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E. coli quantitative microscopy screening

Abstract

Cell size, cell growth and the cell cycle are necessarily intertwined to achieve robust bacterial replication.
Yet, a comprehensive and integrated view of these fundamental processes is lacking. Here, we describe
an image-based quantitative screen of the single-gene knockout collection of Escherichia coli, and
identify many new genes involved in cell morphogenesis, population growth, nucleoid (bulk chromosome)
dynamics and cell division. Functional analyses, together with high-dimensional classification, unveil new
associations of morphological and cell cycle phenotypes with specific functions and pathways. Additionally,
correlation analysis across ~4,000 genetic perturbations shows that growth rate is surprisingly not
predictive of cell size. Growth rate was also uncorrelated with the relative timings of nucleoid separation
and cell constriction. Rather, our analysis identifies scaling relationships between cell size and nucleoid
size and between nucleoid size and the relative timings of nucleoid separation and cell division. These
connections suggest that the nucleoid links cell morphogenesis to the cell cycle.
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E. coli quantitative microscopy screening

Introduction

Cells must integrate a large variety of processes to achieve robust multiplication. Bacteria, in particular,
are remarkable at proliferating, which has been key to their colonization success. During their fast-paced
replication, bacterial cells must uptake and process nutrients, generate energy, build cellular components,
duplicate and segregate their genetic material, couple growth and division, and maintain their shape and
size, all while sensing their environment and repairing cellular damages, just to name a few important
tasks. These tasks must be integrated to ensure successful cellular replication. Decades of work have
garnered extensive knowledge on specific processes, genes and pathways, but we still lack a comprehensive
view of the genetic determinants affecting cell morphogenesis and the cell cycle. It is also unclear how
cellular activities are integrated to ensure that each division produces two viable daughter cells.

Systematic genome-wide screens, rendered possible by the creation of arrayed single-gene knock-out
collections, have been successfully used to gain a more comprehensive perspective on cell morphogenesis
and the cell cycle in yeast (Graml et al, 2014; Jorgensen et al, 2002; Ohya et al, 2005). Beyond the
functional information gained through the mapping of phenotypes associated with the deletion of genes,
genome-wide screens also provide a unique opportunity to interrogate the relationship between phenotypic
features with thousands of independent genetic perturbations (Liberali et al, 2015). Here, we present a
high-content, quantitative study that uses the Keio collection of Escherichia coli gene deletion strains
(Baba et al, 2006) and combines microscopy with advanced statistical and image analysis procedures to
examine the impact of each non-essential E. coli gene on cell morphology, cell size, growth, nucleoid
(bulk chromosome) dynamics and cell constriction. In addition, we provide insight into the connectivity
and empirical relationships between cell morphogenesis, growth and cell cycle events.

Results

High-throughput imaging and growth measurements of the E. coli Keio col-
lection

To gain an understanding of the molecular relationship between growth, cell size, cell shape and specific
cell cycle events, we imaged 4,227 strains of the Keio collection. This set of single gene deletion strains
represents 98% of the non-essential genome (87% of the complete genome) of E. coli K12. The strains
were grown in 96-well plates in M9 medium supplemented with 0.1% casamino acids and 0.2% glucose
at 30◦C. The preferred carbon source (glucose) and the casamino acids provide growth conditions that
give rise to overlapping DNA replication cycles (Appendix Fig S1A). Live cells were stained with the
DNA dye DAPI, and spotted on large custom-made agarose pads (48 strains per pad) prior to imaging
by phase contrast and epifluorescence microscopy (Fig 1A). On average, about 360 (± 165) cells were
imaged for each strain. To provide a reference, 240 replicates of the parental strain (BW25113, here
referred to as WT) were also grown and imaged under the same conditions as the mutants. In parallel,
using a microplate reader, we recorded the growth curves of all the strains (Fig 1A) and estimated two
population-growth features. We fitted the Gompertz function to estimate the maximal growth rate
(αmax) and used the last hour of growth to calculate the saturating density (ODmax) of each culture
(Appendix Fig S1B). The goodness of the fits is illustrated at the time of maximal growth where the
OD600nm from the growth curve is highly correlated with the OD600nm predicted by the fit (Appendix
Fig S1C). The vast majority of strains were imaged in exponential phase at an OD600nm (ODimaging) 4-5
times smaller than their ODmax (Appendix Fig S1D).
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High-throughput dataset curation using a support vector machine

Cells and their contours were detected in an automated fashion (Sliusarenko et al, 2011). The large
size (>1,500,000 detected cells) of the dataset precluded the validation of each cell contour by visual
inspection. Therefore, we implemented an automated classification method based on a support vector
machine (SVM) (Fan et al, 2005) to identify and discard incorrectly detected cells (Fig 1B). To generate
a training dataset for the SVM model, we visually scored (positive or negative) 43,774 cell contours
from the parental strain and the 419 mutants displaying the greatest deviations in cellular dimensions
before data curation. The inclusion of the most aberrant mutants in the training dataset allowed us to
build a versatile model that performed well on the wide range of cell sizes and shapes present in our
dataset. The quality of the fit of the SVM model to the training dataset was evaluated by a 10-fold
cross-validation (Hastie et al, 2009), which gave a misclassification error rate of 10%. The model was
further validated on an independent dataset of 102,137 visually scored cell contours taken from the
same group of WT and mutant strains. We found that our SVM model performed very well on this
validation set, as shown by the high AUROC (area under the ‘receiver operating characteristic’ curve)
value of 0.94 (Appendix Fig S1E). By comparing the model classification with visual scoring (Fig 1C),
we found that only about 3% of cell contours in the validation set were incorrectly identified as positive
by the SVM model. Importantly, these false positive cells introduced no biases in the measurement of
the SVM predictor values (Appendix Fig S1F), even when considering the 419 most aberrant strains
(Appendix Fig S1G). This validated SVM model was used to curate the entire dataset, retaining about
1,300,000 identified cells (291 ± 116 cells/strain). In addition, we verified the reproducibility of our
experimental approach by separately imaging two independent replicates of 178 strains that included 2
copies of the parental (WT) strain and 176 mutants with severe morphological defects. We observed a
Pearson correlation (ρ) of 0.91 for cell length (Fig 1D), indicating high reproducibility.

Quantification of cell morphological features across the genome

With this high-quality dataset, we were able to obtain a wealth of quantitative information using the
software packages MicrobeTracker and Oufti (Paintdakhi et al, 2016; Sliusarenko et al, 2011). From
phase-contrast images, we measured cellular dimensions, such as length, width, perimeter, cross-sectional
area, aspect ratio (width/length) and circularity (4π area/(perimeter)2). We also measured and the
variability of these features by calculating their coefficient of variation (CV, the standard deviation
divided by the mean). From both series of measurements, we extracted the mean and CV of additional
morphological parameters, such as surface area, volume and surface-to-volume ratio. For constricted
cells, we determined the relative position of division along the cell length (division ratio). Note that
since the identity of the cell poles (old versus new) was unknown, randomization of cell pole identity
would automatically produce a mean division ratio of 0.5, even for an off-center division. Therefore,
measurements of mean division ratio were meaningless and not included in our analysis. However, the
CV of the division ratio was included since a high CV indicated either an asymmetric division or an
imprecise division site selection. In total, each strain was characterized by 19 morphological features (see
Dataset EV1 for raw data). The name and abbreviation for all the features can be found in Table S1.

After taking into consideration experimental variability (see Materials and methods, Appendix Fig
S2-S4,), we calculated a normalized score (s) for each feature and each strain (see Materials and methods).
The corrected and normalized data (scores) can be found in Dataset EV2. Even with a conservative
threshold of 3 standard deviations (s 6-3 or > 3, or absolute score |s| > 3) away from the WT, a large
number (874) of single gene-deletion strains were associated with one or more morphological defects (Fig
2 and Dataset EV2). This result indicates that a large fraction of the non-essential genome (i.e., ∼20%
of the unique deletion strains present in the Keio collection) directly or indirectly affect cell size and
shape. Similar genomic commitment to cell size and shape was observed in budding yeast (Jorgensen et
al, 2002).
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Quantification of growth and cell cycle features across the genome

From the images, we also calculated the degree of constriction for each cell, and determined the fraction
of constricting cells in the population for each strain (see Materials and methods). From the latter,
we inferred the timing of initiation of cell constriction relative to the cell cycle (Collins & Richmond,
1962; Powell, 1956; Wold et al, 1994). In addition, the analysis of DAPI-stained nucleoids with the
objectDetection module of Oufti (Paintdakhi et al, 2016) provided additional parameters, such as the
number of nucleoids per cell and the fraction of cells with one versus two nucleoids. From the fraction of
cells with two nucleoids, we estimated the relative timing of nucleoid separation (Collins & Richmond,
1962; Powell, 1956; Wold et al, 1994). We also measured the degree of nucleoid constriction in each
cell for each strain and compared it to the degree of cell constriction to obtain the Pearson correlation
between these two parameters, as well as the average degree of nucleoid separation at the onset of
cell constriction (Appendix Fig S1H). As a result, each strain was associated with 5 cell cycle features
(Dataset EV2), in addition to the 19 morphological features and 2 growth features mentioned above (see
Table S1).

We found that 231 gene deletions were associated with at least one dramatically altered (|s| > 3) cell
cycle feature (Fig 2, Dataset EV2). From the growth curves, we identified over 263 mutants with severe
(|s| > 3) growth phenotypes (Fig 2, Dataset EV2) despite the growth medium being supplemented with
amino acids.

Severe defects in growth, cell morphology or the cell cycle associate with a
wide variety of cellular functions

For each feature, the genes deleted in mutant strains with a |s| > 3 encompassed a wide range of cellular
functions based on a distribution analysis of Clusters of Orthologous Groups (COGs) of proteins (Fig 3
and Appendix Fig S5). This diversity highlights the high degree of integration of cell morphology and
the cell cycle in overall cellular physiology.

Certain COGs were statistically enriched for some phenotypes (Fig 3). We recovered expected associations,
such as category D (cell cycle control, cell division and chromosome partitioning) with high mean length
(<L>) and high length variability (CVL) and category M (cell wall/membrane/cell wall biogenesis)
with high mean width (<W>) (Fig 3A). Indeed, defects in DNA partitioning and repair can lead to a
cell division block (Mulder & Woldringh, 1989), and impairment in cell envelope biogenesis has been
reported to cause cell widening (Bean et al, 2009; Lee et al, 2014). COG categories associated with
translation or some aspect of metabolism were, not surprisingly, enriched in mutants with growth defects
(Fig 3B). Category H was enriched among small (s < -3) mutants. This category encompasses a number
of pathways important for general aspects of metabolism (e.g., biosynthesis of panthothenate, electron
carriers, biotin, and chorismate), suggesting that their impairment affects cell size in a manner similar to
nutritional restriction.

Often, these COG enrichments were carried over to features (area, volume, perimeter, circularity, etc.)
that directly relate to width and length (Fig 3). However, we also observed differential COG enrichments
even for highly related features, highlighting the importance of considering features beyond mean and
CV of length and width. For example, category U (intracellular trafficking, secretion and vesicular
transport) was enriched among mutant strains with high mean area (<A>) and volume (<V>) but
normal <L> or <W> (Fig 3A), suggesting that small deviations in length and width can combine
to produce significant differences in area and volume. On the other hand, deletions in category C
genes (energy production and conversion) were normally represented for most phenotypes, but were
conspicuously underrepresented among mutants with high mean shape factors, suggesting that deletion
of these genes was barely associated with a high aspect ratio (<Ar>) (Fig 3). Thus, deletion of genes
involved in energy and conversion can influence the size of the cell without affecting its shape (aspect
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ratio and circularity), implying that a defect in length is often accompanied by a defect in width in this
category of mutants.

