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Abstract

Cell size, cell growth and the cell cycle are necessarily intertwined to achieve robust bacterial replication.
However, a comprehensive and integrated view of these fundamental processes is lacking. Here, we describe
an image-based quantitative screen over the single-gene knockout collection of Escherichia coli, which led
to the identification of many new genes involved in cell morphogenesis, population growth, nucleoid (bulk
chromosome) dynamics and cell division. Functional analyses, together with high-dimensional classification,
unveil new associations of morphological and cell cycle phenotypes with specific functions and pathways.
Additionally, correlation analyses across ∼4,000 genetic perturbations demonstrate that growth rate is not a
determinant of cell size. Cell width and length are also uncorrelated, suggesting that cells do not control their
size by monitoring surface area or volume; instead cells appear to regulate width and length independently.
Furthermore, our analysis identifies scaling relationships between cell size and nucleoid size and between
nucleoid size and the relative timings of nucleoid separation and cell division, linking cell morphogenesis to
the cell cycle via the global architecture of the chromosome.
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Introduction 1

Cells must integrate a large variety of processes to achieve robust multiplication. Bacteria, in particular, are 2

remarkable at proliferating, which has been key to their ecological success. During their fast-paced replication, 3

bacterial cells must perform a multitude of tasks. They have to uptake and process nutrients, generate 4

energy, build cellular components, duplicate and segregate their genetic material, couple growth and division, 5

maintain their shape and size, while sensing their environment, repairing cellular damages and performing 6

other important functions. These tasks must be integrated to ensure successful cellular replication. Decades 7

of work have garnered extensive knowledge on specific processes, genes and pathways. However, we still lack 8

a comprehensive view of the genetic determinants affecting cell morphogenesis and the cell cycle. It is also 9

unclear how cellular activities are integrated to ensure that each division produces two viable daughter cells. 10

Systematic genome-wide screens, rendered possible by the creation of arrayed single-gene knock-out 11

collections, have been successfully used to gain a more comprehensive perspective on cell morphogenesis and 12

the cell cycle in yeast [23, 30, 45]. Here, we present a high-content, quantitative study that uses the Keio 13

collection of Escherichia coli gene deletion strains [4] and combines microscopy with advanced statistical 14

and image analysis procedures to examine the impact of each non-essential E. coli gene on cell morphology, 15

growth, nucleoid (bulk chromosome) dynamics and cell constriction. 16

Results 17

High-throughput imaging and growth measurements of the E. coli Keio collec- 18

tion 19

To gain an understanding of the molecular relationship between growth, cell size, cell shape and specific 20

cell cycle events, we imaged 4,227 strains of the Keio collection. This set represents 98% of the non-essential 21

genome (87% of the complete genome) of E. coli K12. The strains were grown in 96-well plates in M9 22

medium supplemented with 0.1% casamino acids and 0.2% glucose at 30◦C. Cells were stained with the DNA 23

dye DAPI, and spotted on large custom-made agarose pads (48 strains per pad) prior to imaging by phase 24

contrast and epifluorescence microscopy (Fig 1A). On average, about 360 cells were imaged for each strain. 25

To provide a reference, 240 replicates of the parental strain (BW25113, here referred to as WT) were also 26

grown and imaged under the same conditions as the mutants. In parallel, using a microplate reader, we 27

recorded the growth curves of all the strains (Fig 1A), to which we fitted the Gompertz function to estimate 28

two population-growth features: the maximal growth rate (αmax) and the saturating density (ODmax) of 29

each culture (Appendix Fig S1A). 30

High-throughput dataset curation using support vector machine 31

Cells and their contours were detected in an automated fashion using the open-source software Oufti [46]. 32

The large size (> 1, 500, 000 cells detected) of the dataset precluded the validation of each cell contour by 33

visual inspection. Therefore, we implemented an automated classification method based on support vector 34

machine (SVM) [20] to identify and discard incorrectly detected cells (Fig 1B). To generate a training dataset 35

for the SVM model, we visually scored (positive or negative) 43,774 cell contours from the parental strain 36

and the 419 mutants displaying the greatest deviations in cellular dimensions before data curation. This 37

inclusion of the most aberrant mutants in the training dataset allowed us to build a versatile model that 38

performed well on the wide range of cell sizes and shapes present in the Keio collection. The quality of the 39

fit of the SVM model to the training dataset was evaluated by a 10-fold cross-validation [25], which gave a 40

misclassification error rate under 10%. The model was further validated on an independent dataset of 102,137 41

visually scored cell contours taken from the same group of WT and mutant strains. We found that our SVM 42

model performed very well on this validation set, as shown by the high AUROC (area under the ‘receiver 43

operating characteristic’ curve) value of 0.94 (Appendix Fig S1B). By comparing the model classification with 44

visual scoring (Fig 1C), we found that only about 3% of cell contours in the validation set were incorrectly 45
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identified as positive (false positives) by the SVM model. Importantly, these misclassified cells introduced no 46

biases in the measurement of morphological features (Appendix Fig S1C), even when considering the 419 47

most aberrant strains (Appendix Fig S1D). This validated SVM model was used to curate the entire dataset, 48

retaining about 1,300,000 identified cells (∼300 cells/strain). In addition, we verified the reproducibility of 49

our experimental approach by separately imaging two independent replicates of 192 strains that include 2 50

copies of the parental (WT) strain and 190 mutants with severe morphological defects. Even for cell width, 51

the smallest dimension measured, we observed a Pearson correlation (ρ) of 0.92 (Fig 1D), indicating high 52

reproducibility. 53

Quantification of cell morphological features across the genome 54

We obtained a wealth of quantitative information from image analysis of these strains using Oufti [46]. 55

From phase-contrast images, we measured cellular dimensions (length, width, perimeter, cross-sectional 56

area, aspect ratio and circularity) and their variability by calculating the coefficient of variation (CV, mean 57

divided by the standard deviation). We also extracted the mean and CV of other morphological parameters 58

(surface area, volume and surface-to-volume ratio). For constricted cells, we determined the relative position 59

of division along the cell length (division ratio). Note that since the identity of the cell poles (old versus 60

new) was unknown, randomization of cell pole identity automatically produced a mean division ratio of 0.5, 61

even for an off-center division. Therefore, measurements of mean division ratio were meaningless and not 62

included in our analysis. However, the CV of the division ratio was included since a high CV indicates either 63

an asymmetric division or an imprecise division site selection. In total, each strain was characterized by 19 64

morphological features. The name and abbreviation for all the features can be found in Table S1. 65

After taking into consideration experimental variability (see Materials and methods, Appendix Fig S2 qnd 66

S3), we calculated a normalized score (s) for each feature and each strain (see Materials and methods). Even 67

with a conservative threshold of 3 standard deviations (s ≤ −3 or ≥ 3, or absolute score |s| ≥ 3) away from 68

the WT , a large number (725) of single gene deletion strains were associated with one or more morphological 69

defects and qualified as morphological hits (Fig 2). This result indicates that a large fraction (∼16%) of the 70

non-essential genome directly or indirectly affects cell size and shape. Similar genomic commitment to cell 71

size/shape was also observed for budding yeast [30]. 72

Quantification of growth and cell cycle features across the genome 73

From the images, we also calculated the degree of constriction for each cell, and inferred the fraction of 74

constricting cells in the population for each strain (see Materials and methods). The latter reflects the timing 75

of initiation of cell constriction relative to the cell cycle. In addition, the analysis of the DAPI staining with 76

the objectDetection module in Oufti [46] provided additional parameters, such as the number of nucleoids 77

per cell and the fraction of cells with one versus two nucleoids. From the latter measurement, we estimated 78

the relative timing of nucleoid separation. We also measured the degree of nucleoid constriction in each cell 79

for each strain, and compared it to the degree of cell constriction to obtain the Pearson correlation between 80

these two parameters, as well as the average degree of nucleoid separation at the onset of cell constriction 81

(Appendix Fig S1E). As a result, each strain was associated with 5 cell cycle features, in addition to the 19 82

morphological features and 2 growth features mentioned above (see Table S1). 83

While the cell cycle features examined seemed to be less sensitive to gene deletion than cell morphology, 84

there were still a high number (147) of gene deletions that were associated with one or more dramatically 85

