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Abstract

We develop a new tree-free phylodynamic method to estimate the reproduction
number (RO) of a pathogen from large numbers of sequences of a pathogen. It is
based on the convergence of the cherry-to-tip ratio (CTR) to a constant depending on
RO in supercritical branching trees. It is a tree-free method because tree reconstruction
is not required: the number of cherries and the CTR is estimated directly from the
sequences using the new computational method Cherries Without Tree (CWT). With
simulations, we compare CWT to other methods currently in use. We use the new
inference method to estimate RO from simulated sequences and discuss its accuracy.
We explore the potential bias arising from sub-sampling.

1 Introduction

Phylogenetic trees derived from pathogen sequence data are used to describe the
spreading patterns of the pathogen, in a growing field known as phylodynamics [1, 2].
The underlying assumption behind phylodynamics is that genetic variability contains
information about the population’s recent ancestry and demographics, and in the case
of pathogens, this information can help to help curtail the spread of infectious disease.
The basic reproduction number Ry is a fundamental epidemiological parameter:
the average number of secondary infections an infectious individual causes over the
infectious period, in a fully susceptible population. Estimating the basic reproductive
number can be challenging, and typically requires simplifying assumptions together
with knowledge of the duration of infectiousness, the epidemic growth curve, the
number of susceptibles at equilibrium, the average age at infection at equilibrium, or
a closed population [3]. This is particularly difficult for pathogens whose infectious
period is long and variable, and/or for which case identification is challenging.
There are several approaches to estimating Ry using genetic data, largely based on
Bayesian inference. These include inferring the parameters of a birth-death process
[4, 5, 6], coalescent methods based on Bayesian skyrides or epidemic coalescents, [7, 8]
and fitting epidemiological models to phylogenetic trees to estimate epidemiological
parameters [9, 10, 11]. Indeed, part of the motivation for phylodynamics is that there
are important pathogens for which we have the opportunity to gather large numbers
of genetic sequences but we do not have reliable estimates of epidemic parameters
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such as Ro; these range from the common cold to tuberculosis. In practice, as real
populations are rarely fully susceptible, methods based on genetic data estimate an
effective reproduction number R rather than strictly Ro.

To date, all approaches are computationally intensive and are unlikely, even with
advanced MCMC techniques, to scale well to large datasets. This is exacerbated by
the fact that most approaches either require or infer a timed phylogenetic tree, a task
that in itself is very challenging for large numbers of sequences. Furthermore, if un-
derlying parameters are the central quantity of interest, proceeding via phylogenetic
trees or transmission trees is not always desirable, as the number of possible trees and
the difficulty of computing relevant likelihoods is a barrier.

Here we present a tree-free way to estimate R from large numbers of sequences.
It is based on the fact that the number of cherries is closely linked to the basic repro-
duction number [12]. The number of cherries is a simple shape statistic that does not
depend on deep branching, timing or other complex questions in phylogenetic infer-
ence. It can be used to infer Ry from sequence data where there are large numbers
of sequences. In addition, it is not necessary to reconstruct the whole tree to obtain
the number of cherries and to infer Ry. Indeed, tree reconstruction methods carry
underlying modelling assumptions and could cause "shape bias" [13]. Our technique
estimates the number of cherries directly from the genetic data, without tree recon-
struction, and infers Rp from the numbers of cherries. (If sequences are derived from
populations that are partially immune the method infers R). We test the approach on
simulated trees and sequences, apply it to estimate the reproduction number of the
2009 HIN1 epidemic and of S. typhi, and explore the robustness of our approach to
partial sampling.

2 Methods

2.1 Cherries and R,

Many approaches in phylodynamics work from the assumption that information about
transmission is encoded in the branching events in phylogenetic trees. When hosts

carry limited pathogen genetic diversity, branching events in timed phylogenetic trees

can be used as a model for transmission events in the host population (see for exam-

ple [14, 2, 15]). Even when there is pathogen diversity within hosts, it is often the

case that inferred transmission events are close to phylogenetic branching events [16].

Our approach uses the simplifying assumption that branching events in the outbreak

process correspond to branching events in the genealogical tree of the pathogen.