High-dimensional classification of the morphological mutants

While the gene deletion annotation of the Keio library is not perfect, our large dataset provided a
powerful platform to examine global trends and to identify gene function enrichments in phenotypic
classes of mutants with |s| > 3. First, we considered morphological phenotypes. Instead of ranking
strains on a feature-by-feature basis, we sought to classify strains based on their combination of features,
or ‘phenoprints’, to better capture the phenotypic complexity of morphology. In addition to the 19
morphological features, we included the two growth-related features (ODmax and αmax) in the phenoprint
because growth rate is often assumed to affect cell size. This assumption stems from the early observation
that bacterial cell size (mean cell mass) scales with growth rate when the latter is modulated by varying
the composition of the culture medium (Schaechter et al, 1958). This scaling relationship has historically
been referred to as the ‘growth law’.

The combination of the 21 scores was used to classify a dataset composed of 240 wild-type replicates
(controls) and 985 mutant strains with a |s| > 3 for at least one morphological or growth feature.
A principal component analysis (PCA) of this dataset was not useful, as it identifies strong outliers
with severe phenotypes but failed to separate most strains (Appendix Fig S6). Therefore, to identify
strains with similar phenoprints, we turned to the machine learning ‘t-distributed stochastic neighbor
embedding’ (tSNE) algorithm (van der Maaten & Hinton, 2008). Unlike PCA, which identifies the
principal components that most explain the variance in a dataset, the principle of tSNE is to minimize
distances between datapoints with high mutual information. Thus, tSNE can be used to emphasize
similarities, rather than dissimilarities. Taking advantage of the stochastic nature of tSNE, we generated
100 independent maps and used the density-based clustering algorithm dbscan (Ester et al, 1996) to
identify strains that reproducibly (>90% of the time) clustered together in the tSNE maps. Using this
combined tSNE-dbscan, we found that the wild-type replicates clustered together to form the ‘WT’
island while 90 of the mutant strains consistently separated in 22 islands (Fig 4A).

Each island of the “morpho archipelago” was characterized by an average phenoprint (Fig 4B), with a
given feature often segregating in different islands. For example, slowly growing (low αmax) mutants
were found in both islands 1 and 5, but mutants in island 1 were, on average, small whereas mutants
in island 5 were morphologically like WT (Fig 4B). Thus, island 5 illustrates a group of strains that
departs from the growth law, as they produce cells that are as large as WT despite growing slower.

Genes, functions and pathways associated with cell size and shape

Our tSNE classification identified many new genes associated with specific phenotypes, even extreme
ones. For example, island 22 grouped strains characterized by cells that were very long and highly
variable in length (and therefore area, volume, surface area, perimeter, and aspect ratio), but had a
comparatively normal width (Fig 4B). Such a cell filamentation phenotype has been well studied, and
our classification recovers expected gene deletions such as ∆minC, ∆envC, ∆tatC, ∆hfq and ∆dedD
(Fig 4C and Fig EV1A) (Adler et al, 1967; Gerding et al, 2009; Rodolakis et al, 1973; Stanley et al,
2001; Tsui et al, 1994). Island 22 also includes 4 gene deletions (∆uup, ∆rdgB, ∆croE and ∆ydaS)
that were unknown for their cell filamentation phenotype (Fig 4C and Fig EV1A), suggesting new or
unappreciated functions connected to cell division. For example, Uup is a DNA-related protein known
to prevent the precise excision of transposons (Hopkins et al, 1983). The working model postulates
that Uup interacts with the replisome to prevent replication forks stalling at the repeated sequences
flanking transposons, a step required for the formation of a Holliday junction and excision (Murat et
al, 2006). Replisomes also frequently stop at other chromosomal regions during replication, which can
cause DNA lesions (Cox et al, 2000). If DNA damages are left uncorrected, they lead to inhibition of cell
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division. The cell filamentation phenotype associated with the deletion of uup may suggest that Uup
plays a fundamental role in limiting replisome from stalling under normal growth conditions, possibly at
structured DNA sites such as inverted repeats.

The ∆rdgB mutant suggests another underappreciated aspect of cell division (Fig 4C and Fig EV1A).
RdgB is an enzyme that reduces the levels of non-canonical purines deoxyinosine (dITP) and deoxyx-
anthosine (dXTP) to prevent DNA damage associated with their incorporation into the chromosome;
rdgB is essential for viability in a recA- background (Budke & Kuzminov, 2010; Lukas & Kuzminov,
2006). The high frequency of cell filamentation among ∆rdgB cells, despite the presence of functional
recombination machinery, underscores the importance of a tight control of dITP and dXTP levels in the
cell.

The two remaining mutants in island 22 were strains deleted for the cryptic prophage genes croE and
ydaS (Fig 4C and Fig EV1). They illustrate how this screen can identify functions for genes that are not
expressed under normal growth conditions. Genes in the Keio collection were deleted by an in-frame
replacement of a kanamycin resistance cassette that has a constitutive promoter and no transcriptional
terminator to ensure expression of downstream genes in operons (Baba et al, 2006). However, for repressed
or poorly expressed operons, the kanamycin cassette promoter can lead to unregulated expression of
downstream genes in operons. This was the case for the croE and ydaS deletion strains, as cells became
normal in length when the kanamycin cassette was excised (Fig EV1B and C). These results, together
with the normal CVL and <L> scores associated with the deletions of the downstream genes (Fig EV1B
and C, Dataset EV2), suggest that it was not the loss of croE and ydaS but rather the expression of
the prophage genes located directly downstream (ymfL and ydaT, respectively) that was responsible for
the observed cell filamentation phenotype. Consistent with our hypothesis, it has been postulated that
ymfL is involved in cell division (Burke et al, 2013; Mehta et al, 2004; Wang et al, 2010). While ymfL
probably encodes a cell division inhibitor, the prophage gene ydaT likely inhibits cell division indirectly
by acting on DNA replication or segregation, given the absence of well-segregated DAPI-stained nucleoids
in filamentous ∆ydaS cells still carrying the kanamycin cassette (Fig EV1C).

Note that each island represented a continuum of phenotypes dominated by the features that lead to
their clustering into one common island. Beyond the global segmentation of the morpho-space, each
island displayed some internal structure. This is illustrated in Fig 4D, which shows the gradient of the
dominating (<W>) and secondary (CVW) features within island 16. This fine internal organization
reflects the objective function of the tSNE algorithm, which seeks to minimize distances between similar
phenoprints. This property provided us with an excellent layout to consider tSNE maps as networks (e.g.,
Fig 4C), from which we could perform local functional enrichment analyses based on gene ontology (GO)
terms. This approach enabled the functional annotation of the tSNE networks while taking into account
the map topology without explicit clustering (see Materials and methods). This analysis highlighted
both expected and surprising functional associations with specific morphological phenoprints (Fig 4E).
For example, the phenoprint dominated by a small cell size and growth defects (island 1), which is a
hallmark of starved cells, was not surprisingly associated with an enrichment of strains deleted for genes
involved in sulfate assimilation and biotin metabolism (Fig 4E).

Another example is the enrichment of genes in the Enterobacterial Common Antigen (ECA) biosynthesis
pathway (Fig 4E) among gene deletions that dramatically affected cell width control (island 21). ECA
mutants tended to be wider and often lost their rod shape to form rounder cells, as shown by their high
aspect ratio score (Fig EV2A, Dataset EV2). This phenotype is reminiscent of the cell shape defects
caused by drugs (e.g., fosfomycin) that inhibit peptidoglycan synthesis (Kahan et al, 1974; Marquardt
et al, 1994). Island 21 included other cell envelope mutants with a similar phenotype, such as gene
deletions related to colanic acid (CA) biosynthesis (Dataset EV2). These results are consistent with
recent studies showing that misregulation of cell shape can be caused by a competition between the ECA,
CA and peptidoglycan precursor pathways for the same undecaprenyl phosphate lipid carrier (Jorgenson
et al, 2016; Jorgenson & Young, 2016). The cell-width phenotype of gene deletions in the neighboring
island 20 could be rationalized with a similar competition argument, as several of them are related to
central metabolism (Dataset EV2). The metabolic genes may be essential for the production of key
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metabolites important for the synthesis of cell envelope precursors. The ∆rapZ strain, which had a severe
cell width phenotype (Fig EV2B, island 20), may be an example. RapZ post-transcriptionally regulates
the amount of GlmS (Gopel et al, 2013), which catalyzes the first committed step away from the upper
glycolysis pathway and toward the synthesis of a central precursor (UDP-N-acetyl-α-D-glucosamine) for
the biogenesis of peptidoglycan and ECA.

We also identified pathways associated with phenotypes that were not easy to rationalize. Deletion of
genes encoding the high-affinity phosphate transporter subunits (PstA, PstC and PstS), the associated
histidine kinase (PhoR) and the adaptor protein (PhoU) led to a thin phenotype (Fig EV2C), without
significantly slowing down growth (Dataset EV2). The absence of a growth defect is expected, as the
growth medium is rich in phosphate that can be taken up by the low-affinity phosphate transporters.
Thus, the cell width reduction cannot be associated with phosphate starvation.

Deletion of several genes encoding subunits of ATP synthase, which results in a metabolic switch to
fermentation, led to a decrease in average cell width (Fig EV2C). Cultures of these deletion strains
did not grow slower (s > 0 for αmax) than WT (Dataset EV2). Furthermore, they were imaged at an
ODimaging at least 3 times smaller than their ODmax, indicating the cell width phenotype could not be
linked to the inability of some of these strains to grow to high cell density (s < -3 for ODmax). This
result suggests that either the ATP synthase itself or differences in metabolism alter cell shape and size
independently of growth rate.

Another surprise was the lack of clustering, and therefore the absence of association, among mutants
expected to affect fatty acid metabolism; instead, fatty acid mutants displayed a variety of phenotypes
(Dataset EV2). Previous work has shown that a reduction of fatty acid synthesis through drug treatment
or deletion of the fatty acid biosynthetic gene fabH results in a thinner and shorter cell phenotype (Yao
et al, 2012). Conversely, an excess of fatty acids through overexpression of the regulator fadR or by
addition of exogenous fatty acids leads to wider and longer cells (Vadia et al, 2017). These results have
led to a simple model in which the amount of fatty acids and, by extension, the level of lipid synthesis
determine cell size. Our data suggest a potentially more complex relationship between phospholipids and
cell morphology. This is illustrated by the ∆fadR and ∆fabF strains, which were thinner (s < -8), but
also longer (s > 3.5), than the parental strain (Fig EV2D). Remarkably, the width and length defects
were compensatory such that the ∆fadR and ∆fabF mutants retained a normal cell area (Fig EV2D).
FadR is a bifunctional transcriptional factor that activates fatty acid synthesis and represses β-oxidation,
while FabF is a fatty acid chain elongation enzyme. Based on their metabolic profiles, both ∆fadR
and ∆fabF strains have significant changes in the levels of phospholipids containing saturated versus
unsaturated acyl chains (Fig EV2D) (Fuhrer et al, 2017; Garwin et al, 1980; Nunn et al, 1983). These
results suggest that an altered phospholipid composition, such as changes in the degree of fatty acid
saturation, may be another important factor that determines the dimensions of the cell.