(|s| ≥ 3) altered cell cycle features (Fig 2). Similarly, we identified over 169 mutants with severe (|s| ≥ 3) 86

growth defects (Fig 2) despite the growth medium being supplemented with amino acids. 87
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Severe defects in growth, cell morphology or the cell cycle associated with a wide 88

variety of cellular functions 89

For each feature, the genes deleted in mutant strains with a |s| ≥ 3 encompassed a wide range of cellular 90

functions based on a COG (Clusters of Orthologous Groups) distribution analysis (Fig 3, Appendix Fig S4). 91

This diversity highlights the high degree of integration of cell morphology and the cell cycle in overall cellular 92

physiology. 93

Certain COG families were statistically enriched for some phenotypes (Fig 3). We recovered expected 94

associations, such as category D (cell cycle control, cell division and chromosome partitioning) with high 95

mean length (<L>) and high length variability (CVL), category L (DNA replication, recombination and 96

repair) with high CVL, and category M (cell wall/membrane/cell wall biogenesis) with high mean width 97

(<W>) (Fig 3A). Indeed, defects in DNA partitioning and repair can lead to a cell division block [43], and 98

impairment in cell envelope biogenesis has been reported to cause cell widening [6, 36]. COG categories 99

associated with translation or some aspect of metabolism were, unsurprisingly, enriched in mutants with 100

growth defects (Fig 3B). 101

Often, these COG enrichments were carried over to features (area, volume, perimeter, circularity, etc.) 102

that directly relate to width and length (Fig 3). However, we also observed differential COG enrichments 103

even for highly related features, highlighting the importance of considering features beyond mean and CV 104

of length and width. For example, category U (intracellular trafficking, secretion and vesicular transport) 105

was enriched among mutant strains with high mean area (<A>) and volume (<V>), but normal <L> or 106

<W> (Fig 3A), suggesting that small deviations in length and width can combine to produce significant 107

differences in area and volume. On the other hand, deletions in category C genes (energy production and 108

conversion) were normally represented for most phenotypes, but were conspicuously underrepresented among 109

mutants with high mean shape factors, to the point that it was barely associated with a high mean aspect 110

ratio (<Ar>) and not at all with a high mean circularity (<C>) (Fig 3A, Appendix Fig S4A). Thus, deletion 111

of genes involved in energy and conversion can increase or decrease the size of the cell without affecting its 112

shape (aspect ratio and circularity), implying that defects in length and width are often compensatory for 113

this category of mutants. 114

High-dimensional classification of the morphological mutants 115

While the gene deletion annotation of the Keio library is not perfect, our large dataset provided a powerful 116

platform to examine global trends and to identify gene function enrichments in phenotypic classes of mutants 117

with |s| ≥ 3. First, we considered morphological phenotypes. Instead of ranking strains on a feature-by-feature 118

basis, we sought to classify strains based on their combination of features, or ‘phenoprints’, to better capture 119

the phenotypic complexity of morphology. Each strain in our dataset is characterized by scores for 19 120

morphological features. We added two growth-related features (ODmax and αmax) to this morphological 121

phenoprint because growth rate is often implicitly assumed to control cell size. This assumption derives from 122

the early observation that bacterial cell size (mean cell mass) scales with growth rate when the latter is 123

modulated by varying the composition of the culture medium [47]. This scaling relationship is often referred 124

to as the ’growth law’. 125

The combination of these 21 scores was used to classify a dataset composed of 240 wild-type replicates 126

(controls) and the 797 mutant strains with a |s| ≥ 3 for at least one morphological or growth feature. To 127

transform our 21-dimension clustering problem into a simpler two-dimensional (2D) similarity map (see 128

Materials and methods), we used the machine learning “t-distributed stochastic neighbor embedding” (tSNE) 129

algorithm [58]. The principle of tSNE is to minimize distances between phenoprints with high mutual 130

information. Taking advantage of the stochastic nature of tSNE, we generated 100 maps to identify stable 131

clusters, or island using the density-based clustering algorithm dbscan [19]. This combined tSNE-dbscan 132

approach identified multiple isolated islands formed by the same strains in each map (Fig 4A). In fact, more 133
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than 90% of the strains were reproducibly (> 90% of the time) found within the same island of the “morpho 134

archipelago” (Fig EV1). The wild-type replicates clustered together to form the ‘WT’ island while the mutant 135

strains consistently separated in 17 islands (Fig 4A and Fig EV1). With 21 features, we might have expected 136

a continuum of phenoprints representing the vast number of possible combinations of different phenotypes, 137

which would have resulted in the absence of separated dense areas on the tSNE maps. Instead, the presence 138

of natural boundaries between islands supports the idea that some feature combinations are favored. 139

Each island was characterized by an average phenoprint (Fig 4B), with a given feature often segregating in 140

different islands. For example, slowly growing mutants were found in both islands 15 and 16, but mutants in 141

island 15 were, on average, short with a comparatively normal width whereas mutants in island 16 were wide 142

with a normal length (Fig 4B). Thus, island 16 illustrates a group of strains that departs from the growth law, 143

as they produce cells that are larger than WT despite growing slower. Another departure from the growth 144

law is illustrated by island 5, which includes strains with small cells but normal growth rate (Fig 4B). 145

Genes, functions and pathways associated with cell size and shape 146

Our tSNE classification identified many new genes associated with specific phenotypes, even for extreme 147

ones. For example, island 17 grouped strains characterized by cells that were very long and highly variable 148

in length (and consequently in area, volume, surface area and perimeter), but had a normal width (Fig 149

4B). Such a cell filamentation phenotype has been well studied, and our classification recovers expected 150

gene deletions such as ∆minC, ∆envC, ∆tatC and ∆dedD (Fig 4C and Fig EV2A). But island 17 also 151

includes 4 gene deletions (∆rdgB, ∆uup, ∆croE and ∆ydaS ) that were unknown for their cell filamentation 152

phenotype, suggesting new or unappreciated functions connected to cell division. For example, Uup is a 153

DNA-related protein known to prevent the precise excision of transposons [28]. The working model postulates 154

that Uup interacts with the replisome to prevent replication forks stalling at the repeated sequences flanking 155

transposons, a step required for the formation of a Holliday junction and excision [44]. Replisomes also 156

frequently stop at other chromosomal regions during replication, which can cause DNA lesions [14]. If this 157

DNA damages are left uncorrected, they lead to inhibition of cell division. The cell filamentation phenotype 158

associated with the deletion of uup may suggest that Uup plays a fundamental role in limiting replisome 159

stalling under normal growth conditions, possibly at structured DNA sites such as inverted repeats. 160

RdgB is an enzyme that reduces the levels of non-canonical purines deoxyinosine (dITP) and deoxyxanthosine 161

(dXTP) to prevent DNA damage associated with their incorporation into the chromosome; rdgB becomes 162

essential for viability in a recA- background [11,37]. The high frequency of cell filamentation among ∆rdgB 163

cells, despite the presence of a fully functional recombination machinery, underscores the importance of a 164

tight control of dITP and dXTP levels in the cell. 165

The two remaining genes in island 17 were cryptic prophage genes croE and ydaS (Fig 4C and Figure EV2). 166

They illustrate how this screen can identify functions for genes that are normally not expressed under normal 167

growth conditions. Genes in the Keio collection were deleted by an in-frame replacement of a kanamycin 168

resistance cassette that has a constitutive promoter and no transcriptional terminator, to ensure expression of 169

downstream genes in operons [4]. However, for repressed or poorly expressed operons, the kanamycin cassette 170

promoter can lead to unregulated expression of downstream genes in operons. This was the case for the croE 171

and ydaS deletion strains, as cells became normal in cell length when the kanamycin cassette was excised 172

(Fig EV2B and C). These results, together with the absence of phenotype associated with the deletions of 173

the downstream genes, suggest that it was not the loss of croE and ydaS but rather the expression of the 174

prophage genes located directly downstream (ymfL and ydaT, respectively) that was responsible for the 175

observed cell filamentation phenotype. Consistent with our hypothesis, it has been postulated that ymfL is 176

involved in cell division [41,62]. While ymfL probably encodes a cell division inhibitor, the prophage gene 177

ydaT likely inhibits cell division indirectly by acting on DNA replication or segregation, given the absence of 178

well-segregated DAPI-stained nucleoids in filamentous ∆ydaS cells still carrying the kanamycin cassette (Fig 179

