations are actually at high densities relative to the environmental carrying
capacity, and are highly competitive (Taylor et al., 1990). In the particular case that stress
is caused by scarcity of consumable resources, it is argued that we should expect intense
resource competition (for empirical support, see Davis et al. 1998). Thus, b may actually
appreciably exceed d under stressful conditions, even though the absolute value of b is small.

The mapping of environmental achetypes to our model parameters is summarized in the
first two rows of Fig. 4. Also shown is the approximate dependence of A, n; on b; and ¢; for
each archetype (third row). These can be used infer the expected direction of evolution for
the traits b, ¢ and d (fourth row) as follows.

As noted in the previous section, if beneficial mutations establish (i.e survive the low-
abundance stochastic regime), they will proceed to grow deterministically according to Eq.
(5). The probability of establishment increases with the mutant fitness advantage, and is
therefore typically on the order of one percent, whereas the fixation of neutral mutations is
exceedingly unlikely (probability of order 1/N). Consequently, the direction of evolutionary
change is determined by which trait changes are both available, and confer an appreciable
benefit, where availability is subject to constraints imposed by the environment.
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Ideal  Disturbance® Stress (G) Stress (T)

Constraints d<1 d=~1 b<1 b<1
Other parameters b > d b>d b~d b>d
Density N/T High Low Low High
A+ni X biCi bz bz biCi
Evolution for b, Tc b, 1d id Te ld

Figure 4: The realization of Grime’s environmental archetypes in our model, as well as the
low-T" variant of the stress archetype. Shown are the mapping to our parameters of each
archetype, the approximate dependence of A n; on b; and ¢;, as well as the corresponding
expected evolutionary changes in b;, ¢; and d;. *Mortality affects both adults and juveniles
in the disturbance archetype, with A, n; replaced by (1 — d;)Ayn; in Eq. (2).

Grime Resource comp.

High Ideal Stress

a

Ideal T™p  ldfc
Density Te
N/T
T

\ 4 .

Low Disturb.

Figure 5: The realization of Grime’s triangle in our model. Schematic representation of the
triangular space bounded by the low/high extremes of stress/disturbance. The low-T" inter-
pretation of stress is also shown. The vertices of the triangles correspond to environmental
archetypes. Selection favors different traits at each vertex, leading to different trait clusters.

For example, in Grime’s version of the stress archetype, L is low, so competition is not
important, and only mutants with greater b or lower d will have an appreciably greater An,.
Mutations in ¢ are effectively neutral, and will rarely fix. However, by definition of the stress
archetype, b is constrained to be small. Thus, while some rare mutations may produce small
improvements in b, it is much more likely that mutations will arise that lower d, making this
the expected direction of evolutionary change for Grime’s stress archetype.

Following Grime’s original argument for a triangular scheme (Grime, 1977), Fig. 5 repre-
sents each environmental archetype schematically as a vertex on a triangular space defined
by perpendicular stress and disturbance axes. The ideal archetype lies at the origin (no stress
or disturbance), while the stress and disturbance archetypes lie at the limits of survival on
their respective axes. The hypotenuse connecting the stress and disturbance endpoints rep-
resents the limits of survival in the presence of a combination of stress and disturbance.
The direction of evolutionary change is different at each vertex, leading to the emergence of
different trait clusters or “primary strategies”.
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How does Fig. 4 compare to empirical analyses of Grime’s C/S/R strategies? In our
comparison we will stick to fishes, corals and plants, for which three-way primary strategy
schemes are well developed (Grime, 1977; Winemiller and Rose, 1992; Darling et al., 2012).
The connection of our model to fish strategies is necessarily more tentative, given that fishes
are motile and not all territorial, and the starting assumption of our model is site-occupancy.