Identification of genes affecting nucleoid separation and cell constriction dy-
namics

We applied the same tSNE analysis to the seven cell cycle and growth features of the 397 strains
displaying a severe defect (|s| > 3) for at least one cell cycle or growth feature. The 240 independent
wild-type replicates were included in the analysis as controls. We robustly identified a WT island and 12
distinct mutant islands in this cell-cycle space (Fig 5A). Each island was characterized by an average
phenoprint (Fig 5B). Islands 6 and 7 were phenotypically close to WT. Islands 3 and 10 grouped mutants
with growth defects and little to no cell cycle phenotypes (Fig 5B and C). The neighboring islands 1, 2,
9 and 11 were dominated by cell growth features with some combination of nucleoid separation and cell
constriction defects. Three islands—islands 4, 8 and 12—grouped interesting gene deletion strains with
cell cycle phenotypes and no significant growth defects (Fig 5B and C).

Functional analysis on all strains identified GO term enrichments with phenoprints that show strong
growth phenotypes (Fig 5D). We did not find any GO term enrichment associated with cell cycle
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phenotypes independently of growth defects. Furthermore, the proportion of genes of unknown function
(so-called ‘y-genes’) was the highest (~ 30%) for cell cycle-specific islands 8 and 12 (Fig 5E). These
observations highlight the limited extent of our knowledge about the genetic basis of nucleoid and cell
constriction dynamics, compared to cell growth.

Our analysis of nucleoid separation and cell constriction provided a genome-wide perspective on the
processes affecting DNA segregation and cell division. While each event has been investigated for years
at the molecular level, we know little about their coordination. We found that nucleoid separation is
tightly correlated with the initiation of cell constriction across the ~ 4,000 deletion strains (ρ = 0.65, 95%
confidence interval [0.63, 0.66], Fig 6A) and at the single-cell level (Appendix Fig S1H). A well-known
genetic factor involved in this coordination is MatP (Mercier et al, 2008). This DNA-binding protein
organizes and connects the chromosomal terminal macrodomain (ter) to the division machinery (Espeli
et al, 2012). Consistent with this function, we observed that the ∆matP mutant, which segregated into
island 8, failed to coordinate nucleoid separation with cell constriction and separated its nucleoid early
while dividing at about the same cell age as WT (Fig 6A-C). The early separation of nucleoids is in
agreement with the early segregation of sister loci within the ter region in the ∆matP mutant (Espeli et
al, 2012; Mercier et al, 2008) and with the proposed role of MapP in linking DNA segregation to cell
division (Mannik and Bailey. 2015). The remaining 47 strains from island 8, which also displayed an
early nucleoid separation phenotype (Fig 6B), were deleted for genes that had either uncharacterized
functions or functions unrelated to nucleoid dynamics (Dataset EV2). Deletion mutants that clustered
closely to the ∆matP mutant within island 8 displayed a WT-like cell constriction profile as well (Fig
6B). Examples include mutants that lack the lysophospholipase L2, PldB, the DNA repair polymerase,
PolA, or the poorly characterized protein, YfjK (Fig 6B, D). YfjK is a predicted helicase that has been
associated with sensitivity to ionizing radiations (Byrne et al, 2014). On the other side of the island,
mutants were characterized by not only an early nucleoid separation, but also early initiation of cell
constriction (Fig 6A, B and E), to the point that the timing of cell constriction and nucleoid separation
was virtually the same. This is illustrated with ∆ycjV and ∆hlsU (Fig 6E). YcjV is a predicted ABC
transporter ATPase. HslU has two functions in the cell, one as a subunit in a protease complex with
HslV, and the other as a chaperone (Seong et al, 2000; Slominska et al, 2003). Since we did not observe
any significant defect in cell constriction timing for the ∆hslV mutant, the ∆hlsU phenotype is more
likely linked to the chaperone activity.

Identification of cell size control mutants

How cells achieve size homeostasis has been a longstanding question in biology. While the control
mechanism at play remains under debate (Amir, 2014; Campos et al, 2014; Harris & Theriot, 2016; Ho &
Amir, 2015; Iyer-Biswas et al, 2014; Taheri-Araghi, 2015; Taheri-Araghi et al, 2015; Tanouchi et al, 2015;
Wallden et al, 2016), we and others have shown that under the growth conditions considered in this study,
E. coli follows an adder principle in which cells grow a constant length (∆L) before dividing (Campos
et al, 2014; Taheri-Araghi et al, 2015). We sought to use this screen to survey the role of genes in cell
length control. We first explored the relationship between mean length (<L>) and length variability
(CVL) among mutants. On average, short mutants (s 6 -3, n = 68) had a normal CVL (p-value = 0.98),
while long mutants (s > 3, n = 106) displayed a greater CVL (p-value = 8.18 10-11, Fig 7A).

The observation that short mutants displayed, on average, a normal CVL indicates that most of them
regulate their length distribution as precisely as WT. These results suggest that the adder principle,
and therefore the relative timing of cell division, is just as precise in short mutants as in WT cells.
This result is interesting because short mutants have traditionally received a lot of attention in cell size
control studies. A well-known short mutant in E. coli is the ftsA* strain (WM1659), which is thought
to misregulate size control by triggering division prematurely (Geissler et al, 2007; Hill et al, 2012).
However, when we imaged the ftsA* mutant (n = 2,198 WM1659 cells), we found that, similar to the
trend shown by short mutants in our screen, ftsA* cells constrict at a similar cell age as WT (Fig 7B). In
hindsight, this result makes sense since the WT and ftsA* strains have a similar doubling time (72.3 ±
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2.2 min versus 69.0 ± 3.2 min, mean ± standard deviation, n = 4), consistent with Geissler et al (2007)
and therefore take the same amount of time to divide. Perhaps a more appropriate way to consider
short mutants with normal CVL is not as mutants that have a premature division, but as ‘small-adder’
mutants since they add an abnormally small cell length increment ∆L between divisions.

Long mutants, on the other hand, tended to lose their ability to maintain a narrow size distribution, as
CVL increased with <L> (Fig 7A). The origin for an increase in CVL may signify a loss of precision in
the timing of division, but it may alternatively originate from an aberrant positioning of the division site
(or both). The ∆minC mutant is an example of aberrantly large CVL (Fig 7C) due to the mispositioning
of the division site, and not due to a defective adder (Campos et al, 2014). This class of mutants can
easily be identified in our dataset by their large variability in division ratios (CVDR). Conversely, a high
CVL associated with a normal variability in division ratios points to a mutant that has a more variable
∆L between divisions.

We suspected that interesting cell size control mutants might be missed by only considering CVL. The
distribution of cell lengths in a population is a convolution of cell length distributions at specific cell cycle
stages. Since there is significant overlap in length distributions between cell cycle stages, a substantial
change in CVL at a specific cell cycle stage (e.g., cell constriction) does not necessarily translate into
obvious changes in CVL of the whole population, as shown in simulations (Fig EV3). Our screen allowed
us to identify constricting cells and hence to determine the cell length variability for the stage of cell
constriction. This cell cycle stage-specific analysis identified ∆mraZ as a potential gain-of-function cell
size homeostasis mutant (Fig 7C). For this mutant, division (CVDR, Dataset EV2) and growth rate
(Eraso et al, 2014) were normal, but the length distribution of its constricted cells (CVL= 0.05) was
remarkably narrower than that of WT constricted cells (CVL = 0.12). MraZ is a highly conserved
transcriptional regulator that downregulates the expression of the dcw cluster (Eraso et al, 2014), which
includes cell wall synthesis and cell division genes (Ayala et al, 1994). Our data suggests that MraZ and
the regulation of the dcw cluster affect the balance between cell growth and division.

Dependencies between cellular dimensions and cell cycle progression

A fundamental question in biology is how cells integrate cellular processes. A common approach to
address this question is to look at co-variation between processes or phenotypes following a perturbation
(e.g., mutation, drug treatment). However, perturbations that affect the same system (i.e., perturbing
a single process or pathway) can lead to misinterpretation, as the perturbation may abolish a given
dependency between two features or may affect the co-varying phenotypes independently. Increasing
the number of independent perturbations has two major effects. First, it alleviates the interpretation
problem by averaging out the specific effect associated with each perturbation (Collinet et al, 2010;
Liberali et al, 2015; Sachs et al, 2005). The Keio collection consists of mutants affected in a wide variety
of cellular processes, allowing us to examine whether specific features correlate across many different
genetic perturbations. Second, the large number of genetic perturbations increases our confidence in any
calculated correlation (or lack thereof) between features. To illustrate, let’s consider two independent
features (i.e., true correlation = 0). Using an analytical solution (Fisher, 1915; Fisher, 1921), one can
show that the calculated 95% confidence interval (CI) for the Pearson correlation is between -0.63 and
+0.63 if the sample size is 10. The calculated 95% CI is very wide because two uncorrelated features can
easily appear positively or negatively correlated if the sample size is small. The 95% CI shrinks down to
[-0.06, +0.06] if the sample size is 1000. Therefore, the large number and variety of mutants in our study
provided an opportunity to identify global effects and dependencies between morphological, cell cycle
and growth phenotypes through correlation analysis.

To build an interaction network, we used the information-theoretic algorithm ARACNE (Margolin et al,
2006). This method considers all pairwise correlations between features at the same time and identifies
the most relevant connections by removing those that are weak or that can be explained via more
correlated paths. In this analysis, we focused on 10 quantitative non-collinear features that describe
cellular dimensions (<L>, <W>, <A>), nucleoid size (<NA>), population growth (αmax, ODmax),

10/62

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/101832doi: bioRxiv preprint 

https://doi.org/10.1101/101832
http://creativecommons.org/licenses/by/4.0/


E. coli quantitative microscopy screening

nucleoid separation (rel. T nuc), cell constriction (rel. T const) and their interdependency (ρCD, CDNC0)
(see Materials and methods). The resulting network recovered obvious connections, such as the relation
of cell area with cell length and width. It also showed that growth rate features displayed virtually no
connectivity to cell size or cell cycle features (Fig 8A). This was further illustrated by the close-to-zero
correlations between growth rate and any of the 24 morphological and cell cycle features considered in
our screen (Fig EV4A).

Another interesting lack of connection was between <L> and <W> (Fig 8A), as these two variables
were largely uncorrelated (Fig 8B). With n = 4,227, our estimated Pearson correlation (ρ = 0.06) is
associated with a narrow 95% CI between -0.02 and 0.13. By subsampling this large dataset, we can
show how a decrease in sample size increases the likelihood of obtaining erroneous positive or negative
correlations (Fig EV5). The lack of correlation between <L> and <W> is interesting from a cell
size control standpoint. If E. coli was controlling its size by sensing its volume, surface area or the
ratio between the two, as Caulobacter crescentus does (Harris et al, 2014), we would expect a global
anti-correlation between length and width such that an increase in cell length would be, on average,
compensated by a decrease in width, and vice versa. The lack of correlation argues that cell length and
width are controlled independently in E. coli, at least under our growth conditions.

Some features, however, displayed strong co-variation across the 4,000 genetic perturbations. For instance,
the mean cell area and mean nucleoid area (considering the sum of nucleoids in the cell) were highly
positively correlated (ρ = 0.84, 95% CI [0.83, 0.85]), in a growth rate-independent manner (Fig 8C). In
wild-type cells, nucleoid size linearly increases with cell size throughout the cell cycle (Junier et al, 2014;
Paintdakhi et al, 2016). Here, we found that nucleoid size scales with cell size across ~ 4,000 mutants
despite their effects on different cellular functions: small mutants had a small nucleoid size, and big
mutants had a big nucleoid size (Fig 8C). This remarkable linear relationship held true regardless of the
number of nucleoids per cell (Fig 8D). In addition to its strong positive correlation with the average cell
size, the average nucleoid size was negatively correlated with the relative timing of nucleoid separation
(ρ = -0.48, 95% CI [-0.50, -0.45], Fig 8E). These connections suggest a dependency between size and cell
cycle features: the bigger the cell, the bigger the nucleoid is (Fig 8C) and the earlier nucleoid separation
and cell constriction occur in relative cell cycle units (Fig 8E-F). This dependency is highlighted by the
overall structure of the interaction network (Fig 8A), which reveals that the cell cycle features (yellow
nodes) are primarily connected to the cellular dimension features (blue nodes) through the dimensions of
the nucleoid (grey node).