The ratio between the number of cherries and the number of tips converges in
distribution to a single number, depending on Ry, as the number of tips approaches
infinity; the form of this relationship depends on how infectivity changes over the
course of infection. The link between the basic reproduction number and phyloge-
netic or genomic data is found using Crump-Mode-Jagers branching processes to
model outbreak trees as in [12]. In this setting, each tip corresponds to an individ-
ual’s death/removal and each internal node corresponds to a birth/infection event.
A cherry is a configuration made of two tips joined together [12, 17, 18]. We recently
found a close link between the number of cherries in branching trees and R [12]; in
Crump-Mode-Jagers branching processes, the cherry-to-tip ratio (CTR) converges al-
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CHERRIES "
SEQUENCES
TATAGGGATACGGTATA
AATAAGTCGGATAAATA Estimated RO

with confidence interval

Normal
distribution

Observed CTR

Figure 1: Conceptual figure describing the steps of the Ry inference. A cherry is any
sub-tree with two tips (illustrated in pink).

most surely to a constant as the tree grows. This constant depends on Ryp,or R in the
case that depletion of susceptibles affects the offspring distribution. (For the remain-
der of this work we will refer to Rg, with the understanding that the method estimates
the mean of the offspring distribution in an underlying branching process, equivalent
to either Ry or R depending on whether depletion of susceptibles has occurred in
the relevant populations; this caveat applies to other sequence-based phylodynamic
methods).

In the homogeneous case, where births and deaths occur at constant rates, the
cherry-to-tip ratio reduces to % for large trees. Here, we use this relationship to
develop a method to estimate Rg. The approach is summarised in Figure 1. The point

estimate for R is:
CTR

- 1-3CTR’ @
In the constant rate model, infections/births and removals/deaths both occur at a
constant rate, but this can be generalised using knowledge of the relationship between
the number of cherries in systems with non-constant rates and Ry [12]; the specific
form of the relationship between Ry and the CTR depends on the natural history of
infection.

The distribution of the CTR around its limit converges to a normal distribution
(Supporting Information), and the variance decreases, approaching 0 as the number
of tips grows. We use the limiting normal distribution to find error bound on the
inference of Ry using the numbers of cherries:

Ro

1 1
CTR — ;1= CTR+ ;1
1—3<CTR—ﬁ> 1—3(CTR+m>
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2.2 Simulations

Testing the Cherries Without Trees algorithm. The tree simulations were carried out in R
[19] with function pbtree of package phytools [20]; the parameter n was set at 150,
700, 1675, to provide trees with 500, 2000, and 5000 tips on average respectively. The
parameters b and d for birth and death rates were 1.5 and 1 respectively, correspond-
ing to an Rg value of 1.5. For each group, 25 trees were simulated. The simulated
sequences were obtained with the function SimSeq from the R package phangorn [21]
and had 20000 characters, the rate parameter was 0.03. These simulations underly
Figures 2 and 3.

Testing the confidence interval bounds (Section 3.3). The tree simulations were carried
out similarly as in the previous paragraph: in R [19] with function pbtree of package
phytools [20], but with the parameter n was set at 700, 1675, and 3350 so that, on
average, trees had 2000, 5000, and 10000 tips respectively. The parameters b and d
for birth and death rates were 1.5 and 1 respectively, corresponding to an R¢ value
of 1.5. For each group, 25 trees were simulated. Sequences were simulated using the
function SimSeq from the R package phangorn [21] and had 20000 characters, the rate
parameter was 0.03. The algorithm CWT was used to estimate the number of cherries
on these sequences and provide R estimates.

Testing the effects of sampling on the CTR (Section 3.5). Using a modified version of
function pbtree [19, 20] built for this purpose, we simulated three large trees (about
half a million tips) and Rg 1.5, 2, and 2.5 respectively. The modification of pbtree
was necessary to speed up the computing time, and consists two phases: simulation
of a first tree with n currently alive tips, and simulation of further n trees cut off at
a predefined time t. Function drop.tip [19, 22] was used to perform independent
prunings of the trees at different sampling levels (ten pruning per level).

3 Results

3.1 Rj from the cherry-to-tip ratio in reconstructed trees

The cherry-to-tip ratio converges to the value in Eq. 1, as the trees used grow larger
(see Figure S1), following the theoretical result that the variance decreases to 0. In-
ference approaches based on the number of cherries are therefore applicable to large
datasets with thousands of sequences, whereas established phylodynamic approaches
are well-suited to datasets with at most hundreds of sequences.

We considered a publicly available tree with 51169 tips derived from Salmonella
typhi sequences [23]. The number of cherries of the whole tree is 15323, corresponding
to an Rg estimate of 2.95, with bounds [2.57, 3.44] from Eq. (2). This is consistent
with other studies: an Ry of 2.8 was estimated in Vellore (India) [24]; a value of 3.4
was found for the reproduction number from an untreated clinical infection in [25].
However in Dhaka, Bangladesh, Ry for typhoid fever was estimated at 7 [24] (but not
all cases of S. typhi cause typhoid fever).