In disturbed environments, we predict evolution for higher b and lower d, but not higher
c. Higher b means higher fecundity, but not necessarily mass propagule production: b repre-
sents only those propagules which sucessfully develop into juveniles in unoccupied territories.
This is broadly consistent with the ruderal primary strategy. Plant ruderals devote a large
proportion of their productivity to seed production Grime (1977), whereas the analogous
“opportunistic” strategists in fishes have large intrinsic growth rates (Winemiller and Rose,
1992). In corals, a distinguishing feature of the ruderal cluster is brood spawning (rather
than broadcast spawning). This corresponds to higher parental investment and lower overall
propagule production, but potentially also higher b at low densities, since broadcast spawn-
ers are vulnerable to a powerful Allee effect at the egg fertilization stage (Knowlton, 2001).
Lower d could be achieved by improved individual resistance to physical destruction, but it is
hard to reduce mortality in the face of severe disturbances. Given this constraint, shortening
the time to reproductive maturity (the iteration time in our model) is an effective way of
reducing the chance of death per iteration d. An exceptionally short life cycle is probably the
most defining characteristic of ruderals (Grime, 1977; Winemiller and Rose, 1992; Darling
et al., 2012).

In stressful environments, we predict evolution for lower d, and also for higher ¢ in
the low-T' interpretation of the stress archetype. Lowering d is obviously essential when
b < 1, and stress tolerant plants and corals have long life spans, allowing for long intervals
between successful recruitments (and episodic broadcast spawning in corals). For fishes,
the “equilibrium” strategy is the analogue of Grime’s stress tolerator. This strategy is
associated with resource limitation, and is also characterized by long life span, as well as
high parental investment in tiny broods. This may reflect a high-c strategy in the face of
intense competition for severely limited resources (the low-7" interpretation).

In ideal environments, we predict evolution for higher b and ¢, but not lower d. In
plants and corals, a key mechanism for winning territorial contests is rapidly outgrowing and
“shading out” competitors; not surprisingly, rapid individual growth is a defining feature of
the competitor trait cluster (Grime, 1977; Darling et al., 2012). Evolution for higher b under
high-density, competitive conditions may seem counter-intuitive. Neither particularly high
nor low b have been associated with the competitor strategy in plants and corals. However,
for fishes, the analogous “periodic” strategy is characterized by enormous spawn sizes as
well as rapid development (Winemiller and Rose, 1992; Winemiller et al., 2015), suggesting
a strategy of ensuring that many propagules actually end up contesting areas favorable for
development (higher b). The evolution of b in ideal environments will be discussed further
in the Discussion.
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Discussion

Unlike Grime’s classic ternary plot (Grime, 1974), which represents anti-correlations between
traits relevant for success in different environmental archetypes, our realization of Grime’s
triangle (Fig. 4) refers instead to the direction of adaptive trait evolution under different
regimes of stress and disturbance. As discussed in section “Primary strategies and Grime’s
triangle”, over time our predicted trait evolution should lead to trait values consistent with
Grime’s scheme. In making these predictions, we have made no reference to any kind of
trade-offs or pleitropy, even though trade-offs are often invoked to explain primary strategy
schemes (MacArthur and Wilson, 1967; Winemiller and Rose, 1992; Aerts, 1999). Thus,
while trade-offs may amplify specialization, they are not necessary for it. As an example of a
trade-off, corals which rapidly out-shade neighbors have a tall, branched morphology which
is vulnerable to disturbances, and so, all else being equal, ideal environment c-strategists will
suffer higher mortality from disturbances. Fig. 5 gives the same conclusion without invoking
trade-offs; mutations which reduce disturbance vulnerability are essentially neutral under
ideal conditions, leading to no improvements in mortality from disturbances, whereas ¢ will
tend to increase over time.

Our prediction of evolution for higher b in ideal environments is counter to the expecta-
tions of MacArthur’s /K dichotomy (MacArthur and Wilson, 1967) since b is closely related
to the maximal, low-density growth rate r = b—d, and ideal environments support high pop-
ulation densities which should be subject to “K-selection”. However, in the Introduction, we
noted that the r-K dichotomy is not consistent with empirical studies showing that maximal
growth rate and saturation density (measured by abundance) are positively correlated, both
between species/strains (Luckinbill, 1979; Kuno, 1991; Hendriks et al., 2005; Fitzsimmons
et al., 2010), and as a result of experimental evolution (Luckinbill, 1978, 1979). From the
perspective of our model, these correlations are not surprising since the saturation density,
which is determined by a balance between births and deaths, increases with . Our higher-
b prediction simply reflects the fact that, all else being equal, producing more propagules
is always advantageous, regardless of population density, a fact lost in the simple logistic
interpretation of the r/K scheme.