Discussion

In this study, we used a multi-parametric approach to quantitatively survey the role of the non-essential
E. coli genome in cell shape, cell size, cell growth and two late cell cycle stages, nucleoid separation and
cell constriction. The results provide a valuable resource of phenotypic references for both characterized
and uncharacterized genes, as well as a rich dataset to explore the correlation structure between cellular
dimensions, growth and cell cycle features at the system level.

The large proportion of genes and the wide variety of functions impacting cell size and shape and the
progression of late cell cycle stages (Figs 2 and 3, Appendix Fig S5) underscore the degree of integration
of cell morphogenesis and cell cycle progression in all aspects of E. coli cell physiology. It also implies
that most morphological and cell cycle phenotypes cannot easily be imputed to a specific pathway
or cluster of genes. In fact, genes involved in the same cellular process can have very different, and
even sometimes opposing, effects. Genes associated with translation illustrate this concept. Deletion of
ribosomal subunit genes leads to a diversity of morphological phenotypes, such as thin (∆rplY ), wide
(∆rpsO), short (∆rpsT), and short and thin (∆rpsF) (Dataset EV2). This diversity of phenotypes is
also observable for deletions of genes encoding enzymes that modify ribosomal RNAs or tRNAs (e.g.,
∆rsmD cells are long, whereas ∆rluD and ∆truA cells are wide, and ∆mnmC cells are long, wide and
variable in size). The latter suggests an unexpected role for RNA modifications in cell morphogenesis.
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Overall, this study greatly expands the number of genes associated with cell morphogenesis (874) and
the cell cycle (231). Notably, it provides a phenotype for 283 genes of uncharacterized function (out
of 1306 y-genes). The Keio collection, as any genome-wide deletion collection (Teng et al, 2013), is no
stranger to gene duplications and compensatory mutations (Otsuka et al, 2015; Yamamoto et al, 2009).
Although their occurrence can impact interpretation at the gene level, “suppressor” mutants tend to
display more WT-like behavior. It is, therefore, possible that we have underestimated the actual number
of mutants displaying altered phenotypic characteristics or underrated the severity of the phenotype of a
given deletion. Importantly, “incorrect” mutants have no effect on our global correlation analyses, as the
latter does not rely on the genetic identity of the mutants.

Our study reveals new phenotypes for previously characterized gene deletions. We have already mentioned
above the unexpected filamentation phenotype of the ∆uup strain (Fig 4C and Fig EV1A) and have
proposed a tentative connection between Uup’s known function (precise transposon excision) and DNA
damage through replisome stalling. We also identified unanticipated links. For example, the requirement
for lysophospholipase L2 (PldB) in the coupling of nucleoid separation and cell constriction (Fig 6D)
suggests a connection between phospholipid metabolism and the coordination of late cell cycle stages.
Previous works have also linked phospholipid metabolism to cell morphology (Yao et al, 2012), showing
that fatty acid availability dictates the capacity of the cell envelope to expand, ultimately affecting cell
size (Vadia et al, 2017). We found that mutants with an altered degree of saturated vs. unsaturated
phospholipids have an abnormal length and width (Fig EV2D). It is, therefore, tempting to speculate
that not only the amount, but also the composition of fatty acids plays an important role in cell shape
and size control. Phospholipid composition determines the chemical and physical properties of the cell
membrane (Dowhan & Bogdanov, 2002), which is known to affect the function of cell division and
morphogenesis proteins such as MinD and MreB (Kawazura et al, 2017; Mileykovskaya et al, 2003).

By combining the tSNE and dbscan algorithms, we were able to cluster strains with similar phenoprints
into islands (Figs 4 and 5). This granular representation of the phenotypic space allowed us to expand
on well-studied archetypal phenotypes such as ‘filamentous’ and ‘fat’ (islands 22 and 21 of the morpho
archipelago, respectively, see Fig 4). This classification also allowed us to populate less well-studied
phenotypes, from which we can gain new insight into cell morphogenesis and the cell cycle. For example,
the substantial number of thin mutants reported here may prove as valuable as fat mutants to study cell
morphogenesis from a different angle. The clustering results also revealed entirely new classes of mutants.
In that respect, islands 4, 8 and 12 of the cell cycle archipelago are particularly interesting because they
offer a genetic toolkit to explore nucleoid and cell constriction dynamics, which have remained poorly
understood despite their essential role in cellular replication.

It is important to note that the phenoprints reported in this study are tied to the specific experimental
conditions of the screen. Cell size is well known to vary with nutrient conditions (Schaechter et al, 1958),
indicating that the behavior of the Keio mutants may be different in other environments. Differences in
growth conditions also lead to different metabolic requirements and growth limitations. For instance,
none of the mutant strains auxotrophic for nucleotides were able to grow in our synthetic medium,
which lacks nucleotide precursors. We also note that growth in 96-well plates likely corresponds to
micro-aerophilic conditions. Accordingly, we identified morphological deviations for strains deleted for
genes known to be only expressed under micro-aerophilic or anaerobic conditions, revealing new metabolic
connections to cell morphogenesis. For example, deletion of ybcF, which is predicted to encode an enzyme
involved in anaerobic purine degradation (Smith et al, 2012), results in a fat cell phenotype (Dataset
EV2).

In this study, each gene deletion can be seen as a perturbation. The sheer number of perturbations
(~4,000) guarantees a large number of independent perturbations and offers a unique opportunity to
infer the underlying correlation structure between the different phenotypes (Fig 8A). Such relationships,
or lack thereof, can be very informative. For instance, we found that growth rate is not predictive of
cell size. This is an interesting finding because current theoretical models of cell size control generally
include growth rate as a variable. Recently, the original growth law was modified to include a second
variable, the C+D period (time of DNA replication + time between the end of DNA replication and cell

12/62

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/101832doi: bioRxiv preprint 

https://doi.org/10.1101/101832
http://creativecommons.org/licenses/by/4.0/


E. coli quantitative microscopy screening

division), that influence cell size (Si et al, 2017; Zheng et al, 2016). Although we do not have specific
measurements of C+D periods and thus cannot directly compare our results to this general growth
law, the observed lack of correlation between growth rate and cell size remains surprising, especially for
the fast growing mutants (Appendix Fig S7). Growth inhibition and nutrient limitation experiments
have shown that the C+D period increases with slower growth rates (Kubitschek & Newman, 1978;
Si et al, 2017; Wallden et al, 2016). It is therefore possible that a lengthening of the C+D period in
slow growing mutants compensates for the growth rate difference, masking the relationship between the
growth rate and cell size in our dataset. However, under our nutrient-growth conditions of overlapping
DNA replication cycles (Appendix Fig S1A), the C+D period is supposed to have reached a plateau,
i.e., a minimal value that remains constant at even faster growth rates (Cooper & Helmstetter, 1968;
Helmstetter, 1968; Si et al, 2017; Wallden et al, 2016). Therefore, we would not expect fast growing
mutants to have a shorter C+D period that compensates for their faster growth rate. Future studies on
these fast-growing mutants could be enlightening.

The relative timings of nucleoid separation and cell constriction are independent of growth rate (Fig
EV4B, C). The absence of correlation between growth rate and the relative timing of these cell cycle
events was also observed for the wild-type strain when the growth rate was varied by changing the
composition of the growth medium (Den Blaauwen et al, 1999). Collectively, our findings show that the
cell can accommodate a large range of sizes and relative timings of nucleoid segregation and cell division
with no effect on growth rate, and vice versa. This flexibility may offer greater evolvability of cellular
dimensions and cell cycle progression.

The complexity of cellular systems can sometimes be reduced to simple quantitative relationships, which
have been very useful in identifying the governing principles by which cells integrate various processes
(Scott & Hwa, 2011). Our correlation analysis identified a strong linear relationship between nucleoid
size and cell size. This remarkable scaling property is independent of growth rate and holds across the
wide range of cellular perturbations present in the ~4,000 deletion strains examined in this study (Fig
8C and D). This result draws a striking parallel with the 100-year-old observation that nucleus size
scales with cell size in eukaryotes (Conklin, 1912), an empirical relationship that has been reported
for many eukaryotic cell types since (Vukovic et al, 2016). This suggests a universal size relationship
between DNA-containing organelles and the cell across taxonomic kingdoms, even for organisms that
lack a nuclear envelope.

Our information-theoretic Bayesian network analysis (Fig 8) enabled us to go beyond pairwise correlations
by integrating the complex set of interdependencies between cell morphogenesis, growth and cell cycle
events. This analysis unveiled an unexpected connection between average cell size and the relative
timings of nucleoid separation and cell constriction through nucleoid size across thousands of genetic
perturbations (Fig 8E and F). This finding suggests that the size of the nucleoid is an important element
of the coordination mechanism between cell morphogenesis and the cell cycle.

Materials and methods

Bacterial strains and growth conditions

The Keio collection contains 3,787 annotated single-gene in-frame deletion strains, 412 strains (referred
to as JW strains) with kanamycin cassette inserted at unknown locations, and the remainder (28) were
repeats (Baba et al, 2006).

All strains, including E. coli K12 BW25113 (Datsenko & Wanner, 2000) and derivatives (strains from
the Keio collection), as well as E. coli K12 MG1655 and isogenic ftsA* WM1659 strains (Geissler et al,
2007) were grown in M9 medium (6 g/L Na2HPO4·7H2O, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g NH4Cl, 2
mM MgSO4, 1 µg/mL thiamine) with 0.2% glucose as the carbon source and supplemented with 0.1%
casamino acids.
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Screening set-up and microscopy

All E. coli strains were grown overnight at 30°C in 96-well plates in M9 supplemented with 0.1% casamino
acids, 0.2% glucose and kanamycin (30 µg/mL). Cultures were diluted 1:300 in 150 µL of fresh M9
medium supplemented with 0.1% casamino acids and 0.2% glucose, and grown in 96-well plates at
30°C with continuous shaking in a BioTek plate reader. DAPI was added to the cultures to a final
concentration of 1 µg/mL 15 to 20 min prior imaging. All (parent and mutant) strains were sampled
within a very narrow range of OD600nm (0.2 ±0.1; min = 0.108 ; max = 0.350) corresponding to the
exponential growth phase (Appendix Fig S1D). We did not detect any trend between morphological/cell
cycle features and the OD600nm at which each culture was sampled. Cells were deposited (0.5 µL per
strain) on a large, 0.75-µm thick, M9-supplemented agarose pads with a multichannel pipet. The pads
were made by pouring warm agarose containing supplemented M9 medium between a (10.16 x 12.7 x
0.12 cm) glass slide and a (9.53 x 11.43 cm) n° 2 cover glass (Brain Research Laboratories, Newton, MA,
USA).