EV2C). 180
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Note that each island represented a continuum of phenotypes dominated by the features that lead to their 181

clustering in one common island. For instance, island 2 contained deletion strains displaying the dominant 182

phenotype of long, but not filamentous, cells (s for <L> of 3.5, compared to 5.2 and 10.8 for islands 10 and 183

17, respectively). Beyond the global segmentation of the morpho-space, each island displayed some internal 184

structure. This is illustrated in Fig 4D, which shows the gradient of the dominating (<L>) and secondary 185

(CVL) features within island 2. 186

This fine internal organization reflects the objective function of the tSNE algorithm, which seeks to 187

minimize distances between similar phenoprints. This property provided us with an excellent layout to 188

consider tSNE maps as networks (e.g., Fig 4C), from which we could perform local functional enrichment 189

analyses based on gene ontology (GO) term enrichment. This approach enabled the functional annotation of 190

the tSNE networks while taking into account the map topology, without explicit clustering (see Materials 191

and methods). This functional analysis highlighted both expected and surprising functional associations with 192

specific morphological phenoprints (Fig 4E). For example, the phenoprint dominated by slow growth and 193

small cell size, which is a hallmark of starved cells, was, not surprisingly, associated with an enrichment of 194

strains deleted for genes involved in sulfur assimilation and metabolism (Fig 4E). We also found that cell 195

division and DNA recombination genes segregated into distinct islands (2 and 4, respectively), which reflects 196

how these two groups of genes affect morphological features in different ways. Loss of cell division genes 197

resulted in cell length increase across the cell population, causing a greater <L> and CVL (s = 4.6 and 4.9, 198

respectively) whereas deletion of DNA recombination genes only affected cell division in the subset of cells 199

that presumably encountered DNA lesions, increasing primarily CVL (s = 4.9), but not significantly <L> (s 200

= 0.5) (Fig 4E). 201

In addition, we identified an enrichment for genes in the Enterobacterial Common Antigen (ECA) biosyn- 202

thesis pathway (Fig 4E) among gene deletions that dramatically affected cell width control (island 16). 203

The ECA mutants were wider, often lost their rod shape and formed rounder cells, as shown by their high 204

aspect ratio score (Fig EV3A). This phenotype is reminiscent to the cell shape defects caused by drugs (e.g., 205

fosfomycin) that inhibit peptidoglycan synthesis [33, 40]. Island 16 included other cell envelope mutants 206

with a similar phenotype, such as gene deletions related to colonic acid biosynthesis or lipopolysaccharide 207

(LPS) modification. These results are consistent with recent studies showing that cell shape deregulation 208

can be caused by a competition between the ECA, LPS, CA and peptidoglycan precursor pathways for the 209

same undecaprenyl phosphate lipid carrier [31, 32]. The phenotype of other gene deletions in island 16 could 210

be rationalized with a similar competition argument, as several of them are related to central metabolism. 211

The metabolic genes may be essential for the production of key metabolites important for the synthesis 212

of cell envelope precursors. The ∆rapZ strain, which had severe cell width phenotypes (Fig EV3B), may 213

be an example. RapZ post-transcriptionally regulates the amount of GlmS [22], which catalyzes the first 214

committed step away from the upper glycolysis pathway and toward the synthesis of a central precursor 215

(UDP-N-acetyl-α-D-glucosamine) for the biogenesis of peptidoglycan, LPS and ECA. 216

We also identified pathways associated with phenotypes that were not easy to rationalize. Deletion of 217

genes encoding the high-affinity phosphate transporter (pstACS ) resulted in a reduction in cell width (<s> 218

= -3.8, Fig EV3C), without significantly slowing down growth (<s> for αmax = -0.4) (Fig 4E). Interestingly, 219

deletion of genes encoding subunits of ATP synthase, which results in a metabolic switch to fermentation, 220

lead to a decrease in average cell width (s = -4.3, Fig EV3C) with no change in average cell length (s = 0.2) 221

or growth rate (s = 1.8) (Fig 4E). Since the cells were imaged during exponential phase, this phenotype could 222

not be linked to their inability to grow to high cell density. This result suggests that the ATP synthase itself 223

or differences in metabolism alter cell shape and size independently of growth rate. 224
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Identification of genes affecting nucleoid separation and cell constriction dynam- 225

ics 226

We applied the same tSNE analysis to the 7 cell cycle and growth features of the 264 strains displaying a 227

severe defect (|s| ≥ 3) for at least one cell cycle or growth feature. The 240 independent wild-type replicates 228

were included in the analysis as controls. We robustly identified a WT island and 12 distinct mutant islands 229

in this cell cycle space (Fig 5A). Each island was characterized by an average phenoprint (Fig 5B). Islands 11 230

and 12 were phenotypically close to WT. Islands 2 and 6 grouped mutants with growth defects and little to 231

no cell cycle phenotypes (Fig 5B and C). The neighboring islands (3, 5, 8 and 9) were dominated by cell 232

growth features with some combination of nucleoid separation and cell constriction defects. Four islands (1, 4, 233

7 and 10) grouped interesting gene deletion strains with altered cell cycle progression, but without significant 234

growth defects (Fig 5B and D). 235

Functional analysis on all strains identified GO term enrichments with phenoprints that show strong growth 236

defect (Fig 5E). We did not find any GO term enrichment associated with cell cycle defects independently of 237

growth. Furthermore, the proportion of genes of unknown functions was particularly high for cell cycle-specific 238

islands (Fig 5F), reaching proportions above 40% for islands 4 and 7. These observations highlight the limited 239

extent of our knowledge about the genetic basis of nucleoid and cell constriction dynamics. 240

Our analysis of nucleoid separation and cell constriction provided a genome-wide perspective on the 241

processes affecting DNA segregation and cell division. While each event has been investigated for years at 242

the molecular level, we know little about their coordination. We found that nucleoid separation is tightly 243

correlated with the initiation of cell constriction across the ∼4,000 deletion strains (Pearson ρ = 0.65, Fig 6A) 244

and at the single-cell level (Appendix Fig S1E). A well-known genetic factor involved in this coordination 245

is MatP [42]. This DNA-binding protein organizes and connects the chromosomal terminal macrodomain 246

(ter) to the division machinery [18]. Consistent with this function, we observed that the ∆matP mutant, 247

which segregated into island 4, failed to coordinate nucleoid separation with cell constriction, as evidenced by 248

the separation between the curves in Fig 6B. Interestingly, the curves also showed that the ∆matP mutant 249

separates its nucleoid early while dividing at about the same time as WT (Fig 6A and B). This surprising 250

result suggests that MatP delays nucleoid separation. 251

The remaining 16 genes from island 4, which also displayed an early nucleoid separation phenotype, had 252

either an uncharacterized function (e.g., ypfH ) or a function unrelated to nucleoid dynamics such as polA 253

and pldB, which encode DNA repair protein Pol I and lysophospholipase L2, respectively (Fig 6C). 254

The 30 mutants grouped in island 7 were primarily characterized by an early initiation of cell constriction 255

(Fig 5B and D), to the point that the timing of cell constriction and nucleoid separation virtually collapsed. Fig 256

6D shows two such examples with ∆ybaN and ∆hlsU. YbaN is a protein of unknown function. HslU has two 257

functions in the cell, one as a subunit in a protease complex with HslV, and the other as a chaperone [50, 52]. 258

Since we did not observe any significant defect in cell constriction timing for the ∆hslV mutant, the ∆hlsU 259

phenotype is more likely linked to the chaperone activity. 260

Identification of cell size control mutants 261

How cells achieve size homeostasis has been a longstanding question in biology. While the control mechanism 262

at play remains under debate [1, 12,24,27,29,54–56,61], we and others have recently shown that under the 263

growth conditions considered in this study, E. coli follows an adder principle in which cells grow a constant 264

length (∆L) before dividing [12,55]. We sought to use this screen to survey the role of genes in cell length 265

control. We first explored the relationship between <L> and CVL among mutants. Globally, the degree of 266

correlation between these two variables displayed two regimes, with no correlation for ‘short’ mutants and a 267

strong positive correlation for ‘long’ mutants (Fig 7A). 268
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The observation that short mutants displayed, on average, a normal CVL (same noise as WT) indicates 269

that they regulate their length distribution as precisely as WT. These results suggest that the adder principle, 270

and therefore the timing of cell division, is just as precise in short mutants as in WT cells. This result is 271

interesting because short mutants have traditionally received a lot of attention in cell size control studies. 272