The reconstructed tree contains unnecessary information for the R estimation us-
ing equations (1) and (2) because these relationships only require the number of cher-
ries. We developed a technique that can estimate this number directly from sequence
data.
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3.2 A tree-free technique to estimate cherries

Although the formulas and derivations of this paper are based on phylogenetic tree
analysis, the central formula of equation (1) only requires the CTR for the estimation
of Roy. This is an alternative starting point for Equation (1) to infer Ry. We have devel-
oped an algorithm to find the cherry-to-tip ratio without first inferring a phylogenetic
tree, and we refer to the technique as CWT for Cherries Without Trees.

Case | quartet characteristic CWT update

t excluded

ms—m, f < f

m remains a good/bad candi-
date as before

L (em),(f,D) | [cf +mE—cF—mf|

o | tis the new candidate
2 ((c,8), (f,m)) ‘cf—l—ﬁ—m—ft‘ m<—t, f<m
the new m is a good candidate

o o t excluded
3 ((c, f), (t,m)) (E+fm—m—ft( mm, f+ f
m is a bad candidate

Table 1: Quartet selection performed in the tree-free algorithm to estimate the number
of cherries from sequences. The labels ¢, m, f, and t correspond to the sequences of the
quartet. The over line symbol Xy correspond to the genetic distance between x and y. If
the distance measure considered is “tree like”, then only one of the characteristics equals
zero, and it corresponds to the correct case. However genetic distances are not tree like
in general, and none of the characteristic is exactly zero. Here we use the Jukes Cantor
distance [26] and pick the case corresponding to the minimum. If the minimum is larger
than 0.2 times any other, the flag in the algorithm is set to 1. This occurs in quartets
in which the internal branch length is much shorter than the 4 pendant lengths, and is
related to long branch attraction. To address this we resample f (from the previously-
tested f nodes, then previously-excluded m’s and t’s, because we know that these do not
form a cherry with c) until the three cases can be distinguished. We chose the 0.2 threshold
empirically based on performance.

Because the choice of the root itself often carries uncertainty while adding/deleting
at most one cherry, we navigate the sequences in an unrooted manner. First, we con-
sider a tip ¢ and seek the tip, if any, that forms a cherry with c. CWT is based on
a quartet selection. Given any four sequences, there are only three unrooted quar-
tets whose tips correspond to the given sequences. We choose one of these quartets
as the “right” one, with a consistent method previously determined (parsimony, dis-
tance methods, maximum likelihood, etc). Once the quartet is selected, only one tip
among the three could potentially form a cherry with ¢ in the whole tree, namely the
unique tip in the best quartet that is in a cherry with ¢; we name it m. The other
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Figure 2: The estimated CTR using the algorithm CWT (blue) is compared to the real CTR
(green line), the estimation using NJ (orange), and the estimation using FastTree (red).
The tree simulation were carried out in R [19] with function pbtree of package phytools
[20]; the parameter n was set at 150, 700, 1675, to provide trees with 500, 2000, and 5000
tips on average respectively. The parameters b and d for birth and death rates were 1.5
and 1 respectively, corresponding to an Rg value of 1.5. For each group, 25 trees were
simulated. The simulated sequences were obtained with the function SimSeq from the R
package phangorn [21] and had 20000 characters, the rate parameter was 0.03.

two sequences cannot form a cherry with c (because m is a better candidate), and we
name one of them f (for "false") and discard the other. This is the initialisation phase,
where we identified a potential candidate 1, and a particular wrong candidate f. The
algorithm then applies the quartet selection systematically to all the remaining tips
and updates m, f and t (refer to the pseudo-code for more details). Those sequences
for which there is an m that is a good cherry candidate at the end of this testing are
tips that are in an inferred cherry. Importantly, the accuracy of CWT depends on the
accuracy of the quartet selection mechanism: if the quartet selection always returns
the right quartet, then CWT returns the exact number of cherries. The quartet is the
minimal configuration to investigate because with three unrooted tips, a cherry is not
well defined.