Microscopy was performed on an Eclipse Ti-E microscope (Nikon, Tokyo, Japan) equipped with Perfect
Focus System (Nikon, Tokyo, Japan) and an Orca-R2 camera (Hamamatsu Photonics, Hamamatsu
City, Japan) and a phase-contrast objective Plan Apochromat 100x/1.45 numerical aperture (Nikon,
Tokyo, Japan). The initial field of view for each strain was chosen manually and 9 images were taken
automatically over a 3x3 square lattice with 200 nm step, using 80 ms exposure for phase contrast and
600 ms exposure for the DAPI channel using Nikon Elements (Nikon, Tokyo, Japan).

Image processing

Cell outlines were detected using the MicrobeTracker software (Sliusarenko et al, 2011). All data
processing was then performed using MATLAB (The MathWorks Inc., Natick, MA, 2000). Custom-built
codes were used to automate the aggregation of data from the cell outlines of all the strains. Data are
available in Dataset EV1-2.

For cell and nucleoid detections, we consistently used the same parameters (See Appendix for parameters).
In order to avoid unnecessary bias in the cell outlines, the parameters defining the initial guess for the
cell contour fit were set to intermediate values, while the parameters constraining the fit of the final
outline were set to negligible values. For example, we increased the fsmooth parameter value to 100 in
order to capture both short and long cells, and we set the width spring constant parameter wspringconst
to 0 so as to avoid biasing the cell width estimate toward the initial guess value. The edges in the DAPI
fluorescence signal were detected with Oufti’s objectDetection tool (Paintdakhi et al, 2016) which is
based on a Laplacian of Gaussian filtering method that takes into account the dispersion of the point
spread function (PSF) of our microscopy setup at a wavelength of 460nm (input parameter σPSF set to
1.62 pixels).

Rifampicin run-out experiments

The number of ongoing replication cycles was examined in run-out experiments (Skarstad & Katayama,
2013). BW25113 cells were grown at 30°C either in M9 glycerol or M9 medium supplemented with 0.1%
casamino acids, 0.2% glucose and 1 µg/mL thiamine (as for the Keio screen described here). Cells were
grown up to exponential phase and then treated for 3 h with 30 µg/mL cephalexin and 300 µg/mL of
rifampicin prior to overnight fixation in 70% ethanol at 4 °C. Cells were washed twice with phosphate
buffered saline and then stained with DAPI (1µg/mL) prior to imaging on a PBS-containing agarose
pad. In M9 glycerol medium, E. coli BW25113 cells do not start a new round of replication before the
previous one ended (Cooper & Helmstetter, 1968; Wang et al, 2011). This growth condition was used as
a control to estimate the DAPI intensity corresponding to 1 and 2 genome equivalents.
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Data analysis

Dataset curation – Support Vector Machine (SVM) model

Due to the size of the dataset (>1,500,000 cells detected globally), we adopted an automated approach to
identify poorly (or wrongly) detected cells across the entire dataset. We developed an SVM model based
on 16 normalized features: cell length, cell width, cell area, cell volume, cell perimeter, cell constriction
degree, division ratio, integrated phase signal, integrated DAPI fluorescence signal, mean cell contour
intensity in phase contrast, variability of cell width along the cell, nucleoid area, single cell nucleoid
variability, cell circularity (2*π*cell area/(cell perimeter)2), nucleoid intensity and number of nucleoids.
We trained a binary classifier (positive or negative) over wild-type strain replicates as well as 419 mutants
with the most severe morphological defects prior to data curation. We visually scored 145,911 cells and
used 30% of them (43,774) to train the model. The model was evaluated using a k-fold cross-validation
approach, leading to a generalized misclassification rate of 10%. We used the remaining 70% of the data
set (102,137 cells) to validate the model. This SVM classifier achieves a balanced classification rate of
84% and features an AUROC of 0.94 (Appendix Fig S1E). Furthermore, the resulting group of false
negatives was not significantly different from the true positives (Appendix Fig S1F and G), indicating
that the classification did not introduce a bias by excluding a specific class of ‘good’ cells from the
analysis.

Data processing

For each feature, we checked and corrected for any bias associated with plate-to-plate variability,
differences in position on the 96-well plates, timing of imaging and optical density of the culture
(Appendix Fig S2-S4). For each plate, we set the median values of each feature, F, to the median feature
value of the parental strain.

The F values were transformed into normalized scores by a transformation akin to a z-score transformation
but more robust to outliers.

s =
1.35 ×

(
Fi −median

(
FWT
i

))
iqr(FWT

i )

where Fi is the corrected value for the mutant strains for feature i, FWT
i is the value for the wild-type

strain for feature i, and iqr stands for interquartile range. As the interquartile range of normally
distributed data is equal to 1.35 times their standard deviation, we scaled the score by this factor so as
to express the scores in terms of standard deviations away from the median.

The temporal biases for the fraction of cells committed (or not) to division and the fractions of cells with
1, 2 or more nucleoids were corrected using a Dirichlet regression to maintain the relative proportions
between classes (Appendix Fig S3) (Maier, 2014). In an exponentially expanding population of growing E.
coli cells at steady state, the fraction of cells in the population before the occurrence of a cell cycle event
is related to the cell age at which this event occurs by a monotonic relationship (Collins & Richmond,
1962). The proportions of cells at different cell cycle stages are therefore used to infer the relative
proportions of different cell cycle stages and the cell age at which a specific cell cycle event occurs
(Collins & Richmond, 1962; Powell, 1956). These inferences rely on the assumption of ergodicity, which
is assumed in the analysis of population-based experiments such as cell cycle studies by flow cytometry
or marker frequency analysis (Grangeon et al, 2015; Kafri et al, 2013). One limitation of this approach is
that only relative timings or proportions can be inferred, and no conclusions should be drawn on the
absolute duration of the different periods without any other hypothesis. For instance, a reduction of the
fraction of cells with one nucleoid could result either from an actual reduction in the cell cycle period
associated with one nucleoid, or from a lengthening of the period associated with cells with two or more
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nucleoids. In both cases, we can, however, conclude that the separation of nucleoids happens earlier in
relative cell cycle units.

Data exploration, dimensionality reduction and clustering

A similarity measure between strains was needed to identify and separate different phenoprints. Pearson
correlations or Euclidean distances classically provide such similarity measures, and Principle Component
Analysis (PCA) and/or hierarchical or k-means clustering are often used. However, PCA tends to explode
datasets and Pearson correlations do not always reflect the desired type of similarity. As an extreme
example, consider two strains with two phenoprints that are proportional, one with values within a
very small score range, such as [-1 1], while the other with score values spanning the [-10 10] range.
These two strains will get a maximal similarity measure through a correlation analysis, despite the fact
that the first strain is wild-type-like while the other is an outlier. Instead we chose to use a recently
described algorithm, called t-distributed Stochastic Neighbor Embedding, or t-SNE (van der Maaten &
Hinton, 2008), to project our multidimensional datasets in 2 dimensions and generate, at the same time,
similarity measures between strains. t-SNE estimates low-dimensional space distances between points
based on their similarity, as opposed to dissimilarity as in the case of PCA, thereby highlighting local
similarities rather than global disparities.

We used the stochastic nature of the t-SNE algorithm to evaluate the robustness of the resulting projection
by repeating the procedure multiple times (n = 100 for each tSNE map). We coupled this dimensional
reduction procedure with a density-based clustering algorithm, dbscan (Ester et al, 1996), to group
strains with similar phenoprints. The two input parameters of the dbscan algorithm, ε and minPoints,
were optimized so as to generate a maximum number of islands without separating the bulk of WT
strains in two or more islands. Islands include strains that clustered together more than 90% of the time.

The convergence of the dimensionality reduction was verified by repeating the tSNE dimensionality
reduction on sub-samples of the initial dataset (1,225 x 21 matrix). In this approach akin to cross-
validation, we generated 50 partitions of either 1,200 or 1,201 strains, holding out disjoint sets of points,
with the cvpartition built-in function in MATLAB, and repeated the dimensional reduction with the
tSNE algorithm 10 times for each partition. We first compared the pairwise distances between the points
in each of these 500 tSNE maps with the pairwise distances between the corresponding points in the
tSNE map presented in Fig4A. The distribution of Pearson correlation coefficients between these sets
of distances, calculated with a kernel density estimation function (Botev et al, 2010), is illustrated in
Appendix Fig S8A (red curve). This distribution is highly similar to the distribution obtained from the
repetition of the tSNE dimensional reduction on the full dataset (1,225 strains – blue curve in Appendix
S8A), and suggests that the algorithm converges toward a global minimum. The bimodality in the
distribution of the Pearson correlation coefficients is not due to specific sub-samples (Appendix Fig
S8B) and rather reflects the stochasticity of the tSNE algorithm and the low weight carried by large
distances in the map. For example, the displacement of a well isolated island relative to others may
not impact strongly the minimized score of this tSNE map, but would definitely reduce the Pearson
correlation coefficient between this map and the reference tSNE map presented in Fig 4A. Using the same
parameters as for the full dataset (ε = 4.9, minPoints = 3), we verified that the dbscan algorithm results
in a similar clustering as in the global map. The resulting clusters for each tSNE map associated with
a sub-sample of the dataset was compared with the clustering output presented in Fig 4A and B. For
each reference cluster (islands in Fig 4A), we identified all the representative points of this cluster in the
sub-sample tSNE map and calculated the ratio between the maximal number of these points clustering
together in this sub-sample map divided by the total number of representative points of the reference
cluster in this sub-sampling. This ratio is akin to the Jaccard index for each reference cluster, and all
indexes for a given map were averaged to provide a score to each tSNE map. The distribution of these
scores (10 scores per sub-sample corresponding to the 10 tSNE maps calculated for each sub-sample) are
represented in the boxplot in Fig S8C. The average indexes are typically above 0.9, which reflects the
threshold used to generate the clusters as points clustering in more than 90% of the tSNE maps. The
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same reproducibility of clustering in the sub-sample tSNE maps is also a good indication that the tSNE
dimensional reduction converges toward an optimal embedding.

Map exploration

Each t-SNE map is a similarity map, and can therefore be treated as a network where the nodes represent
strains and the edges the Euclidean distance between strains in the tSNE map. Building up on recent
quantitative network analysis tools (Baryshnikova, 2016), we calculated the local enrichment in the maps
of different strain-associated attributes, such as COG and GO terms. Briefly, the sum of the attributes
in a local area (within a radius around each point, defined as the 1-percentile of the distribution of all
the pairwise distances between points) was compared to a background score (defined as the average score
obtained over 1000 identical maps with randomly permutated attributes) with a hypergeometric test.
The significant local enrichments were considered at a threshold of 0.05 after adjusting for false discovery
rate correction with the Benjamini-Yekutieli (BY) procedure, taking into account dependencies between
tests (Benjamini & Yekutieli, 2001). The SAFE algorithm proposed by Baryshnikova (Baryshnikova,
2016) was implemented as a MATLAB function mapEnrich.m (see computer code EV1A).

Cluster of orthologous gene enrichment analysis

We associated E. coli BW25113 genes with COGs using the web server (Van Domselaar et al, 2005). The
enrichment analyses were performed using a custom-built algorithm in MATLAB based on a two-tailed
hypergeometric test to compute p-values, which were subsequently adjusted with the Benjamini-Hochberg
(BH) False Discovery Rate procedure (Benjamini & Hochberg, 1995) (Computer code EV1B). Because
the COG categories are largely independent, we did not consider any correction for the dependence
between tests.

Gene ontology analysis

We used ontologies from the Gene Ontology website (http://www.geneontology.org/ontology/gene_ontology.obo,
version 2016-05-27) (Ashburner et al, 2000), and annotations were obtained from EcoCyc for E. coli
strain MG1655 (Keseler et al, 2013). Analysis was performed using a MATLAB custom-built algorithm
that includes a hypergeometric test to compute p-values that were subsequently adjusted with the BY
False Discovery Rate procedure (Benjamini & Yekutieli, 2001) (Computer code EV1B).