A well-known short mutant in E. coli is the ftsA* strain, which is thought to misregulate size control by 273

triggering division prematurely [21,26]. However, we found that, similar to the trend shown by short mutants 274

in our screen, ftsA* cells constrict at the same cell age as WT (Fig 7B). In hindsight, this result makes sense 275

since the WT and ftsA* strains have the same doubling time [21] and therefore take the same amount of 276

time to divide. Perhaps a better way to consider short mutants with normal CVL is not as mutants that have 277

a premature division, but as small-adder mutants that add an abnormally small cell length increment ∆L 278

between divisions. 279

Long mutants, on the other hand, tended to lose their ability to maintain a narrow size distribution, as 280

CVL increased with <L> (Fig 7A). The origin for an increase in CVL may signify a loss of precision in the 281

timing of division, but it may alternatively originate from an aberrant positioning of the division site (or 282

both). The ∆minC mutant is an example of aberrantly large CVL (Fig 7C) due to the mispositioning of the 283

division site and not to a defective adder [12]. This class of mutants can easily be identified in our dataset by 284

their large variability in division ratios (CVDR). Conversely, a high CVL associated with a normal variability 285

in division ratios points to a mutant that has a more variable ∆L between divisions. 286

We suspected that interesting cell size control mutants might be missed by only considering CVL. The 287

distribution of cell lengths in a population is a convolution of cell length distributions at specific cell cycle 288

periods. Since there is significant overlap in length distributions between cell cycle periods, a substantial 289

change in CVL at a specific cell cycle period (e.g., cell constriction) does not necessarily translate into obvious 290

changes in CVL of the whole population, as shown in simulations (Fig EV4). Our screen allowed us to identify 291

constricting cells and hence to determine the length variability for the cell constriction period. This cell 292

cycle period-specific analysis identified ∆mraZ as a potential gain-of-function cell size homeostasis mutant 293

(Fig 7C). For this mutant, division (CVDR) and growth rate [17] were normal, but the length distribution 294

of its constricted cells (CVL= 0.05) was remarkably narrower than that of WT constricted cells (CVL = 295

0.12). MraZ is a highly conserved transcriptional regulator that downregulates the expression of the dcw 296

cluster [17], which includes cell wall synthesis and cell division genes [3]. Our data suggests that MraZ and 297

the regulation of the dcw cluster affect the balance between cell growth and division. 298

Dependencies between cellular dimensions and cell cycle progression 299

A fundamental question in biology is how cells integrate cellular processes. A common approach to address 300

this question is to look at co-variation between processes or phenotypes following a perturbation (e.g., 301

mutation, drug treatment). However, using a single type of perturbation can lead to misinterpretation, as the 302

perturbation may affect the co-varying phenotypes independently. Increasing the number of independent 303

perturbations alleviates the interpretation problem by averaging out the specific effect associated with each 304

perturbation. Therefore, the large number and variety of mutants in our study provided an opportunity to 305

identify global effects and dependencies between morphological, cell cycle and growth phenotypes through 306

correlation analysis. 307

To build an interaction network, we used the well-established, information-theoretic algorithm ARACNE [39]. 308

This method considers all pairwise correlations between features at the same time and identifies the most 309

relevant connections by removing those that are weak or that can be explained via more correlated paths. 310

In this analysis, we only considered quantitative non-collinear features that describe morphology, nucleoid 311

shape, growth, nucleoid separation and cell constriction (see Materials and methods). The resulting network 312

recovered obvious connections, such as the relation of area with length and width. It also showed the absence 313

of a connection between growth rate (αmax) and size features (<A>, <L> and <W>) (Fig 8A), again 314

underscoring the independence of cell size from growth rate under a given growth condition (Fig EV5). In 315
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fact, growth rate features displayed little connectivity to morphological or cell cycle features (Fig 8A), as 316

shown by their close-to-zero Kendall correlations τ (Fig EV5, note that Kendall ranked correlation was 317

selected over Pearson correlation because of the heavy asymmetric left tail in the distribution of αmax). 318

Another interesting lack of connection was between <L> and <W> (Fig 8A), as these two variables were 319

largely uncorrelated (ρ = 0.11, Fig 8B). This result is significant from a cell size control standpoint. If cells 320

were controlling their size by monitoring how much volume or surface area they add during growth, we would 321

expect a global anti-correlation between length and width such that an increase in cell length would be, on 322

average, compensated by a decrease in width, and vice versa. The lack of correlation argues that cell length 323

and width are controlled independently. 324

The overall structure of the network (Fig 8A) revealed that the cell cycle features (yellow nodes) are 325

connected to morphological features (blue nodes) through the dimensions of the nucleoid (grey nodes). The 326

mean cell area and mean nucleoid area (considering the sum of nucleoids in the cell) were highly positively 327

correlated (ρ = 0.83), in a growth rate-independent manner (Fig 8C).We previously showed by time-lapse 328

imaging of single cells that the nucleoid size linearly increases with cell size throughout the cell cycle [46]. 329

Here, we found that nucleoid size remarkably scales with cell size across ∼4,000 mutants despite the wide 330

range of cellular dimensions present in the Keio collection: small mutants had a small nucleoid size, and 331

big mutants had a big nucleoid size (Fig 8C). This linear relationship held true regardless of the number 332

of nucleoid per cell (Fig 8D). In addition to its strong positive correlation with the average cell size, the 333

average nucleoid size was negatively correlated with the relative timing of nucleoid separation (ρ = -0.49, 334

Fig 8E). These connections suggest a dependency between cell size and nucleoid separation: the bigger the 335

cell, the bigger the nucleoid is and the earlier nucleoid separation occurs in relative cell cycle unit (Fig 8F). 336

The relative timing of cell constriction was also negatively correlated (although to a lesser degree) with the 337

average nucleoid size (ρ = -0.25) and the average cell size (ρ = -0.19), thus causing the gap between nucleoid 338

separation and cell constriction to increase with cell size. 339

Discussion 340

In this study, we used a multi-parametric approach to quantitatively survey the role of all non-essential 341

E. coli genes on cell shape, cell size, cell growth and the late cell cycle stages, nucleoid separation and cell 342

constriction. The results provide a valuable resource of phenotypic references for both characterized and 343

uncharacterized genes, as well as a rich dataset to explore the correlation structure between morphological, 344

growth and cell cycle features at the system level. 345

The large proportion of genes and the wide variety of functions impacting cell size and shape and the 346

progression of late cell cycle stages (Fig 2 and 3, Appendix Fig S4) underscore the degree of integration of 347

cell morphogenesis and cell cycle progression in all aspects of E. coli cell physiology. It also implies that most 348

morphological and cell cycle phenotypes cannot easily be imputed to a specific pathway or cluster of genes. 349

In fact, genes involved in the same cellular process can have very different, and even sometimes opposing, 350

effects. This is illustrated by genes associated with translation. Deletion of ribosomal subunit genes leads to 351

a diversity of morphological phenotypes, such as thin (∆rpsY ), wide (∆rpsO), short (∆rplY ), and short and 352

thin (∆rpsT ). This diversity of phenotypes is also observable for deletions of genes encoding enzymes that 353

modify ribosome RNAs or tRNAs (e.g., ∆rsmD and ∆mnmC strains are long, whereas ∆rluD and ∆truA 354

strains are wide). The latter suggests an unexpected role for RNA modifications in cell morphogenesis. 355

Overall, this study greatly expands the number of genes associated with cell morphogenesis (∼ 800) and 356

the cell cycle (∼ 150). Notably, it provides a phenotype for 480 genes of uncharacterized function (out of 357

1250 so-called ‘y-genes’). The proportion of mutant strains in this category is substantially higher than the 358

proportion over the whole genome (38% versus 29%), suggesting that the phenotypes that we quantified and 359

the growth conditions we used are favorable to explore the function of these genes and learn new biology. 360
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This study also revealed new phenotypes for previously characterized gene deletions. We mentioned above 361

the unexpected filamentation phenotype of the ∆uup strain (Fig 4 and Fig EV2A) and proposed a tentative 362

connection between the known function in precise transposon excision and DNA damage through replisome 363

stalling. We also identified unanticipated links. For example, the requirement for lysophospholipase L2 364