Confusingly, the term “K-selection” has sometimes been used to refer generally to selec-
tion at high density; this encompasses both selection for higher saturation density — “K” in
the logistic equation — as well as selection for competitive ability. To avoid this ambiguity,
the latter form of selection has been called “a-selection” after the competition coefficients in
the Lotka-Volterra equation (Gill, 1974; Case and Gilpin, 1974; Joshi et al., 2001). Unlike
saturation density, there is support for a negative relationship between competitive success at
high densities and maximal growth rate (Luckinbill, 1979); this could be driven by a tradeoff
between individual size and reproductive rate. However, competitive success as measured
by « (i.e. the per-capita effect of one genotype on another genotype’s growth rate) is only
partly determined by individual competitive ability — in the presence of age-structure and
territoriality, it also includes the ability of each genotype to produce contestants i.e. b in our
model. In contrast, our c is strictly competitive ability only — as such, changes in ¢ do not
directly affect population density (section “Model”), nor the ability to produce contestants.

15


https://doi.org/10.1101/102087
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/102087; this version posted January 21, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

K-selection in the sense of selection for a greater environmental carrying capacity for given
birth and death rates, sometimes referred to as “efficiency” (MacArthur and Wilson, 1967),
would be represented in our model by smaller individual territorial requirements. To a first
approximation, two co-occurring genotypes which differ by a small amount in their territorial
requirements only should have the same fitness since the costs or benefits of a change in the
amount of unocupied territory is shared equally among genotypes via the propagule density
L. The situation is more complicated if those genotypes differ in multiple traits, and when
the differences in territorial requirements become large enough that territorial contests can
occur on different scales. We leave these complications for future work.

The importance of b in securing territories is a general feature of lottery competition.
Indeed, as can be seen from Eq. (4), in the classic lottery model b; and ¢; are essentially
equivalent in that only the products b;c; matter (Chesson and Warner, 1981). This is no
longer the case in our density- and frequency-dependent generalization of the classic lottery
model, where stable co-existence is possible between b and ¢ strategists. Given that the classic
lottery model was specifically developed for studying species co-existence questions, this may
seem surprising, but the focus in that case was on the role of environmental fluctuations in
promoting co-existence rather than coexistence in a single, stable environment (Chesson and
Warner, 1981). It is not clear whether correctly accounting for the behavior of species with
low density would significantly alter the conclusions of Chesson and Warner (1981), but, in
any case, species co-existence questions are beyond the scope of this manuscript.

Rather, while our model can be applied to questions at an inter-species level (e.g. ecologi-
cal invasions), our focus here is on the evolution of genotype frequencies within a population.
Our ability to describe evolutionary processes is only possible because the model accounts
for the growth of mutants from low densities. Given this focus, our assumption that there
are no large ¢ discrepancies (section “Mean field approximation”) amounts to a restriction
on the amount of genetic variation in ¢ that will be sustained in the population. Since
beneficial mutation effect sizes will typically not be much larger than a few percent, large ¢
discrepancies can only arise if the mutation rate is extremely large, and so the assumption
will not be violated in most cases. However, this restriction could become important when
looking at species interactions rather than genotype evolution.

In Fig. 6 we compare our model with some of the other models and schemes touched
upon here. In a sense this comparison is unfair: for instance, Grime’s scheme was developed
for an entirely different purpose (species classification by traits). As such, Fig. 6 is not
exhaustive and should be read more as a summary of our model’s purpose. Like MacArthur’s
r/K scheme, our model is motivated by the need to expand the treatment of selection in
population genetics (MacArthur, 1962), i.e. to incorporate crucial ecological factors in our
most genetically realistic models of evolution. Thus, viewing evolutionary ecology (Kokko
and Lpez-Sepulcre, 2007; Pelletier et al., 2009; Schoener, 2011) as a spectrum ranging from
evolution-only to ecology-only, our model lies close to the understudied evolution-only end
of the spectrum. By comparison, more familiar approaches to evolutionary ecology such as
adaptive dynamics — essentially ecology coupled with mutant invasion (Diekmann et al.,
2004) — lie close to the ecology-only end of the spectrum.
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Formal Ecologically Empirically- Generality Genetically

model? meaning-  grounded  beyond flexible?
ful? trait specific
scheme? scenarios?