Bayesian network

The Bayesian network presented in Fig 8 was generated in R with the bnlearn package (Scutari, 2010),
using the ARACNE algorithm as described in (Margolin et al, 2006). The network was bootstrapped 200
times, and all the edges were identified in more than 70% of the networks. We assessed the strength and
the origin of collinearity among features using Belsley diagnostic method (Belsley et al, 1980), with the
built-in collintest.m function in MATLAB. We excluded features associated with a ‘condition number’
above the classical threshold of 30.

Calculation of confidence intervals

As the true correlation between two normally distributed variables approaches 1 or -1, the probability
density distribution of the estimated correlation becomes highly skewed and far from normal. For Pearson
correlations (ρ), this distribution can be transformed using Fisher z-transform to approximate a normal
distribution for any true correlation value r (Fisher, 1915):
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z = 1
2 ln

(
1 + r

1 − r

)

The variable z follows a normal distribution with mean 1
2 ln

(
1+ρ
1−ρ

)
and standard error 1√

n−3 , where ρ
and n are the estimated Pearson correlation value and the sample size, respectively.

Using this transformation, the limits of the distribution covering the 95% most probable values of the
distribution can be calculated using the 2.5 and 97.5 percentiles of the normal distribution centered on
1
2 ln

(
1+ρ
1−ρ

)
with standard deviation 1√

n−3 .

[zlow, zup] = z ± z97.5%

√
1

n− 3

The inverse transformation on these confidence boundaries on z is then used to calculate the 95%
confidence upper and lower limits for the estimated correlation value ρ.

ρlow = e2 zlow − 1
e2 zlow + 1; ρup = e2 zup − 1

e2 zup + 1

Unfortunately, a similar approach cannot be employed for an estimated Kendall correlation (τ) value
(Long & Cliff, 1997). To generate 95 % CIs, we used a bootstrapping approach (Efron & Tibshirani,
1993). Correlation values were calculated between 5000 resampled (with replacement) variable pairs.
The 2.5 and 97.5 percentiles of the obtained distribution of correlation values were subsequently taken as
the respective lower and upper boundaries of the bootstrapped 95 % CIs.

Data representation

All graphs were generated using MATLAB, except for the networks in Fig 4C and Fig 8A panels, which
were created using Cytoscape v3.2 (Shannon et al, 2003) and the Rgraphviz package in R (Hansen et al),
respectively. For Fig 4C, we used the built-in edge-weighted, spring embedded algorithm in Cytoscape.
We considered the pairwise Euclidean distances between the 9 strains of island 22 as the weights of the
edges connecting the nodes (or strains).

The density scales in scatter plots represent the number of points around each point in a radius equal to
the 0.03 percentile of the pairwise distances distribution.

The WT isocontours representing the 0.5, 0.75 and 0.95 probability envelopes for the 240 WT replicates
were calculated using a 2D kernel density estimation function over a 128-by-128 lattice covering the
entire set of points. The bandwidth of the kernel was internally determined (Botev et al, 2010).

Simulations of cell length distributions

Cell length distributions at any given cell age were assumed to be log-normally distributed with
different dispersion values. The CV of the distribution for the WT strain (CV = 0.11) was previously
experimentally determined (Campos et al, 2014). The cell length distributions at 100 different ages
equidistantly distributed between 0 (birth) and 1 (division) were convolved with the cell age distribution,
assuming an exponentially growing culture, Pr(age) = 2−age.
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Dataset EV1. Raw data

Excel file (*.xlsx) of the raw data of SVM-curated dataset prior to any correction and normalization.

Dataset EV2. Score table

Excel file compiling all quantitative information about each strain imaged in this study, including the
scores and measured values (after correction and normalization) for each morphological, growth and cell
cycle feature, as well as their association to a morpho or cell-cycle island when appropriate.

Computer Code EV1A

MATLAB-based function used to calculate local enrichments for GO terms (related to Fig 4E and Fig
5D). For each point in the tSNE map, a neighborhood was defined by taking all the points closer than a
distance r defined as the 1-percentile of the distribution of pairwise distances among all points in the
tSNE map. For each GO term, a hypergeometric test was performed within each neighborhood. The
resulting p-values are adjusted to control the false discovery rate using the BY procedure (Benjamini &
Yekutieli, 2001).

Computer Code EV1B

MATLAB-based function dedicated to false discovery rate control. The function takes a set of p-values,
a threshold and a procedure as inputs, and provides a set of adjusted p-values (q-values) and a logical
array indicating which q-value is below the threshold used as an input. The two possible procedures to
control the FDR correspond to the algorithms known as the BY and BH procedures, taking into account
dependencies between tests (BY procedure) (Benjamini & Yekutieli, 2001), or not (BH procedure)
(Benjamini & Hochberg, 1995). The p-values associated with COGs enrichments were corrected with
the BH algorithm, which is not taking into account dependencies between tests because COGs are
vastly non-overlapping. The p-values associated with GO term enrichments were corrected with the BY
algorithm because GO terms can encompass overlapping sets of genes.
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Figures

Figure 1. Experimental approach and reproducibility.

A. Experimental workflow. Single gene knockout strains from the Keio collection were grown in M9
supplemented medium at 30◦C in 96-well plates. DNA was stained with DAPI prior to imaging and nine
images were taken in both phase-contrast and DAPI channels. The images were then processed with
MicrobeTracker and Oufti to identify the cell and nucleoid contours. In parallel, we recorded the growth
curve of each imaged strain in order to extract growth parameters.

B. A SVM model was trained via visual scoring of 43,774 cells.

C. Confusion matrix of the SVM model based on a large validation dataset (102,137 cells), illustrating
the distribution of the SVM classifier output in comparison to the visual classification.

D. Comparison of the average cell length of 178 strains obtained from two independent 96-well cultures
of the 176 most phenotypically remarkable Keio strains and 2 WT replicates.
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Figure 2. Distribution of morphological, cell cycle and growth phenotypes in the E. coli
Keio strain collection.

Bubble graphs representing, for each feature, the number of strains with a score value, s, beyond 3,
4, 5 or 6 times the interquartile range away from the median of the WT distribution (240 replicates),
corrected by a factor 1.35 to express the deviation in terms of standard deviations (iqr ≈ 1.35 x σ for
a normal distribution). The size of the circles (bubbles) reflects the number of strains with a score
beyond a specific, color-coded threshold for s, as indicated. The ‘reference’ bubble graph illustrates the
expectations from a dataset of the same size (4,227 strains), assuming a standardized normal distribution
of scores (with a mean of 0 and a standard deviation of 1).
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Figure 3. Feature-based COG enrichment analysis.

A. Pie charts representing, on a feature-by-feature basis, the relative distribution of COG categories
among the gene deletion strains associated with s > 3. The enriched COG categories are labeled and
highlighted with an exploded pie sector. The under-represented COG categories are further highlighted
by an asterisk. Enrichments and under-representations with an associated (FDR-corrected) q-value <
0.05 were considered significant. Only morphological and growth features with at least one enriched or
under-represented COG category are represented.

B. Same as A but for s 6 -3.
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Figure 4. The morpho archipelago.

A. Average 2D tSNE map of the 985 strains with at least one morphological or growth feature with a
|s| > 3, plus the 240 independent WT replicates used as controls. Color-coded islands resulting from
the dbscan algorithm (ε = 4.9, minPoints = 3) were defined by groups of strains clustering together
with the same dbscan parameters in more than 90% of the generated tSNE maps. Dots in the scatter
plot (left graph) represent strains color-coded based on their island affiliation (right graph). Light grey
dots represent strains that were not consistently (less than 90% of the time) associated with one of the
islands.

B. Heatmap showing, for each island, the average score of each morphological and growth feature used
for the construction of the map.

C. Network representation of island 22 grouping filamentous mutants. The weights were directly derived
from the average distances between corresponding mutant strains in the 2D tSNE maps.

D. Internal structure of the mean and CV of width in island 16. The average gradients of phenotypes
over the area of the island 16 are represented with arrows.

E. Shown are the enriched “biological process” GO terms associated with false discovery rate below 0.05.
For a list of all enriched GO terms, see Table S2.
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Figure 5. The cell cycle archipelago.

A. Stable islands in the cell cycle archipelago. The cell cycle and growth phenoprints were used to map
the 397 mutant strains with at least one cell cycle or growth feature with a |s| � 3, as well as the 240
independent WT replicates, in 2D using tSNE. As for the morpho archipelago, the data were clustered
using the dbscan algorithm. The groups of strains clustering (dbscan parameters ε = 4.28, minPoints =
3) together in more than 90% of the maps defined an island. Dots in the scatter plot on the left represent
strains and are colored with the same color code as for the island on the right graph. Light grey dots
represent strains that were not consistently (less than 90% of the time) associated with one of the island.

B. Heatmap showing, for each island, the average score of each cell cycle and growth feature used for
the construction of the map.

C. Islands shown in panel A were colored according to their average score for each listed feature.

D. Shown are the enriched “biological process” GO terms associated with false discovery rate below 0.05.
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For a list of all enriched GO terms, see Table S2.

E. The islands in the cell cycle archipelago were colored according to the proportion of ‘y-genes’ (genes
of unknown function).
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Figure 6. Nucleoid separation and cell constriction dynamics.

A. Scatter plot of the relative timing of cell constriction versus the relative timing of nucleoid separation.
The gray scale indicates the density of dots in a given area of the chart. The dotted contours represent
the 0.5, 0.75 and 0.95 probability contours of the 240 WT replicates. The Pearson correlation is ρ =
0.65, with a 95% CI = [0.63, 0.66]. The black dotted diagonal represents the line where a strain should
be if both nucleoid separation and cell constriction happens at the same time. Red dots highlight strains
shown in panels C, D and E.
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B. Close-up view of the cell cycle island 8 with each dot representing a Keio strain colored according to
the two features driving the clustering of the 48 strains. The relative timing of nucleoid separation is the
dominant feature of island 8, while the relative timing of cell constriction drives the layout of the strains
within the island.

C. Average dynamics of nucleoid separation and cell constriction for WT and the ∆matP mutant strain.
The cumulative distributions of the fraction of cells with two nucleoids (blue) and of the fraction of
cells with a constriction degree above 0.15 (red) were plotted against cell age. Cell age was calculated
according to the rank of each cell based on their cell length with the formula agei (F ) = − ln(1−F

2 )
ln(2) ,

where F represents the fraction of cells with a cell length equal or below the length of cell i (Wold et al,
1994).

D. Same plots as in C for three strains clustering in island 8 with the ∆matP strain. The WT curves
shown in C were plotted in gray for comparison.

E. Same plots as in C for two island-8 strains, ∆ycjV and ∆hslU, and the ∆hslV strain, which does not
partition in island 8.
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Figure 7. Cell length regulation mutants.

A. Scatter plot of the mean cell length versus the CV of the length for all the strains. The gray color
levels indicate the density of points in the vicinity of each strain. The orange dots and error bars represent
the mean and standard error of the mean per bin.

B. The cumulative distribution of the proportion of constricting cells for the ftsA* mutant and its parent
were plotted against cell age. We measured the degree of constriction of all cells using Oufti. For each
strain, we had two independently acquired image sets (n = 496 and 1,168 cells for the WT replicates and
n = 692 and 1,506 cells for the ftsA* replicates). The distributions of the degree of constriction were
not significantly different among the four datasets at a threshold p-value of 0.01 using a Kruskal-Wallis
multi-comparison test. Moreover, Bonferroni-corrected post-hoc pairwise tests did not allow a distinction
between WT and ftsA* samples.

