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Abstract. Processes that involve moving fronts of populations are prevalent in

ecology and cell biology. A common approach to describe these processes is a lattice-

based random walk model, which can include mechanisms such as crowding, birth,

death, movement and agent-agent adhesion. However, these models are generally

analytically intractable and it is computationally expensive to perform sufficiently

many realisations of the model to obtain an estimate of average behaviour that

is not dominated by random fluctuations. To avoid these issues, both mean-field

and corrected mean-field continuum descriptions of random walk models have been

proposed. However, both continuum descriptions are inaccurate outside of limited

parameter regimes, and corrected mean-field descriptions cannot be employed to

describe moving fronts. Here we present an alternative description in terms of the

dynamics of groups of contiguous occupied lattice sites and contiguous vacant lattice

sites. Our description provides an accurate prediction of the average random walk

behaviour in all parameter regimes. Critically, our description accurately predicts the

persistence or extinction of the population in situations where previous continuum

descriptions predict the opposite outcome. Furthermore, unlike traditional mean-field

models, our approach provides information about the spatial clustering within the

population and, subsequently, the moving front.
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Introduction

Moving fronts feature ubiquitously throughout biological and ecological processes

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The introduction of non-native species can re-

sult in a catastrophic invasion wave if the introduced species out-competes native fauna

[2, 13]. For example, the cane toad bufo marinus was introduced to north-eastern Aus-

tralia in 1935, and has subsequently invaded much of northern Australia due to a lack

of natural predation [9, 14]. Similarly, malignant tumours spread through the invasion

of previously-healthy tissue, such as glioma cells moving throughout the brain to form

glioblastoma [1, 3, 12, 15].

Lattice-based random walk models that include crowding, birth, death, movement

and agent-agent adhesion are commonly used to describe processes that involve moving

fronts [6, 16, 17, 18, 19, 20, 21]. For example, these random walk models have been used

to interpret in vitro cell biology experiments by considering the position of the leading

edge of the cell front or the cell density profile [6, 19, 21]. Illien et al. [18] consider

random walks in the context of single-file diffusion models of active transport, that is,

transport that requires energy due to an opposing force. However, the stochastic nature

of random walks makes it problematic to efficiently examine the collective behaviour of

a population, as a large number of realisations of the random walk must be performed to

reduce the influence of stochastic fluctuations. Furthermore, it is difficult to determine

meaningful population behaviour through analysis of the discrete process. There is,

therefore, considerable interest in approaches that are both analytically tractable and

avoid the computational expense of repeated simulations.

A common technique to analyse random walk processes is to consider a determin-

istic, continuum approximation of the discrete process [19, 20, 22, 23, 24, 25, 26, 27,

28, 29, 30]. The standard approximation, known as a mean-field (MF) approxima-

tion, results in a partial differential equation (PDE) [19, 20, 25]. The resulting PDE is

amenable to analysis but only provides an accurate approximation of the discrete pro-

cess in an extremely limited set of parameter regimes where spatial correlations are weak

[22, 24, 31]. Hence, using these approximations to model moving fronts may provide an

inaccurate estimate of the velocity of the moving front if the spatial correlations are im-

portant. This inaccuracy could have significant consequences if, for example, the front

velocity is used to make decisions about implementing ecological control measures. To

address the influence of spatial correlations, alternative approximation techniques have

been proposed [22, 24, 28, 32, 33]. The corrected mean-field (CMF) approximation,

which explicitly describes pairwise correlations, results in a system of ordinary differ-

ential equations (ODEs) that accurately approximate the discrete process for a wider

range of parameter regimes, compared to the MF approximation [22, 24]. However,

the CMF description is still invalid in parameter regimes where spatial correlations are

sufficiently strong [28]. Furthermore, the CMF cannot be used to study moving fronts,
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as the governing equations cannot be evaluated anywhere that has zero agent density

[22], such as areas where the population has yet to invade. The chain-and-gap approach

(C&G), proposed by Johnston et al. [28], considers the dynamics of groups of con-

tiguous occupied and vacant sites, and results in a system of ODEs that provide an

accurate approximation of the discrete process in all parameter regimes. These groups

are termed chains and gaps for the contiguous occupied and vacant sites, respectively.

Additionally, the C&G description provides information about the spatial clustering

and patchiness present in the system. There is considerable interest in determining the

influence of local spatial structure on the persistence of a species [34, 35]. However,

the C&G description has previously only been applied to discrete processes that are, on

average, spatially uniform [28]. As such, the C&G description is not currently suitable

for describing processes that contain moving fronts.

Here the C&G description presented by Johnston et al. [28] is extended to

incorporate spatial variation so that the description can be applied to moving fronts.

We interpret the discrete process in terms of chains and gaps, noting that the left-most

site in each chain or gap can occur at any lattice site. The corresponding system of

ODEs is derived and presented, and we demonstrate that the numerical solution of the

ODE system provides an accurate approximation of the average discrete behaviour in

all cases, even in parameter regimes where both the MF and CMF descriptions are

inaccurate. This allows for the robust prediction of whether a population persists or

becomes extinct, as well as reliable estimates of the velocity of the moving front. In

addition, for the first time, the C&G description has been extended to include rates

of birth, death and movement that are dependent on the length of the chain an agent

belongs to. Furthermore, the C&G description includes explicit information about the

spatial clustering present within a moving front.