Density-dependent lottery ¢ v v v v
MacArthur’s r/K + « v v X* v v
Grime’s C/S/R X v v v NA
Traditional pop. gen. v X X 4 v
Eco-evo:

Adaptive dynamics v v v VR X

Brute force simulation v v NA X v

Figure 6: Comparison of our density-dependent lottery model with related models and
schemes in ecology and evolutionary biology. *MacArthur’s r- and K-, as well as « se-
lection, were all derived theoretically. Applications to traits came later, and with mixed
success (see “Introduction” and “Discussion”). **In practice, most of the adaptive dynam-
ics literature focuses on specific eco-evolutionary outcomes such as evolutionary “branching”
(Geritz et al., 1997) or mutualisms (Ferriere et al., 2002), but in principle it can be applied
with any fitness model including our density-dependent lottery.

In our view, our model has two major limitations as a general-purpose model of density-
dependent selection: a reliance on interference competition for durable resources (territori-
ality), and the restriction of competition to juveniles (lottery recruitment to adulthood). In
some respects this is the complement of resource competition models, which restrict their
attention to exploitation competition, typically without age structure (Tilman, 1982). In
the particular case that resources are spatially localized (e.g. due to restricted movement
through soils), then resource competition and territorial acquisition effectively coincide, and
in principle resource competition could be represented by a competitive ability ¢ (or con-
versely, ¢ should be derivable from resource competition). The situation is more complicated
if the resources are well-mixed, since, in general, resource levels then need to be explicitly
tracked. It seems plausible that explicit resource tracking is not necessary when the focus is
on the evolution of similar genotypes rather than the stable co-existence of widely differing
species. We are not aware of any attempts to delineate conditions under which explicit re-
source tracking is unnecessary even if it is assumed that community structure is ultimately
determined by competition for consumable resources. More work is needed connecting re-
source competition models to the density-dependent selection literature, since most of the
existing work is focused on the narrower Grime-Tilman-debate issue of resolving the role
of competition at different levels of resource availability (Aerts, 1999; Davis et al., 1998;
Tilman, 2007).

On the other hand, our model does remarkably well in capturing apparently general fea-
tures of selection under different environmental conditions using only three trait parameters:
b, c and d. The clean separation of a strictly-relative ¢ parameter is particularly useful from
an evolutionary genetics perspective, essentially embedding a zero-sum fitness trait within
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a non-zero-sum fitness model. This could have interesting applications for modeling the
impacts of intra-specific competition on species extinction, for example due to clonal inter-
ference (Gerrish and Lenski, 1998; Desai and Fisher, 2007) between c-strategists on the one
hand, and 0- and d- strategists on the other.
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Appendix A: Poisson approximation

For each genotype’s dispersal, the counts of propagules across unnocupied territories follows
a multinomial distribution with equal probabilities of landing in each territory. Thus, the x;
in different territories are not independent random variables. However, for sufficiently large
T, holding n;/T fixed, the Poisson limit theorem implies that this multinomial distribution
for the x; accross territories is closely approximated by a product of independent Poisson
distributions for each territory, each with rate parameter [;. Here we have used the fact that
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large T implies large U except in the biologically uninteresting case that there is vanishing
population turnover d; ~ 1/T.

Under the Poisson approximation, the total number of genotype i propagules > z;
(summed over unoccupied territories) will deviate about its mean value m;. Since the coef-
ficient of variation of ) z; is proportional to 1/,/m;, these fluctuations are negligible unless
m; is very small (say of order 102 or less). These fluctuations in m; could be regarded as a
feature rather than a flaw since having m; be exactly constant per generation (for given b;
and n;) is biologically unrealistic. In the canonical model of genetic drift, the Wright-Fisher
model, the number of offspring per genotype fluctuates from generation to generation and
is approximately Poisson distributed. Nevertheless, for simplicity and ease of comparison
with the classic lottery model, we ignore fluctuations in m; and only account for Poisson
fluctuations in the number of propagules landing in each territory.