(PldB) in the coupling of nucleoid separation and cell constriction (Fig 6C) suggests a connection between 365

phospholipid metabolism and the coordination of late cell cycle stages. 366

We adopted an original approach combining the tSNE and dbscan algorithms to effectively cluster strains 367

with similar phenoprints into islands (Fig 4 and 5). This granular representation of the phenotypic space 368

allowed us to expand on well-studied archetypal phenotypes such as ‘filamentous’ and ‘fat’ (islands 17 and 369

16 of the morpho archipelago, respectively, see Fig 4). This classification also allowed us to populate less 370

well-studied phenotypes, from which we can learn new insight into cell morphogenesis and the cell cycle. For 371

example, the substantial number of thin mutants reported here may prove as valuable as fat mutants to study 372

cell morphogenesis from a different angle. The clustering results also revealed entirely new classes of mutants 373

(e.g., island 1 in the morpho archipelago and islands 1, 4 and 7 in the cell cycle archipelago). In our view, 374

the cell cycle islands 1, 4 and 7 are particularly interesting because they offer a genetic toolkit to explore 375

nucleoid and cell constriction dynamics, which have remained poorly understood despite their essential role 376

in cellular replication. 377

The phenoprints reported in this study are necessarily tied to the specific experimental conditions of the 378

screen. Differences in growth conditions lead to different metabolic requirements and growth limitations. For 379

instance, none of the mutant strains auxotrophic for nucleotides were able to grow in our synthetic medium, 380

which lacks nucleotide precursors. We note that growth in 96-well plates likely corresponds to micro-aerophilic 381

conditions. Accordingly, we identified morphological deviations for strains deleted for genes known to be 382

only expressed under micro-aerophilic or anaerobic conditions, revealing new metabolic connections to cell 383

morphogenesis. For example, deletion of ybcF, which is predicted to encode an enzyme involved in anaerobic 384

purine degradation [53], results in a fat cell phenotype (Supplementary file 2). 385

In this study, each gene deletion can be seen as a perturbation. The sheer number of perturbations 386

(∼4,000) guarantees a large number of independent perturbations and offers a unique opportunity to infer 387

the underlying structure of the correlations between the different phenotypes. Such relationships, or lack 388

thereof, can be very informative. For instance, we found that cell length and width are largely uncorrelated 389

(Fig 8B), suggesting that cells do not control their size by monitoring their surface area or volume, but rather 390

control their length and width independently. We also found that growth rate is not predictive of cell size. 391

When growth rate is varied with growth media of different chemical composition, cell size scales with growth 392

rate [47]. This “growth law” is often interpreted as growth rate dictating the average size of the cell, although 393

it does not explain why temperature can alter growth rate without any significant effect on mean cell size [47]. 394

The lack of substantial correlation between cell size and growth rate across 4,000 genetic perturbations that 395

affect various cellular functions (Fig EV5) shows unambiguously that growth rate itself does not set cell size. 396

Our results support the idea that the original scaling observation with different growth media likely stems 397

from differences in cellular metabolism and that growth rate and cell size are metabolically co-regulated [57]. 398

Indeed, metabolically-starved mutants (which are common in island 15 of the morpho archipelago) displayed 399

both slow growth and small size. Growth rate also correlated poorly with the relative timing of nucleoid 400

separation and cell constriction (Fig EV5). The absence of correlation between growth rate and the timing of 401

these cell cycle events was also observed for the wild-type strain when the growth rate was varied by changing 402

the composition of the growth medium [16]. Collectively, our findings show that the cell can accommodate a 403

large range of sizes and relative timings of nucleoid segregation and cell division with no effect on growth rate, 404

and vice versa. This flexibility may offer greater evolvability of cellular dimensions and cell cycle progression. 405

The complexity of cellular systems can sometimes be reduced to simple quantitative relationships, or 406

‘biological laws’, which have been very useful in identifying the governing principles by which cells integrate 407

various processes [48]. Our correlation analysis identified a ‘nucleoid law’ that describes the linear relationship 408
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between nucleoid size and cell size. This remarkable scaling property is independent of growth rate and holds 409

across the wide range of cellular perturbations present in the ∼4,000 deletion strains tested in this study (Fig 410

8C). The nucleoid law draws a striking parallel with the 100-year-old observation that nucleus size scales 411

with cell size in eukaryotes [13], an empirical relationship that has been reported for many eukaryotic cell 412

types since [60]. This suggests a universal size relationship between DNA-containing organelles and the cell 413

across taxonomic kingdoms, even for organisms that lack a nuclear envelope. 414

Our information-theoretic Bayesian network analysis (Fig 8) enabled us to go beyond pairwise correlations 415

by integrating the complex set of interdependences between morphology, growth and cell cycle events. This 416

analysis unveiled an unexpected connection between cell size and the relative timing of nucleoid separation 417

and cell constriction through nucleoid size across thousands of genetic perturbations (Fig 8E and F). This 418

finding suggests that the size of the nucleoid and, by extension, the overall structure of the chromosome are 419

important elements of the coordination mechanism between cell morphogenesis and the cell cycle. 420

Materials and Methods 421

Bacterial growth conditions 422

The Keio collection contains 3,787 annotated single-gene in-frame deletion strains, 412 strains (also known 423

as JW strains) with kanamycin cassette inserted at unknown locations, and the remainder (28) were repeats [4]. 424

All strains, including E. coli K12 BW25113 [15] and derivatives (strains from Keio collection), as well as 425

E. coli K12 MG1655 and the isogenic ftsA* [21] were grown in LB medium (10 g/L NaCl, 5 g/L yeast 426

extract, 10 g/L tryptone) or M9 medium (6 g/L Na2HPO4·7H2O, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g NH4Cl, 427

2 mM MgSO4, 1 µg/L thiamine) with 0.2% glucose as the carbon source and supplemented or not with 0.1% 428

casamino acids as specified in the text and figure legends. 429

Screening set-up and microscopy 430

All E. coli strains were grown overnight at 30◦C in 96-well plates in M9 supplemented with 0.1% casamino 431

acids, 0.2% glucose and kanamycin (30 µg/mL). Cultures were diluted 1:300 in 150 µL of fresh M9 medium 432

supplemented with 0.1% casamino acids and 0.2% glucose, and grown in 96-well plates at 30◦C with continuous 433

shaking in a BioTek plate reader. DAPI was added to the cultures to a final concentration of 1 µg/mL 15 to 434

20 min prior imaging. All (parent and mutant) strains were sampled within a very narrow range of OD600nm 435

(0.2 ±0.1; min = 0.108 ; max = 0.350) corresponding to the exponential growth phase. We did not detect 436

any trend between morphological/cell cycle features and the OD600nm at which each culture was sampled. 437

Cells were deposited (0.5 µL per strain) on a large, 0.75-µm thick, M9-supplemented agarose pads with a 438

multichannel pipet. The pads were made by pouring warm agarose containing supplemented M9 medium 439

between a (10.16 x 12.7 x 0.12 cm) glass slide and a (9.53 x 11.43 cm) n◦ 2 coverglass (Brain Research 440

Laboratories, Newton, MA, USA). 441

Microscopy was performed on an Eclipse Ti-E microscope (Nikon, Tokyo, Japan) equipped with Perfect 442

Focus System (Nikon, Tokyo, Japan) and an Orca-R2 camera (Hamamatsu Photonics, Hamamatsu City, 443

Japan) and a phase-contrast objective Plan Apochromat 100x/1.45 numerical aperture (Nikon, Tokyo, Japan). 444

The initial field of view for each strain was chosen manually and 9 images were taken automatically over a 445

3x3 square lattice with 200 nm step, using 80 ms exposure for phase contrast and 600 ms exposure for the 446