Note that the candidate m can have status good or bad. If the quartet at the bottom
in Table 1 is chosen, neither m, f, or t can form a cherry with c in the whole tree. But
m is kept as a candidate with status bad to inform new iterations of the algorithm. It
is not redundant to loop t among all the sequences, even if some of them are known
to form other cherries (saving information from previous loops). If we discard the
known cherries from the loop, new cherries would be falsely detected. For instance
consider a caterpillar tree, i.e. a tree with a single cherry, and delete that cherry. A
new one would automatically appear, and so on.

The accuracy of CWT cannot be tested on real genetic data because the true num-
ber of cherries is unknown; we tested the approach using simulated sequences evolved
on known trees (with known Ry; see Methods). We ran CWT as well as inferring trees
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Algorithm CWT

1: function SELECT.QUARTET(c, m, f, t)

2 refer to table 1

3 return case,flag

4: function INITIALISE(c,sequences)

5 find any m, f,t € sequences such that the quartet ¢, m, f, t realises case 1 of figure

1

6: return m, f,t

7: function CHECK.SEQUENCE(c,sequences)

8: m, f,t <= INITIALISE(c,sequences)

9: save f in a vector past.f
10: m.good.candidate <— TRUE
11: sequences.to.test < sequences\{c,m, f,t}
12: fort € sequences.to.test do
13: case,flag <— SELECT.QUARTET(c, m, f, t)
14: while flag do
15: replace f with another sequence from past. f first, then sequences.to.test
16: case,flag < SELECT.QUARTET(c, m, f, t)
17: switch case do
18: case 1
19: m < m, f < f,m.good.candidate <— m.good.candidate
20: case 2
21: m <—t, f < m,m.good.candidate < TRUE
22: case 3
23: m<—m, f < f,m.good.candidate - FALSE
24: save f in vector past.f
25: return m.good.candidate

26: procedure CWT(sequences)
27 tips.in.a.cherry < 0

28: Parallelisation: split the following loop in the number of available cores

29: for c in sequences do

30: tips.in.a.cherry <— tips.in.a.cherry+CHECK.SEQUENCE(c, sequences)
cherry.number - tips.in.a.cherry/2

31: return cherry.number

using neighbour-joining (NJ) [27] and FastTree [28, 29], and Figure 2 illustrates the
results. We used a t test to compare the relative error in CTR values to the null hy-
pothesis of zero bias (ie mean relative error equals zero). The CWT algorithm slightly
(and significantly) underestimates the cherry-to-tip ratio, with a mean relative error
of -0.011, 95% confidence interval at [-0.019, -0.003], and a p-value of 0.0051 in the
t-test. NJ consistently overestimates the CTR with a relative error of 0.221, 95% con-
fidence interval at [0.214,0.228], and a p-value < 10" indicating very significant
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departure from a mean of 0. FastTree also overestimates the CTR, with relative error
0.058, a confidence interval of [0.053, 0.062] and a p-value < 10~ (also significantly
away from 0). While CWT showed significant bias, the bias is small and the p-value
(0.0051) is comparatively high. Figure 2 compares the estimated and true CTR values
for neighbour-joining, FastTree and our CWT algorithm and illustrates that CWT is
on average comparable to FastTree and much more accurate than neighbour joining
in estimating the number of cherries.

For each of the n tips, CWT loops through other n — 3 tips doing quartet selection.
The time of quartet selection does not depend on 1, in fact it requires O(I) operations
using the Jukes/Cantor distance, where [ is the sequence length. Therefore CWT be-
fore parallelisation has a time complexity of O(In?). CWT can be parallelised up to
n times because each iteration of the wider loop is independent. This would reduce
CWT’s time complexity to O(In). In terms of memory, each iteration needs to store
only a few scalars represending tip indices, so the memory required does not de-
pend on n and is O(1) or O(I) depending on the genetic distance function chosen.
In comparison to tree inference, just the computation of the distance matrix between
sequences has a time complexity of O(In?) and requires O(1n%) memory space, setting
a minimum threshold for all distance matrix methods like NJ. NJ can be performed
with extreme efficiency [30], reducing its time to the computation of the distance ma-
trix itself. On the other hand, FastTree is better, requiring just O(In+/nlogn) time and
O(nl 4 n+/n) memory [28]. CWT outperforms any other methods in terms of memory
(though of course it only computes the number of cherries). If parallelised enough
times, CWT could also outperform other methods in terms of time. On a standard
desktop with Intel® Core™i7-3770S CPU, for 1000 sequences of length 20000 Fast-
Tree took 675 seconds, and CWT took 253 seconds (parallelised in 7 nodes). We esti-
mate that CWT would take 4-8 seconds if parallelised 1000 times. The current version
of CWT is built within R and can be optimised even further if written in lower-level
languages such as C++.