Appendix B: Derivation of growth equation

We separate the right hand side of Eq. (1) into three components A, n; = Ayn;+A,n;+Aqn;
which vary in relative magnitude depending on the propagule densities /;. Following the
notation in the main text, the Poisson distributions for the z; (or some subset of the z;)
will be denoted p, and we use P as a general shorthand for the probability of particular
outcomes.

Growth without competition

The first component, A,n;, accounts for territories where only one focal propagule is present
x; =1 and z; = 0 for j # ¢ (u stands for “uncontested”). The proportion of territories where
this occurs is [,e~", and so

Ayn; = Ulie ™t = me™L. (11)

Competition when rare

The second component, A,n;, accounts for territories where a single focal propagule is present
along with at least one non-focal propagule (r stands for “rare”) i.e. z; = 1 and X; > 1
where X; = > 40 T 18 the number of nonfocal propagules. The number of territories where

this occurs is Up;(1)P(X; > 1) = bnge (1 — e~E=4)). Thus

Arni - mie_li(l - e_(L_li)) G ) (12)
G+ Zj;éi CjLj P

where (); denotes the expectation with respect to p, and p is the probability distribution

of nonfocal propagule abundances x; after dispersal, in those territories where exactly one
focal propagule, and at least one non-focal propagule, landed.
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We will show that, with respect to p, the standard deviation O'p(zj £i ¢jj), is much
smaller than (3, cjxj) Then z; can be replaced by its mean in the last term in Eq. (12),

C; C;
~ ) (13)
<Ci + 24 G >]3 Ci+ 2052 Ci{Ti)p

We first calculate (z;);. Let X = > x; denote the total number of propagules in a
territory and x; = (x1,...,2;_1,%is1 ..., 2¢c) denote the vector of non-focal abundances, so
that p(x;) = p1(z1) ... pic1(zi—1)pic1(zit1) - . . po(xg). Then, p can be written as

P(xi) = p(xi| X > 2,2, = 1)

B P(X >2)

1—(1JlrL)eLZP (x| X; = X — 1), (14)

and so

=1 1+Le =Y P(X)Y p(xilXi = X — ). (15)

The inner sum over x; is the mean number of propagules of a given nonfocal type j that will
be found in a territory which received X — 1 nonfocal propagules in total, which is equal to
(X —1). Thus,

L—1;
(o5} = —— LSS pxx - 1)
Ljlp = 1—(1+L)etL—-1 P
lj L—1—|—6_L

_ 16
1—(1+Lyet L—1 (16)

where the last line follows from > 5_, P(X)(X—1) =Y %_, P(X)(X-1)=>"%_, P(X)X—
S5, P(X).

For analyzing the relative fluctuations in ) 41 Ci%5, Eq. (16) is unnecessarily complicated.
We instead use the following approximation. Rather than evaluating the situation in each

territory after dispersal as above, we replace p by ¢, defined as the x; Poisson dispersal
probabilities conditional on X; > 1, independently of the outcome of ;. This gives (z;); =
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(2)p/C =1;/C,

1 12
5@?)]; é
1 12
= 5(132' +1;) — é
2 1 l
_ (12 i
=2 (1 o) + 4 (17)

and

o4(zj, 71) = (T78)g — (75)3(Tk)g
1 Ll
= 5<xjxk>p - é_s

:%(1-%), (18)

where C' =1 — e~ (L=k) and j # k. The distribution § only approximates the situation after
dispersal, since knowing that one focal genotype is among the propagules present restricts
the possible outcomes for the z;, so that the x; cannot strictly be treated as independent
of x;. This seemingly minor distinction has meaningful consequences. To illustrate, suppose
that the focal genotype is rare and the propagule density is high (I; ~ L > 1). Then Eq.
(16) correctly predicts that there are on average L — 1 nonfocal propagules (z;); ~ L — 1,
with the focal propagule correctly excluded, whereas ¢ predicts one extra (r;); ~ L. As a
result, ¢ gives pathological behavior for rare invaders (they have a rarity disadvantage), but
its moments are quantitatively similar enough to those of p that it is sufficient for analyzing
the relative fluctuations in » ., ¢;z;.
Decomposing the variance in Z#i CiT5,