DAPI channel using Nikon Elements (Nikon, Tokyo, Japan). 447

Image processing 448

Cell outlines were detected using Oufti software [46] available at http://oufti.org/. All data processing 449

was then performed using MATLAB (The MathWorks Inc., Natick, MA, 2000). Custom-built codes were 450

used to automate the aggregation of data from the cell outlines of all the strains. 451
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For cell and nucleoid detections, the same parameters in the Oufti’s cellDetection and objectDetection were 452

consistently used. In order to avoid unnecessary bias in the cell outlines, the parameters defining the initial 453

guess for the cell contour fit were set to intermediate values, while the parameters constraining the fit of the 454

final outline were set to negligible values. For example, we increased the fsmooth parameter value to 100 in 455

order to capture both short and long cells, and we set the width spring constant parameter wspringconst 456

to 0 so as to avoid biasing the cell width estimate toward the initial guess value. The edges in the DAPI 457

fluorescence signal were detected with a Laplacian of Gaussian filtering method that takes into account the 458

dispersion of the point spread function (PSF) of our microscopy setup at a wavelength of 460 nm (input 459

parameter σPSF set to 1.62 pixels). 460

Data analysis 461

Dataset curation – Support Vector Machine model. Due to the size of the dataset (> 1, 500, 000 462

cells detected globally), we adopted an automated approach to identify poorly (or wrongly) detected cells 463

across the entire dataset. We developed an SVM model based on 16 normalized features: cell length, cell 464

width, cell area, cell volume, cell perimeter, cell constriction degree, division ratio, integrated phase signal, 465

integrated DAPI fluorescence signal, mean cell contour intensity in phase contrast, variability of cell width 466

along the cell, nucleoid area, single cell nucleoid variability, circularity (2× π × cellarea/(cellperimeter)2), 467

nucleoid intensity and number of nucleoids. We trained a binary classifier (positive or negative) over wild-type 468

strain replicates as well as 419 mutants with the most severe morphological defects prior to data curation. 469

We visually scored 145,911 cells and used 30% of them (43,774) to train the model. The model was evaluated 470

using a k-fold cross-validation approach, leading to a generalized misclassification rate of 10%. We used the 471

remaining 70% of the data set (102,137 cells) to validate the model. This SVM classifier achieves a balanced 472

classification rate of 84% and features an AUROC of 0.94 (Appendix Fig S1B). Furthermore, the resulting 473

group of false negatives was not significantly different from the true positives (Appendix Fig S1C and D), 474

indicating that the classification did not introduce a bias by excluding a specific class of ‘good’ cells from the 475

analysis. 476

Data processing. For each feature, we checked and corrected for any bias associated with plate-to-plate 477

variability, differences in position on the 96-well plates, timing of imaging and optical density of the culture 478

(Appendix Fig S2 and S3). For each plate, we set the median values of each feature, F, to the median feature 479

value of the parental strain. The F values were transformed into normalized scores by a transformation akin 480

to a z-score transformation but more robust to outliers. 481

s = 1.35× (Fi −median(FWT
i ))/iqr(FWT

i ) 482

where Fi is the corrected value for the mutant strains for feature i, FWT
i is the value for the wild-type 483

strain for feature i, and iqr stands for interquartile range. As the interquartile range of normally distributed 484

data is equal to 1.35 times their standard deviation, we scaled the score by this factor so as to express the 485

scores in terms of standard deviations away from the median. 486

The temporal biases for the fraction of cells committed (or not) to division and the fractions of cells with 1, 487

2 or more nucleoids were corrected using a Dirichlet regression to maintain the relative proportions between 488

classes (Appendix Fig S3) [38]. 489

Data exploration, dimensionality reduction and clustering. A similarity measure between strains 490

was needed to identify and separate different phenoprints. This measure was then used as an input for a 491

dimensionality reduction algorithm to group strains together. Pearson correlations or Euclidean distances 492

classically provide such similarity measures, and Principle Component Analysis (PCA) and/or hierarchical or 493

k-means clustering are often used. However, PCA tends to explode datasets and Pearson correlations do not 494

always reflect the desired type of similarity. As an extreme case, consider two strains with two phenoprints 495

that are proportional, one with values within a very small score range, such as [-1 1], while the other with 496

score values spanning the [-10 10] range. These two strains will get a maximal similarity measure through 497
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a correlation analysis, despite the fact that the first strain is wild-type-like while the other is an outlier. 498

Instead we chose to use a recently described algorithm, called t-distributed Stochastic Neighbor Embedding, 499

or t-SNE [58], to project our multidimensional datasets in 2 dimensions and generate, at the same time, 500

similarity measures between strains. t-SNE estimates low-dimensional space distances between points based 501

on their similarity, as opposed to dissimilarity as in the case of PCA, thereby highlighting local similarities 502

rather than global disparities. 503

We used the stochastic nature of the t-SNE algorithm to evaluate the robustness of the resulting projection 504

by repeating the procedure multiple times (n = 100 for each tSNE map). We coupled this dimensional 505

reduction procedure with a density-based clustering algorithm, dbscan [19]. The two input parameters of the 506

dbscan algorithm, ε and minPoints, were optimized so as to generate a maximum number of islands without 507

separating the bulk of WT strains in two or more islands. We identified as robust clusters the groups of 508

strains falling together in the same clusters more than 90% of the time. 509

Map exploration. Each t-SNE map is a similarity map, and can therefore be treated as a network where 510

the nodes represent strains and the edges the Euclidean distance between strains in the tSNE map. Building 511

up on recent quantitative network analysis tools [5], we calculated the local enrichment in the maps of 512

different strain-associated attributes, such as COG and GO terms. Briefly, the sum of the attributes in a 513

local area (within a radius around each point, defined as a percentile of the distribution of all the distances 514

between points) was compared to a background score (defined as the average score obtained over 1000 515

identical maps with randomly permutated attributes) with a hypergeometric test. The significant local 516

enrichments were considered at a threshold of 0.05 after a false discovery rate correction that used the 517

Benjamini-Hochberg-Yekutieli algorithm, taking into account dependencies between tests [9]. 518

Cluster of orthologous gene enrichment analysis. We associated E. coli BW25113 genes with COGs 519

using the web server [59]. The enrichment analyses were performed using a custom-built algorithm in 520

MATLAB based on a two-tailed hypergeometric test to compute p-values, which were subsequently adjusted 521

with the Benjamini-Hochberg False Discovery Rate procedure [8]. Because the COG categories are largely 522

independent, we did not consider any correction for the dependence between tests. 523

Gene ontology analysis. We used ontologies from the Gene Ontology website (http://www.geneontology. 524

org/ontology/gene_ontology.obo, version 2016-05-27) [2], and annotations were obtained from EcoCyc for 525

E. coli strain MG1655 [35]. Analysis was performed using a MATLAB custom-built algorithm that includes 526

a hypergeometric test to compute p-values that were subsequently adjusted with the Benjamini-Hochberg- 527

Yekutieli False Discovery Rate procedure [9]. 528

Bayesian network. The Bayesian network presented in Fig 8 was generated in R with the bnlearn 529

package [49], using the ARACNE algorithm as described in [39]. The network was bootstrapped 200 times, 530

and all the edges were identified in more than 70% of the networks. We assessed the strength and the origin 531

of collinearity among features using Belsley diagnostic method [7], with the in-built collintest.m function in 532

MATLAB. We excluded features associated with a ‘condition number’ above the classical threshold of 30. 533

Data representation. All graphs were generated using MATLAB, except for the networks in Fig 4C and 534

Fig 8A panels, which were created using Cytoscape v3.2 [51] and the Rgraphviz package in R [34], respectively. 535

For Fig 4C, we used the edge-weighted, spring embedded algorithm in-built in Cytoscape. We considered the 536

pairwise Euclidean distances between the 8 strains of island 17 as the weights of the edges connecting the 537

nodes (or strains). 538

The density scales in scatter plots represent the number of points around each point in a radius equal to 539

the 0.03 percentile of the pairwise distances distribution. 540
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The WT isocontours representing the 0.5, 0.75 and 0.95 probability envelopes for the 240 WT replicates 541

were calculated using a 2D kernel density estimation function over a 128-by-128 lattice covering the entire set 542

of points (Supplementary file 3). The bandwidth of the kernel was internally determined [10]. 543

The piecewise linear model where both lines intersect at the regime change 544

y =
(1− sign(x− d))

2
× (ax+ b) +

(1 + sign(x+ d))

2
× (cx+ d(a− c) + b)

was fitted to the binned data (<L> versus CVL for all strains) in Fig 7A using MATLAB built-in non-linear 545

least-squares algorithm. The resulting parameters values (with 95% confidence bounds) were: a=0.007 546

[-0.017;0.030], b=0.195 [0.124;0.265], c=0.195 [0.138;0.251], d=3.392 [3.29;3.495] . 547

Simulations of cell length distributions. Cell length distributions at any given cell age were assumed 548

to be log-normally distributed with different dispersion values. The CV of the distribution for the WT strain 549