3.3 Tree-free inference of R

We simulated sequences evolving in a process with a known Rq (1.5), used CWT to
estimate the number of cherries, and then inferred R from the cherry-to-tip ratio.
Figure 3 illustrates the results, and highlights the convergence as the number of tips
grows. We computed the confidence interval (Equation 2), and found that the true
Ro was outside the confidence interval only 121 times over 5000 trees (see Testing the
confidence interval in the methods section), corresponding to a level of confidence of
over 97.5%. The R, point estimate from equation (1) had an average relative error of
2.75%. It is a challenge to analytically derive the level of confidence for the interval

in equation (2). However, from equation (eq:varUp), 5%~ is an upper bound for the

2yn
standard deviation of the CTR, and it therefore guarantees that the interval in equa-
tion (2) has a confidence of at least 70%, while our empirical results suggest that the

confidence is much higher.
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Figure 3: The Ry point estimate from equation (1) and upper and lower bounds from
equation (2). The simulated trees and sequences are the same used for figure 2. The
number of cherries was estimated directly from the sequences with algorithm CWT. The
precision of this method of inferring Ry increases as the number of sequences considered
increases. The tree simulation was carried out in R [19] with function pbtree of package
phytools [20]; the parameter n was set at 700, 1675, 3350 to provide trees with 2000, 5000
and 10000 tips on average respectively. The parameters b and d for birth and death rates
were 1.5 and 1 respectively, corresponding to an Ry value of 1.5. For each group, 25 trees
were simulated.

3.4 Tree-free estimate of the reproduction number of HIN1

We downloaded 2975 HIN1 influenza sequences from the NCBI influenza virus re-
source [31] detected from April 2009 onward to September 2010, corresponding to the
2009 pandemic [32]; the accession numbers can be found in the supplementary ma-
terial. The sequences were aligned using MAFFT [33, 34]. The algorithm CWT was
used to estimate the number of cherries directly from the sequences, then equations
(1) and (2) were used to provide the estimate and bounds of Ryg. Another estimated
number of cherries was derived from the tree reconstructed with FastTree [28, 29],
and the resulting R, estimates are compared in Table 2. The CTR derived with CWT
is 0.2704, and corresponds to an Ry estimate of 1.43 (1.21-1.73) which is in line with
other estimates of the 2009 HIN1 influenza pandemic [8, 35, 36]. The CTR from the
reconstructed tree with FastTree is higher at 0.28303, realizing an R, estimate of 1.88
(1.53-2.36), which is slightly higher than most estimates but still within most margins
of errors [36].


https://doi.org/10.1101/102061
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/102061; this version posted January 24, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Method | CTR estimate | Ry estimate (upper bound - lower bound)
CWT 0.27042 1.43 (1.21-1.73)
FastTree | 0.28303 1.88 (1.53 - 2.36)

Table 2: Estimation of Ry of HIN1 influenza during the 2009 pandemic using equations
(1) and (2). The CTR was calculated directly from 2975 sequences using CWT, or from
the the tree reconstructed with FastTree [28, 29]. The R estimates and the bounds are
calculated from the CTR with equations (1) and (2) respectively. The 2975 sequences
were downloaded from the NCBI influenza virus resource [31], and correspond to all full
non-identical sequences sampled between April 2009 to September 2010. The accession
number can be found in the supplementary material.
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Figure 4: CTR computation and R estimation using equation (1) of repeated random
pruning of large (=500K tips) simulated trees. Each line corresponds to a different tree,
that was simulated with a modified version of pbtree (R package phytools [20, 19]) that
allowed for large tree simulation. Each tree corresponds to a different pre-set theoretical
value of Ry: 1.5, 2, and 2.5. At each chosen sampling level, a portion of tips were chosen
randomly and deleted with a modified version of drop.tip (R package ape [22, 19]). This
was repeated ten times for each sampling level, to provide a more robust estimate.

3.5 Effects of sampling on the the CTR and R, point estimate

The convergence results in [12], and so equation (1), are in the context of fully sam-
pled trees. However, data on infectious disease outbreaks typically would have at
least a few missing cases due to the challenges of ensuring that every case is identi-
tied, sampled, sequenced and included in a dataset. While the CTR would converge
in any branching process, fully or partially sampled, the limit for a sub-sampled pro-
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cess may differ from the expression in Equation (1). Deriving analytic convergence
results for the CTR that take sampling into account is challenging because of the vari-
ability of the processes involved (removal and reconstruction of the pruned tree). We
explore sub-sampling large phylogenetic trees to model the effects of incomplete sam-
pling. To mimic incomplete data and determine how the Ry estimate is affected, we
randomly (uniformly) remove a specified fraction of the tips/nodes of a complete tree
and reconstruct a new “sampled” tree.