U;(Z cjxj) = Z [c?ag(a:j) +2 chckaq(:pj, xk)] , (19)

i i k>j

and using the fact that o4(x;, z5) and the first term in Eq. (17) are negative because C' < 1,
we obtain an upper bound on the relative fluctuations in 41 CiT5

(D52 G%5)
<Zj7£i CjT;) Zj;ﬁi ¢l
Without loss of generality, we restrict attention to the case that the total nonfocal density

L—1; is of order 1 or larger (otherwise A,n; does not contribute significantly to A, n; because
A,n; is proportional to C' = 1 — e~ (F7h)),

(20)
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Then, when at least some of the nonfocal propagule densities are large {; > 1, the RHS
of Eq. (20) is < 1, as desired. This is also the case if none of the nonfocal genotype densities
are large and the ¢; are all of similar magnitude (their ratios are of order one); the worst case
scenario occurs when L —[; ~ O(1), in which case the negative covariances (Eq. (18)) which
were neglected in the RHS of Eq. (20) significantly reduce the overall variance o3(3°; ¢jz;).

However, the relative fluctuations in > i Ci; can be large if some of the ¢; are much
larger than the others. Specifically, in the presence of a rare, extremely strong competitor
(¢;l; > ¢yl for all other nonfocal genotypes j’, and [; < 1), then the RHS of Eq. (20) can
be large and we cannot make the replacement Eq. (13).

Substituting Eqgs. (13) and (16) into Eq. (12), we obtain

C

where R; is defined in Eq. (6).

Competition when abundant

The final contribution, A,n;, accounts for territories where two or more focal propagules are
present (a stands for “abundant”). Similarly to Eq. (12), we have

Agn; = U(1 — (1 +1)eb) < citi > (22)

> G
where p is the probability distribution of both focal and nonfocal propagaule abundances

after dispersal in those territories where at least two focal propagules landed.
Again, we show that the relative fluctuations in ) ¢;z; are much smaller than 1 (with

respect to p), so that,
CiZ; ~ Ci<flfi>ﬁ (23)
Zj CjLj P Zj ci{x;)p

Following a similar procedure as for A,n;, where the vector of propagule abundances is
denoted x, the mean focal genotype abundance is,

(wi)p = Y wip(x[a; > 2)
= szp(%m > 2)

1
= — Y plzi)z;
T= (T h)e 2

1 — el

1— (1+1)e

(24)
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For nonfocal genotypes j # i, we have

(os)p = D wip(xle > 2)
=Y P(X|x; >2))  zp(x|z; > 2, X)

= P(X|z: > 2)) plale: >2,X)> ap(x|Xi = X — ;)

(X — ;)

D P(Xlri 2 2) ) p(wles 22, X) 5

T4

L
_L—li

lj 1-— €_L 1-— (Z_lZ
_ I 1, . 25
L—li( 1— (1t L)t 1—(1—i—li)eli) (25)

To calculate the relative fluctuations in Zj 4i CjTj, We use a similar approximation as
for A,n;: p is approximated by ¢, defined as the x dispersal probabilities in a territory
conditional on z; > 2 (that is, treating the z; as independent of ;). All covariances between
nonfocal genotypes are now zero, so that o*(3_ ¢;z;) = Y c;o*(x;), where 0*(z;) = I; for
j # i. The expression for o?(x;) is more complicated, but in the relevant regime where
p(x; = 0) = 0 (since otherwise D > 1 and An, is negligible), then

2(a:-)~ﬁ - +£ (26)
%\t = D) D

where D =1 — (1 +[;)e” ", analogous to Eq. (17), and

ZP(X’% >2)X — ZP(%’% > 2)x;
X T;

1/2
oq(X-cmy) (Z#i Gl + Cﬁaé(xi))
(> ¢jzy) >l tali/D

Similarly to Eq. (20), the RHS of (27) will not be < 1 in the presence of a rare, extremely
strong competitor. When this is not the case, then since /; must be of order 1 or larger for
A,n to make an appreciable contribution to Ayn;, the RHS of Eq. (27) is < 1 as desired.

Combining Egs. (22) and (23), we obtain

(27)

&

Aani = miAifa (28)
C

where A; is defined in Eq. (7).
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