C. Scatter plot of the CV of the cell length for the whole population versus the CV of the cell length for
constricting cells only. The contour lines represent the 0.5, 075 and 0.95 probability envelopes of the 240
independent WT replicates. The gray color levels indicate the density of points in the vicinity of each
strain. The ∆mraZ strain discussed in the text is highlighted in red.
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Figure 8. Interdependence of cell morphogenesis and cell cycle progression.

A. Network showing the functional relationship between 10 non-collinear morphological, growth and
cell cycle features. The network is an undirected network highlighting the most informative connections
detected by the ARACNE algorithm. The thickness of an edge represents the fraction of the networks
containing this specific edge after bootstrapping the network 200 times, from 70% (thinnest) to 100%
(thickest).

B. Scatter plot of the normalized mean cell length and mean cell width of all 4,227 Keio strains and 240
WT replicates. Each dot represents a strain, and the gray level illustrates the density of neighbors in the
vicinity of each point in the graph. The dotted contours represent the 0.5, 0.75 and 0.95 probability
envelopes of the 240 WT replicates. The correlation between mean cell width and mean cell length is
low (ρ = 0.06, 95% CI [0.03, 0.09]).

C. Heatmap showing the mean growth rate value for data binned by both mean cell area and mean
nucleoid area. The cell and nucleoid areas are strongly correlated (ρ = 0.84, 95% CI [0.83, 0.85]). The
median value of αmax per bin is color-coded according to the color scale. The inset highlights the linearity
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of the relationship between mean cell area and mean nucleoid area. The orange dots and error bars
represent the binned data, with the black line showing the best linear fit to the binned data.

D. Scatter plot of the mean cell area versus the mean nucleoid area for cells with 1, 2, 3 or >4 nucleoids
for each strain. The histogram in the inset illustrates the average proportions of cells with 1, 2, 3 or >4
nucleoids per strain. Although there were typically few cells in each strain with 3 or >4 nucleoids, at
least one cell with >3 nucleoids was detected for 61% of the strains.

E. Heatmap showing the mean growth rate value for data binned by both the mean nucleoid area and
the relative timing of nucleoid separation. The mean nucleoid area negatively correlates with the relative
timing of nucleoid separation (ρ = -0.48, 95% CI [-0.50, -0.45]).

F. Heatmap showing the mean cell area value for data binned by both the relative timing of cell
constriction and the relative timing of nucleoid separation. The relative timing of cell constriction is
strongly correlated to the relative timing of nucleoid separation (ρ = 0.65, 95% CI [0.63, 0.66]).
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Expanded View Figures

Figure EV1. Filamentous mutants.

A. Representative phase-contrast images of the mutants forming the island 22, together with the parental
strain BW25113 (WT) for comparison.

B. Effect of the kanamycin-resistance cassette on the phenotype of the ∆croE strain. The schematic
at the top shows the color-mapped score of CV of cell length for the deletion of each gene of the croE
operon. Below are phase-contrast and fluorescent images of DAPI-stained cells of the ∆croE strain
carrying the kanamycin resistance cassette (top) or after the removal of the cassette (bottom). The
ymfN locus has been re-annotated as two separate genes (oweE and aaaE), and the Keio deletion strain
of ymfN carries the deletion of these two contiguous genes.

C. Effect of the kanamycin-resistance cassette on the phenotype of the ∆ydaS strain. The schematic at
the top shows the color-mapped score of the mean cell length for each gene of the ydaS operon. Below are
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phase-contrast and fluorescent images of DAPI-stained cells of the ∆ydaS strain carrying the kanamycin
resistance cassette (top) or after the removal of the cassette (bottom).
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Figure EV2. Specific pathways associated with impaired cell morphology.

A. Schematic of the ECA biosynthetic pathway in which each gene name has been colored by the severity
of the mean circularity (<C>) phenotype.

B. Scatter plot of cell width versus cell length for three independent liquid cultures of the ∆rapZ strain
(n = 564, 268 and 343 cells) in well-agitated test tubes. The dotted lines represent iso-contours of a 2D
histogram of cell length and cell width for the parental strain (WT, n = 1,045 cells). The cell width
distributions of the WT and ∆rapZ strains are represented on the right of the scatter plot (all three
replicates for the ∆rapZ strain were pooled together).

C. Schematics of the ATP synthase, the high-affinity ABC phosphate transporter and its related proteins.
Proteins and subunits have been colored according to the severity of the mean cell width (<W>)
phenotype in the corresponding gene deletion strains.

D. Bar graph showing the mean cell length (<L>), width (<W>) and area (<A>) scores for the ∆fadR
and ∆fabF deletion strains. The scores for saturated and unsaturated phospholipid metabolites detected
in these strains by Fuhrer et al. (2017) are represented as a heatmap.
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Figure EV3. Simulation showing that the cell length variability of the entire population can
mask abnormal cell length variability at a specific cell cycle period. Cell length distributions
were simulated over different ranges of cell ages (see Materials and methods). The cell length distribution
of constricting cells was determined by summing the cell length distributions of all cells of age > 0.8,
assuming different CV of the cell length distribution (0.05, 0.11 and 0.2) at a specific age. The cell length
distribution of the whole population was determined by summing the distributions at all ages, from birth
to division.
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Figure EV4. Growth rate correlates poorly with morphological and cell cycle features.

A. Scatter plots of morphological and cell cycle features versus αmax. Each grey dot represents one Keio
strain. The Kendall correlation coefficient τ and the associated 95% confidence interval are reported
for each pair of features. The confidence intervals were calculated by bootstrapping the correlation
5000 times and taking the 2.5 and 97.5 percentiles of the resulting distribution. The Kendall ranked
correlation τ was selected over Pearson correlation because of the heavily asymmetric left tail in the
distribution of αmax.

B. Heatmap showing the mean growth rate value for data binned by the relative timings of cell constriction
and nucleoid separation.

C. Same as B, except for data binned by mean cell length and mean cell width.

43/62

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/101832doi: bioRxiv preprint 

https://doi.org/10.1101/101832
http://creativecommons.org/licenses/by/4.0/


E. coli quantitative microscopy screening

Figure EV5. The sample size affects the confidence in the estimation of the correlation
coefficient.

The scores for the <L> and <W> features were sampled 5,000 times independently with replacement
with different sample sizes (n = 10, 25, 50, 100, 200, 400, 1,000 or 4,227), and the Pearson correlation
coefficient was calculated at each sampling. The distribution of the 5,000 correlation values obtained
for each sample size is represented with a different color. The probability density distributions were
estimated using a kernel density estimation method (Botev et al, 2010). The plot shows that a small
sampling size, such as n =10, results in a wide distribution of possible Pearson correlations. Increasing
the sample size narrows down the distribution, increasing the confidence in the obtained correlation
value.
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Appendix Figures

Appendix Figure S1. Feature determination and SVM model validation

A. Distribution of genome equivalents per cell determined by the signal intensity of DAPI DNA stain
after a replication run-out experiment. BW25113 cells were grown at 30◦C either in M9 glycerol (poor
nutrient condition – orange curve) or under the same growth conditions as for the screen (M9 glucose
supplemented with casamino acids, a richer nutrient condition – blue curve), and then treated with
rifampicin and cephalexin for 3 h to block cell division and prevent new rounds of DNA replication. Cells
grown in M9 glycerol undergo a single cycle of DNA replication per division cycle (Cooper & Helmstetter,
1968; Wang et al, 2011). After rifampicin and cephalexin treatment, these cells contained either one
or two chromosomes, and displayed a fluorescence level with DAPI corresponding to 1 and 2 genome
equivalents. This calibration was used to determine the number of genomes per cell for cells growing
under the richer nutrient conditions used for the screen.
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B. Typical growth curve represented as the log2 of OD600nm as a function of time. The red line shows

the best Gompertz fit to the curve (OD (t) = aee
be1(c−t)

a
+1+d where t is time and a, b, c and d are the

four fitted parameters). The dotted line highlights the segment of maximal growth. The OD600nm was
averaged over the last hour of growth (gray box) to estimate the saturation level of the culture (ODmax).

C. Scatter plot showing the relationship between the OD600nm at αmax calculated from the growth curve
and fitted curve. The correlation between both optical densities is high (ρ = 0.984, 95% CI [0.983,
0.985]).

D. Histogram showing the ratio between the optical density at the time of sampling (ODimaging) and the
optical density at saturation of the culture (ODmax) measured from the growth curve. The mean value
of this ratio is low (0.218 ± 0.052), indicating that Keio strains were imaged early in their population
growth cycle.

E. AUROC curve (performance curve) related to the SVM model on the dataset that was not used to
train the model. The dotted line y=x represents the expectation from a random classification.

F. Ratios between the mean values of each predictor for the visually-curated and SVM-curated datasets,
showing the lack of bias.

G. Cumulative distributions of mean score ratios between visually- and SVM-curated datasets of mean
and CV predictor values for the 419 strains with the most extreme phenotypes. The steepness of the
curves shows that the SVM model performed well, even for strains with strong phenotypic defects.

H. Plot showing how two cell cycle features, the correlation between the degrees of constriction of the
nucleoid and of the cell (ρ CD) and the projected degree of nucleoid constriction at the onset of cell
constriction (CDNC0), were calculated using a WT culture as an example. The degree of constriction
for both the nucleoid and the cell (considering only cells with a degree of cell constriction over 15%)
were used to calculate their Pearson correlation coefficient (ρ CD). The correlation coefficient can be
interpreted as the slope of the line passing through the data, and the intercept of this line with the y-axis
provides the average degree of constriction of the nucleoid at the onset of cell constriction (CDNC0).
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Appendix Figure S2. Evaluation of positional and temporal biases related to imaging.

A. Plate-by-plate normalization. Each plate is color-coded according to the 96-well plate number. The
black dots represent the mean feature value per plate, ± standard deviation.

B. Scatter plots for each feature of all strains as a function of the time elapsed since spotting cells on
the pad for imaging. The red line in each graph represents the smoothing spline (calculated with a span
of 20%) that was used to correct any temporal bias.
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Appendix Figure S3. Temporal bias correction for proportional features.

A. Scatter plot showing the proportions of constricting (blue) and non-constricting cells (red) for all
strains (n = 4,227) as a function of the time elapsed between the time the cells were spotted on the
pad and the time they were imaged. The solid black lines represent the correction factors over time,
derived from a quadratic form Dirichlet regression to the data. The Dirichlet regression allows for the
maintenance of the additivity of the proportion (Maier, 2014).

B. Same as in A for the complementary proportions of cells with 1 (blue), 2 (red) or more than 2 (yellow)
nucleoids. The fitted model was quadratic for the first two features (1 and 2 nucleoids) and linear for the
cells with more than 2 nucleoids.
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Appendix Figure S4. Temporal detrending. Scatter plot of the detrended data for all features.
The red line in each graph represents the smoothing spline (calculated with a span of 20%). The flat
profile for each of these average profiles illustrates the absence of temporal trend in the normalized data.
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Appendix Figure S5. Feature-based COG distribution analysis. Pie charts representing, on a
feature-by-feature basis, the relative distribution of COG categories among the gene deletion strains
associated with a severe phenotype: A. s > 3, B. s 6 -3. All the features that were not included in
Figure 3 are represented. The enriched COG categories are highlighted with an exploded pie sector.
Enrichments with an associated (FDR corrected) q-value < 0.05 were considered significant.
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Appendix Figure S6. Principal component analysis of the phenoprints associated with the
morphological and growth mutants. Scatter plot showing the coordinates of each strain in the first
two principal components space. The density of points in any given area of the 2D space is illustrated by
a color scale.
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Appendix Figure S7. Growth rate is not predictive of cell size even for fast-growing
mutants. Bootstrapped Kendall correlation values (5,000 samplings) between growth rate (αmax) and
mean cell volume (<V>) for all Keio strains (n = 4,227 strains) or for faster growing strains with αmax
score > 1 (n = 809 strains), αmax score > 1.5 (n = 415 strains), αmax score > 2 (n = 200 strains), αmax
score > 2.5 (n = 112 strains), αmax score > 3 (n = 63 strains).
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Appendix Figure S8. Convergence of the dimensional reduction with tSNE.