We found that random uniform sub-sampling has some effect on the CTR and on
Rp inference. We simulated three large trees (about half a million tips), each corre-
sponding to one value of Ry: 1.5, 2, 2.5. Using the R function drop. tip (in ape [22, 19])
we randomly and independently pruned tips at different sampling rates. Ten inde-
pendent prunings at each sampling level were done to avoid outliers. We computed
the CTR and the Ry estimate using equation (1) for each pruned tree. Figure 4 shows
how the CTR varies and related Ry estimate vary as a consequence of sampling. Close
to 0% sampling (almost all tips pruned) the CTR converges to 1/3, which is the CTR
of the only tree topology with three tips. Because the trees are very large, at 100%
sampling (no pruning) the CTR observed is very close to the limit Ro/ (3R + 1) dis-
cussed in section 2.1 and related to equation 1. If the sampling rate is lower than 20%,
the Ry estimate can be significantly higher than the true Ro.

4 Discussion

The method we have presented allows Ry estimation directly from a set of pathogen
sequences; it is based on a tree-free estimate of the number of cherries in the true
phylogeny of the sequences, and a confidence interval for Ry based on the cherry-to-
tip ratio (CTR) [12]. The cherry-to-tip ratio can also be computed from a reconstructed
tree simply by counting the number of cherries, providing a tree-dependent estimate
of Ro. The accuracy of the method increases considerably when a large number of
sequences is available.

We developed the CWT as an attempt to disentangle R estimation from the chal-
lenging problem of tree reconstruction. The nucleus of the algorithm is a quartet selec-
tion, i.e. the identification of the quartet subtree that links any four tips. If the quartet
selection mechanism is exact, then CWT has no errors. Unfortunately, we do not have
an exact quartet selection, and have used a distance-based condition. Where a quar-
tet has short internal branch lengths, the noisiness of phylogenetic distance means
that CWT is subject to error (analogous to long branch attraction), which we have
addressed by allowing resampling of tip f in ambiguous quartets.

There are several limitations. By its nature, CWT (or the related tree-dependent Ry
estimate from the number of cherries in the tree) require very large numbers of cases to
produce tight estimates. It might be possible to improve on the upper bound that we
obtained for the variance, particularly for homogeneous processes, but the required
calculations are extremely complex. In using equation (1) we also implicitly assume
that the CTR is an unbiased estimator of its limit (which is consistent with simula-
tions). For large trees, any bias would be insignificant compared to the large margin
of error provided by this bound of the variance, but further investigation may tighten
the bound. That said, sequencing technology is becoming widely used in epidemiol-
ogy; studies with thousands of bacterial genomes are published and researchers are
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moving to tens of thousands; the CRyPTIC project is sequencing 100,000 TB genomes
[37]. Viral genomes are already available in very large numbers. Our approach is
relevant to large datasets where conventional approaches are infeasible.

We explored robustness to uniform sub-sampling; this appears to bias to a larger
estimate significantly when the sampling rate is lower than 20%. However, non-
uniform sub-sampling is likely to be commonplace, and be characterised by a col-
lection of highly sampled subgroups of the population. This would likely reduce the
bias as compared to uniform sampling (which is a worst case scenario in this con-
text). If uniform sampling is in fact a good assumption, figure 4 suggests that for a set
value of Ry, the curves relating the R estimates to the sampling rates do not intersect.
Therefore, given the estimated Ry and the sampling rate, it is possible to estimate the
true Ry.

Despite these limitations, there are clear advantages to our approach. It is tree-free
and so avoids the need for expensive tree reconstruction, inference of a timed phy-
logenetic tree and subsequent MCMC analysis on this tree. It is therefore quick and
highly parallelisable, and is suited to very large datasets. Its O(In?) complexity com-
pares well to FastTree’s O(In+/(n) log n) because it is so parallisable, and its memory
requirements are much less. Furthermore, it is the basis for alignment-free approaches
to estimating Ry, because all it requires is an alignment-free distance function (such as
a k-mer distance) with which to compare quartets. It is therefore feasible for recom-
bining pathogens or other systems for which alignments are challenging to create.
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