(CV = 0.11) was previously experimentally determined [12]. The cell length distributions at 100 different 550

ages equidistantly distributed between 0 (birth) and 1 (division) were convolved with the cell age distribution, 551

assuming an exponentially growing culture, Pr(age) = 2−age. 552
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Figure legends 716

Figure 1. Experimental approach and reproducibility. (A) Experimental workflow. Single gene 717

knock-out strains from the Keio collection were grown in M9 supplemented medium at 30◦C in 96-well plates. 718

DNA was stained with DAPI prior to imaging and 9 images were taken in both phase contrast and DAPI 719

channels. The images were then processed with Oufti to identify the cell and nucleoid contours. In parallel, 720

we recorded the growth curve of each imaged strain in order to extract growth parameters. (B) A SVM 721

model was trained via visual scoring of 43,774 cells. (C) Confusion matrix of the SVM model based on a large 722

validation dataset (102,137 cells), illustrating the distribution of the SVM classifier output in comparison to 723

the visual classification. (D) Comparison of the average width of 192 strains obtained from two independent 724

96-well cultures of the 190 most remarkable Keio strains and 2 WT replicates. 725

Figure 2: Distribution of morphological, cell cycle and growth phenotypes in the E. coli Keio 726

strain collection. Bubble graphs representing, for each feature, the number of strains with a score value, 727

s, beyond 3, 4, 5 or 6 times the interquartile range away from the median of the WT distribution (240 728

replicates). The size of the circles (bubbles) reflects the number of strains with a score beyond a specific, 729

color-coded threshold for s, as indicated. The ‘reference’ bubble graph illustrates the expectations from a 730

dataset of the same size (4,227 strains), assuming a standardized normal distribution of scores (with a mean 731

of 0 and a standard deviation of 1). 732

Figure 3: Feature-based COG enrichment analysis. Pie charts representing, on a feature-by-feature 733

basis, the relative distribution of COG categories among the gene deletion strains associated with a severe 734

phenotype as specified: (A) s ≥ 3, (B) s ≤ -3. The enriched COG categories are labeled and highlighted 735

with an exploded pie sector. The under-represented COG categories are further highlighted by an asterisk. 736

Enrichments and under-representations with an associated (FDR-corrected) q-value < 0.05 were considered 737

significant. Only morphological and growth features with at least one enriched or under-represented COG 738

category are represented. 739

Figure 4: The morpho archipelago. (A) Average 2D tSNE map of the 797 strains with at least one 740

morphological feature with a |s| > 3, plus the 240 independent WT replicates used as controls. Color-coded 741

islands resulting from the dbscan algorithm (ε = 7, minPts = 3) were defined by groups of strains clustering 742

together with the same dbscan parameters in more than 90% of the generated tSNE maps. (B) Heatmap 743

showing, for each island, the average score of each morphological and growth feature used for the construction 744

of the map. (C) Network representation of island 17 grouping filamentous mutants. The weights were directly 745

derived from the average distances between corresponding mutant strains in the 2D tSNE maps. (D) Internal 746

structure of the mean and CV of length in island 2. The average gradients of phenotypes over the area of the 747

island 2 are represented with arrows. (E) Phenoprints associated with each enriched GO term represented 748

as a clustergram. Both rows and columns were ordered using a hierarchical clustering algorithm based on 749

Euclidean distances. Enriched GO terms associated with an FDR-corrected q-value below 0.05 are shown. 750

Figure 5: The cell cycle archipelago. (A) Stable islands in the cell cycle archipelago. The cell cycle 751

and growth phenoprints were used to map the 264 mutant strains with at least one cell cycle or growth 752

feature with a |s| > 3, as well as the 240 independent WT replicates, in 2D using tSNE. As for the morpho 753

archipelago, the data were clustered using the dbscan algorithm. The groups of strains clustering together 754

in more than 90% of the maps defined an island. (B) Heatmap showing, for each island, the average score 755

of each cell cycle and growth feature used for the construction of the map. (C) The islands were colored 756

according to the average score for two growth features and two cell cycle features. (D) Violin plots illustrating 757

the distribution of scores for all the strains included in islands WT, 1, 4, 7 and 10 for the two growth features 758

and three cell cycle features. The black dot and bar show the mean and standard deviation, respectively. (E) 759

Phenoprints associated with each enriched GO term represented as a clustergram. Both rows and columns 760

were ordered using a hierarchical clustering based on Euclidean distances. Enrichments associated with an 761

FDR-corrected p-value below 0.05 were considered significant. (F) The islands in the cell cycle archipelago 762
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were colored according to the proportion of ‘y-genes’ (genes of unknown function). The color map scales from 763

white (0%) to black (60%). 764

Figure 6: Nucleoid separation and cell constriction dynamics. (A) Scatter plot of the relative 765

timing of cell constriction versus the relative timing of nucleoid separation. The gray scale indicates the 766

density of dots in a given area of the chart. The dotted contours represent the 0.5, 0.75 and 0.95 probability 767

contours of the 240 WT replicates. The Pearson correlation is ρ = 0.65. The black dotted diagonal represents 768

the line where a dot should be if both nucleoid separation and cell constriction had happened at the same 769

time. Red dots highlight strains shown in panels (B), (C) and (D). (B) Average dynamics of nucleoid 770

separation and cell constriction for WT and the ∆matP mutant strain. The cumulative distributions of the 771

fraction of cells with two nucleoids (blue) and of the fraction of cells with a constriction degree above 0.15 772

(red) were plotted against the cell length percentile. (C) Same plots as in (B) for three strains clustering in 773

island 4 with the ∆matP strain. The WT curves were plotted in gray for comparison. (D) Same plots as in 774

(B) for the ∆hslV strain and two island 7 strains, ∆ybaN and ∆hslU. 775

Figure 7: Cell length regulation mutants. (A) Scatter plot of the mean cell length versus the CV 776

of the length for all the strains. The gray color levels indicate the density of points in the vicinity of each 777

strain. The orange dots and error bars represent the mean and standard error of the mean per bin. The 778

black line is a piecewise linear fit with a single cross-over point to the binned data (orange) to highlight the 779

two global regimes in the relationship between mean cell length and CV of length. We performed the fit 780

with a (bi-square weighing) linear least square algorithm. (B) Cumulative distribution of the proportion of 781

constricting cells for the ftsA* mutant and its parent. (C) Scatter plot of the CV of the cell length for the 782

whole population versus the CV of the cell length for constricting cells only. The contour lines represent the 783

0.5, 075 and 0.95 probability envelope of the 240 independent WT replicates. The gray color levels indicate 784

the density of points in the vicinity of each strain. The ∆mraZ strain discussed in the text is highlighted in 785

red. 786

Figure 8: Inter-dependence of cell morphology and cell cycle progression. (A) Network showing 787

the functional relationship between 16 non-collinear morphological, growth and cell cycle features. The 788

network is an undirected network highlighting the most informative connections detected by the ARACNE 789

algorithm. The thickness of an edge represents the fraction of the networks containing this specific edge 790

after bootstrapping the network 200 times, from 70% (thinnest) to 100% (thickest). (B) Scatter plot of the 791

normalized mean cell length and mean cell width of all 4,227 Keio strains and 240 WT replicates. Each 792

dot represents a strain, and the gray level illustrates the density of neighbors in the vicinity of each point 793

in the graph. The dotted contours represent the 0.5, 0.75 and 0.95 probability envelopes of the 240 WT 794

replicates. (C) Heatmap showing the mean growth rate value for data binned by both mean cell area and 795

mean nucleoid area. The cell and nucleoid areas are strongly correlated (ρ = 0.83). The median value of 796

αmax per bin is color-coded according to the color scale. (D) Scatter plot of the mean cell area versus the 797

mean nucleoid area for cells with 1, 2, 3 or ≥4 nucleoids for each strain. The histogram in the inset illustrates 798

the average proportions of cells with 1, 2, 3 or ≥4 nucleoids per strain. Although there are typically few cells 799

in each strain with 3 or ≥4 nucleoids, at least one cell with ≥3 nucleoids was detected for 61% of the strains. 800

(E) Heatmap showing the mean growth rate value for data binned by both the mean nucleoid area and the 801

relative timing of nucleoid separation. The mean nucleoid area negatively correlates with the relative timing 802

of nucleoid separation (ρ = -0.49). (F) Heatmap showing the mean cell area value for data binned by both 803

the relative timing of cell constriction and the relative timing of nucleoid separation. The relative timing of 804

cell constriction is strongly correlated to the relative timing of nucleoid separation (ρ = 0.65). 805
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Expanded view figure legends 806