A. Probability density distribution of the Pearson correlation coefficients between pairwise distances of
the points defined in the tSNE map represented in Fig 4A and those defined in 99 other tSNE maps for
the 1,225 strains that exhibit a |s| > 3 for at least one morphological or growth feature (blue curve).
We subsampled the original dataset in 50 disjoint sets of phenoprints, and generated 10 independent
tSNE maps for each one. We then calculated the Pearson correlation coefficient between the tSNE
coordinates of these points in each of these 500 tSNE maps with their corresponding coordinates in the
tSNE map presented in Fig 4A. The orange curve represents the probability density distribution of these
correlation values. The results show that all 500 tSNE maps are very similar despite their stochastic
nature, indicating convergence.

B. Box plot showing the tight distributions of Pearson correlation coefficients between the pairwise
distances between points for 10 independent tSNE maps calculated for each of the 50 sub-samples (500
tSNE maps) and their corresponding points in the tSNE map presented in Fig 4A. The blue boxes filled
in gray represent the interquartile range, the red horizontal lines correspond to the median values, the
whiskers cover the 2.7 standard deviation around the mean under a normality assumption, and the red
crosses show the outliers beyond the limit of the whiskers.

C. Box plot showing the high degree of reproducibility of the dbscan clustering presented in Fig 4A.
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The dbscan algorithm was run on the subsample tSNE maps with the same parameters as for the full
sample tSNE map (eps = 4.9, minPts = 3). The Jaccard index was calculated for each cluster using the
clustering presented in Fig 4A as reference and all indexes were averaged over all clusters to score each
of the 10 selected maps, providing 10 scores for each sub-sample. The blue boxes filled in gray represent
the interquartile range, the red horizontal lines correspond to the median values, the whiskers cover the
2.7 standard deviation around the mean under a normality assumption, and the red crosses show the
outliers beyond the limit of the whiskers.
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Appendix Tables

Table S1. Features considered in this study and their associated symbols. The aspect ratio
was defined as the ratio of cell width over cell length at the single-cell level. The circularity, C, was
defined as C = 4πA

P 2 , at the single-cell level, where P stands for perimeter and A for area. The relative
timing of cell constriction and nucleoid separation were estimated as the proportions of cells without
any significant constriction (constriction degree <0.15) or with a single nucleoid, respectively. For all
cells with a significant constriction degree, we calculated the Pearson correlation coefficient between
the constriction degrees of the cell and of its nucleoid (ρCD). The nucleoid constriction degree at the
initiation of cell constriction (CDNC0) was determined as the intercept of a line with a slope determined
by the correlation coefficient that best fitted the single-cell data used to calculate ρ CD (see Appendix
Fig S1E).

Feature Symbol
Morphological features
Mean cell length <L>
Cell length variability CVL
Mean cell width <W>
Cell width variability CVW
Mean cell area <A>
Cell area variability CVA
Mean cell volume <V>
Cell volume variability CVV
Mean cell surface area <SA>
Cell surface area variability CVSA
Mean cell perimeter <P>
Cell perimeter variability CVP
Mean circularity <C>
Circularity variability CVC
Mean aspect ratio <Ar>
Aspect ratio variability CVAr
Mean surface area-to-volume ratio <SA/V>
Surface area-to-volume ratio variability CVSA/V
Division ratio variability CVDR
Mean nucleoid area <NA>
Nucleoid area variability CVNA

Growth features
Max growth rate αmax
Optical density at growth saturation ODmax

Cell cycle features
Correlation in nucleoid and cell constriction ρCD
Nucleoid constriction degree at the initiation of cell constriction CDNC0
Relative timing of cell constriction Rel. timing div
Relative timing of nucleoid separation Rel. timing nuc
Fraction of cells with 2 nucleoids %2N
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Table S2. Enriched GO terms in the morpho and cell cycle archipelagos. GO term enrichments
were assessed by neighborhoods (see Materials and methods). The table shows the enriched GO terms
with a p-value adjusted for a false discovery rate below 0.05. A GO term can be enriched in multiple
overlapping neighborhoods. The table lists, for each enriched GO term, the highest (least significant)
adjusted p-value and the associated p-value that was calculated for all the overlapping neighborhoods
where each GO term was enriched. The corresponding p-value is also reported. The color of the
enrichment zone indicated in the “neighborhood” column refers to the color of the neighborhoods where
the GO term is enriched in Fig 4E and Fig 5D. Finally, the type of ontology with which each GO term is
associated is indicated in the “ontology” column.

GO term Highest
p-value

Highest
adjusted
p-value

Neighborhood Ontology

Morpho archipelago

Arginine biosynthetic process 8.11E-11 6.49E-08 dark blue biological_process
Cellular amino acid biosynthetic process 3.55E-10 2.84E-07 dark blue biological_process
ATP biosynthetic process 5.09E-08 4.65E-05 grey biological_process
ATP synthesis coupled proton transport 2.19E-08 2.00E-05 grey biological_process
ion transport 4.28E-06 3.92E-03 grey biological_process
plasma membrane ATP synthesis coupled proton transport 7.32E-09 6.69E-06 grey biological_process
proton transport 1.93E-06 1.76E-03 grey biological_process
proton-transporting ATP synthase activity, rotational mecha-
nism

2.19E-08 2.00E-05 grey molecular_function

proton-transporting ATPase activity, rotational mechanism 2.19E-08 2.00E-05 grey molecular_function
biotin biosynthetic process 3.89E-05 4.14E-02 light blue biological_process
FtsZ-dependent cytokinesis 5.96E-06 4.24E-03 orange biological_process
cell division 1.32E-05 2.82E-02 red biological_process
cysteine biosynthetic process 3.70E-05 4.74E-02 slate blue biological_process
hydrogen sulfide biosynthetic process 1.11E-06 1.02E-03 slate blue biological_process
sulfate assimilation 2.50E-07 2.29E-04 slate blue biological_process
enterobacterial common antigen biosynthetic process 5.03E-05 4.60E-02 yellow biological_process

Cell cycle archipelago

hydrogen sulfide biosynthetic process 2.75E-06 2.09E-03 blue biological_process
sulfate assimilation 1.16E-05 8.76E-03 blue biological_process
sulfite reductase complex (NADPH) 4.83E-05 3.66E-02 blue cellular_component
sulfite reductase (NADPH) activity 4.83E-05 3.66E-02 blue molecular_function
phosphate ion transmembrane transport 2.75E-06 6.26E-03 brown biological_process
phosphate ion transport 2.75E-06 6.26E-03 brown biological_process
ATPase-coupled phosphate ion transmembrane transporter
activity

2.75E-06 6.26E-03 brown molecular_function

arginine biosynthetic process 1.36E-05 6.19E-03 dark green biological_process
cellular amino acid biosynthetic process 6.11E-05 2.32E-02 dark green biological_process
biotin biosynthetic process 6.47E-05 2.94E-02 light blue biological_process
ATP biosynthetic process 4.71E-05 2.14E-02 light green biological_process
ATP synthesis coupled proton transport 2.70E-05 1.23E-02 light green biological_process
ion transport 6.47E-05 3.68E-02 light green biological_process
plasma membrane ATP synthesis coupled proton transport 5.44E-07 1.24E-03 light green biological_process
proton transport 6.47E-05 3.68E-02 light green biological_process
proton-transporting ATP synthase complex, coupling factor
F(o)

7.70E-06 1.75E-02 light green cellular_component

hydrogen ion transmembrane transporter activity 7.70E-06 1.75E-02 light green molecular_function
proton-transporting ATP synthase activity, rotational mecha-
nism

2.70E-05 1.23E-02 light green molecular_function

proton-transporting ATPase activity, rotational mechanism 2.70E-05 1.23E-02 light green molecular_function
enterobactin biosynthetic process 7.70E-06 3.51E-03 orange biological_process
2,3-dihydroxybenzoate-serine ligase activity 7.70E-06 3.51E-03 orange molecular_function
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Appendix Parameters

Parameters S1. Parameters for cell identification in MicrobeTracker. The parameters listed
below were used to generate cell outlines in MicrobeTracker (Sliusarenko et al, 2011). These parameters
can be copied and pasted into the MicrobeTracker parameter panel.

% This file contains MicrobeTracker %settings optimized for wildtype E. %coli

%cells at 0.064 um/pixel resolution %(using algorithm 4)

algorithm = 4

%Parallel Computation

runSerial = 0

maxWorkers = 12

%splitRegions

displayW = 0

wShedNum = 3800

% Pixel-based parameters

getmesh = 1

Nkeep = 320

areaMin =300

areaMax = 3000

scaleFactor = 1

thresFactorM = 0.974

thresFactorF = 0.974

splitregions = 1

edgedetection = 1

edgemode = 1

edgeSigmaL = 1.5

logthresh = 1

edgeSigmaV =0.5

valleythresh1 = 0.0002

valleythresh2 = 1

crossthresh = 0.15

repCoeff1 = 0

attrCoeff1 = 0

erodeNum = 0

opennum = 6

threshminlevel = 0.70

% Constraint parameters
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fmeshstep = 1

meshstep = 1

cellwidth = 15

fsmooth = 100

imageforce = 8

wspringconst = 0

rigidityRange = 2.5

rigidity = 1

rigidityRangeB = 8

rigidityB = 5

attrCoeff = 0.2

repCoeff = 0.6

attrRegion = 4

horalign = 0.2

eqaldist = 2.5

% Image force parameters

fitqualitymax = 0.5

forceWeights = [0.25 0.65 0.25]

dmapThres = 2

dmapPower = 2

gradSmoothArea = 0.5

repArea = 0.9

attrPower = 4

neighRep = 5

% Mesh creation parameters

roiBorder = 22.5

noCellBorder = 2

maxmesh = 1000

maxCellNumber = 2000

maxRegNumber = 10000

meshStep = 1

meshTolerance = 0.01

meshWidth = 16

% Fitting parameters

erodeNum = 1
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fitDisplay1 = 0

fitDisplay = 0

fitConvLevel = 0.26

fitMaxIter =500

fitMaxIter1 =500

moveall = 0.1

fitStep = 0.2

fitStepM = 0.6

% Joining and splitting

splitThreshold = 0.4

joindist = 5

joinangle = 0.2

joinWhenReuse = 1

split1 = 1

% Other

bgrErodeNum = 4

sgnResize = 1

aligndepth = 1

Parameters S2. Parameters for nucleoid identification in Oufti. The parameters listed below
were used to generate nucleoid outlines using the objectDetection module in Oufti (Paintdakhi et al,
2016).

Background subtraction method 3
Background subtraction threshold 0..1
Background filter size 8
Smoothing range (pixel) 3
Magnitude of LOG filter 0.1
Sigma o PSF 1.62
Fraction of object in cell 0.4
Minimum object area 50
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