Figure EV1. Morpho archipelago. A typical tSNE map based on 19 morphological and 2 growth 807

features. The same color code as in Figure 4A was used to represent the islands derived from the dbscan 808

clustering. The light grey dots represent strains that were not consistently (less 90% of the time) associated 809

with one of the island. 810

Figure EV2. Filamentous mutants. (A) Representative phase-contrast images of the 8 mutants forming 811

the island 17, together with the parental strain BW25113 (WT) for comparison. (B) Effect of the kanamycin- 812

resistance cassette on the phenotype of the ∆croE strain. The schematic at the top shows the color-mapped 813

score of mean cell length for the deletion of each gene of the croE operon. Below are phase-contrast and 814

fluorescent images of DAPI-stained cells of the ∆croE strain carrying the kanamycin resistance cassette 815

(top) or after the removal of the cassette (bottom). (C) Effect of the kanamycin-resistance cassette on the 816

phenotype of the ∆ydaS strain. The schematic at the top shows the color-mapped score of the CV of cell 817

length for each gene of the ydaS operon. Below are phase-contrast and fluorescent images of DAPI-stained 818

cells of the ∆ydaS strain carrying the kanamycin resistance cassette (top) or after the removal of the cassette 819

(bottom). 820

Figure EV3. Specific pathways associated with impaired cell morphology. (A) Schematic of the 821

ECA biosynthetic pathway in which each gene name has been colored by the severity of the mean aspect 822

ratio (<Ar>) phenotype. (B) Scatter plot of cell width versus cell length for three independent cultures of 823

the ∆rapZ strain (n = 564, 268 and 343 cells). The dotted lines represent isocontours of a 2D histogram of 824

cell length and cell width for the parental strain (WT, n = 1,045 cells). The cell width distributions of the 825

WT and ∆rapZ strains are represented on the right of the scatter plot (all three replicates for the ∆rapZ 826

strain were pooled together). (C) Schematics of the high-affinity ABC phosphate transporter and the ATP 827

synthase, in which the subunits have been colored according to the severity of the mean cell width (<W>) 828

phenotype in the corresponding gene deletion strains. 829

Figure EV4. Simulation showing that the cell length variability of the entire population can 830

mask abnormal cell length variability at a specific cell cycle period. Cell length distributions were 831

simulated over different ranges of cell ages (see Materials and methods). The cell length distribution of 832

constricting cells was determined by summing the cell length distributions of all cells of age > 0.8, assuming 833

different CV of the cell length distribution (0.05, 0.11 and 0.2) at a specific age. The cell length distribution 834

of the whole population was determined by summing the distributions at all ages, from birth to division. 835

Figure EV5. Growth rate correlates poorly with morphological features, cell constriction and 836

nucleoid dynamics. (A) Scatter plots showing the growth rate of each Keio strains and WT replicates 837

relative to their mean cell or nucleoid area. Each dot represents a strain, and the gray level illustrates 838

the density of neighbors in the vicinity of each strain. The dotted contours reflect the 0.5, 0.75 and 0.95 839

probability envelopes of the 240 WT replicates. The corresponding τ correlation coefficients are indicated on 840

each graph. (B) Heatmap showing the mean growth rate value for data binned by the relative timings of 841

cell constriction and nucleoid separation. (C) Same as (B), except for data binned by mean cell length and 842

mean cell width. 843
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Supplementary figure legends 844

Figure S1. Feature determination and SVM model validation. (A) Typical growth curve repre- 845

sented as the log2 of OD600nm as a function of time. The dotted line shows the linear fit to the segment of 846

maximal growth. The last hour of growth (gray box) was used to estimate the saturation level of the culture. 847

(B) AUROC curve (performance curve) related to the SVM model on the dataset that was not used to 848

train the model. The dotted line y = x represents the expectation from a random classification. (C) Ratios 849

between the mean values of each predictor for the visually-curated and SVM-curated datasets, showing the 850

lack of bias. (D) Cumulative distributions of mean score ratios between visually- and SVM-curated datasets 851

of mean and CV predictor values for the 419 strains with the most extreme phenotypes. The steepness of the 852

curves shows that the SVM model performed well, even for strains with strong phenotypic defects. (E) Plot 853

showing how two cell cycle features, the correlation between the degrees of constriction of the nucleoid and of 854

the cell (ρ CD) and the projected degree of nucleoid constriction at the onset of cell constriction (CDNC0), 855

were calculated using a WT culture as an example. The degree of constriction for both the nucleoid and the 856

cell (considering only cells with a degree of cell constriction over 15%) were used to calculate their Pearson 857

correlation coefficient (ρ CD). The correlation coefficient can be interpreted as the slope of the line passing 858

through the data, and the intercept of this line with the y-axis provides the average degree of constriction of 859

the nucleoid at the onset of cell constriction (CDNC0). 860

Figure S2. Evaluation of positional and temporal biases related to imaging. (A) Plate-by-plate 861

normalization. Each plate is color-coded according to the 96-well plate number. The black dots represent the 862

mean feature value per plate, ± standard deviation. (B) Scatter plots for each feature of all strains as a 863

function of the time elapsed from spotting cells on the pad for imaging. The red line in each graph represents 864

the smoothing spline (calculated with a span of 10%) that was used to correct any temporal bias. 865

Figure S3. Temporal bias correction for proportional features. (A) Scatter plots of the measured 866

relative proportions of cells committed to division or not (blue and red dots, respectively) as a function 867

of the time spent on the pad prior to imaging. The solid black lines represent the correction factors over 868

time, derived from a quadratic form Dirichlet regression to the data. The Dirichlet regression allows for the 869

maintenance of the additivity of the proportion [38]. (B) Same as in (A) for the complementary proportions 870

of cells with 1 (blue), 2 (red) or more than 2 (yellow) nucleoids. The fitted model was quadratic for the first 871

two features (1 and 2 nucleoids) and linear for the cells with more than 2 nucleoids. 872

Figure S4. Feature-based COG distribution analysis. Pie charts representing, on a feature-by-feature 873

basis, the relative distribution of COG categories among the gene deletion strains associated with a severe 874

phenotype: (A) s ≥ 3, (B) s ≤ -3. All the features that were not included in Figure 3 are represented. The 875

enriched COG categories are highlighted with an exploded pie sector. Enrichments with an associated (FDR 876

corrected) q-value < 0.05 were considered significant. 877
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Table S1 878

Morphology / size features
Feature name Symbol
Mean cell length <L>
Mean cell width <W>
Mean cell area <A>
Mean cell volume <V>
Mean cell surface area <SA>
Mean cell perimeter <P>
Mean cell circularity <C>
Mean cell aspect ratio <Ar>
Mean cell surface area to volume ratio <SA/V>
Cell length variability CVL
Cell width variability CVW
Cell area variability CVA
Cell volume variability CVV
Cell surface area variability CVSA

Cell perimeter variability CVP
Cell circularity variability CVC
Cell aspect ratio variability CVAr

Cell surface to volume ratio variability CVSA

Division ratio variability CVDR

Growth features
Feature name Symbol
Max. growth rate αmax

Optical density at growth saturation ODmax

Cell cycle features
Feature name Symbol
Correlation in nucleoid and cell constriction ρCD
Nucleoid constriction degree at the initiation of cell constriction CDNC0

Relative timing of cell constriction Rel.timing div
Relative timing of nucleoid separation Rel.timing nuc
Fraction of cells with 2 nucleoids % ≥ 2N

Table S1. Features considered in this study and their associated symbols. The aspect ratio was 879

defined as the ratio of cell width over cell length at the single-cell level. The circularity, C, was defined as 880

C = 4piA/P 2 , at the single-cell level, where P stands for perimeter and A for area. The relative timing of 881

cell constriction and nucleoid separation were estimated as the proportions of cells without any significant 882

constriction (constriction degree < 0.15) or with a single nucleoid, respectively. For all cells with a significant 883

constriction degree, we calculated the Pearson correlation coefficient between the constriction degrees of the 884

cell and of its nucleoid (ρCD. The nucleoid constriction degree at the initiation of cell constriction (CDNC0) 885

was determined as the intercept of a line with a slope determined by the correlation coefficient that best 886

fitted the single-cell data used to calculate ρCD (see Appendix Fig S1E). 887
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