Random walk model

We consider a one-dimensional lattice-based random walk model where each lattice site

may be occupied by, at most, one agent [36]. The lattice is interpreted as a combination

of groups of contiguous occupied and vacant sites [28]. Agents on the lattice undergo

birth, death and movement events. These events occur at rates P n
p , P

n
d and P n

m per unit

time, respectively, where n ∈ [1, N ] is the length of the chain an agent belongs to and N

is the total number of sites. During a potential birth event, an agent randomly selects

a nearest-neighbour site and attempts to place a daughter agent at that site. The birth

event is successful provided that the target site is vacant [24]. During a death event,

an agent is removed from the lattice [24]. During a potential movement event, an agent

selects a nearest-neighbour site and attempts to move to that site, and is successful

provided that the target site is vacant [24]. The target site selection is unbiased if both

nearest-neighbour sites are vacant. If one nearest-neighbour site is occupied, the vacant

nearest-neighbour site is selected with probability (1 − α)/2, where α ∈ [−1, 1] [26].
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Figure 1. (a) Example lattice configuration with single (orange), edge (cyan) and

middle (purple) agents. (b)-(u) Potential birth, death and movement events for the

configuration of agents in (a), with subsequent change in agent type. Inset circles

denote the agent type and location before the birth, death or movement event occurred.

Lines connecting agents represent agent-agent adhesion/repulsion.

The constant parameter α represents the strength of agent-agent adhesion/repulsion.

Setting α = 0 means that there is no agent-agent adhesion/repulsion, whereas setting

α ̸= 0 simulates agent-agent adhesion (α > 0) or repulsion (α < 0) [26]. Note that α

does not depend on the chain length.

Due to crowding, the success of birth and movement events depends on whether

an agent has zero, one or two nearest-neighbour agents. These agents are referred to

as single, edge or middle agents, respectively [28]. An example lattice configuration

highlighting the different types of agents is presented in Figure 1. The necessary

information to obtain the average numbers of single, edge and middle agents at each

site i ∈ [1, N ] is encoded within the average number of chains of length n ∈ [1, N ]

that contain the site i. The average number of single, edge and middle agents at site

i are denoted NS
i (t), N

E
i (t) and NM

i (t), respectively. The average number of chains

at time t where the left-most agent in the chain is at site i ∈ [1, N ] and the length

is n ∈ [1, N − i + 1] is denoted Cn
i (t). Similarly, the average number of gaps at time

t where the left-most vacant site in the gap is at site i ∈ [1, N ] and the length is

m ∈ [1, N − i+ 1] is denoted Gm
i (t). The spatially-dependent restriction on the length

is due to the choice of no-flux boundary conditions. Note that NS
i (t), N

E
i (t), N

M
i (t),
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Cn
i (t) and Gm

i (t) are all temporally-dependent but, for convenience, we do not explicitly

include this dependence. The average numbers of edge, middle and single agents at site

i are given by:

NE
i =

N−i+1∑
j=2

Cj
i +

i−1∑
j=2

Cj
i−j+1,

NM
i =

i−1∑
j=1

N−j+1∑
k=3

Ck
j , and

NS
i = C1

i .

Note that middle agents cannot exist at sites i = 1 and i = N due to the choice of

boundary conditions.

Similar to the approach of Johnston et al. [28], we consider how birth, death and

movement events change the location and lengths of the chains and gaps, rather than

the occupancy of an individual lattice site. This approach avoids making an assumption

about the probability that a particular site is occupied or vacant, as the sites either

side of a chain or gap are necessarily vacant or occupied, respectively. There are twenty

different types of events that change either the location of the left-most agent in a chain,

the length of a chain, or both. An example of each event is presented in Figure 1 for a

particular configuration of agents. Events can have more than one potential outcome.

For example, the potential outcomes of a single agent at site i undergoing a birth event

can be classified into four groups. The daughter agent can be placed at site i−1 or i+1,

and the gap that the daughter agent is placed in can be length one or greater. Here we

detail each possible event and the subsequent change in configuration with respect to

the number of chains and gaps. Events are referred to by a nomenclature describing the

type of agent undergoing the event and the mechanism of the event itself, followed by a

number highlighting the potential for multiple outcomes to arise from a specific event.

For example, birth events for single agents are referred as SB events. Since there are

four different types of SB events, we refer to these as SB1, SB2, SB3 and SB4 events.

The details of each event are as follows:

Event SB1: A single agent at site i places a daughter agent at site i − 1, where the

gap that includes site i− 1 is greater than length one. C1
i and Gi−j

j decrease, C2
i−1 and

Gi−j−1
j increase (Figure 1(b)).

Event SB2: A single agent at site i places a daughter agent at site i + 1, where the

gap that includes site i + 1 is greater than length one. C1
i and Gj

i+1 decrease, C2
i and

Gj−1
i+2 increase (Figure 1(c)).

Event SB3: A single agent at site i places a daughter agent at site i−1, where the gap

that includes site i− 1 is of length one. C1
i , G

1
i−1 and Ci−j−1

j decrease, Ci−j+1
j increases

(Figure 1(d)).

Event SB4: A single agent at site i places a daughter agent at site i + 1, where the
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gap that includes site i+1 is of length one. C1
i , G

1
i+1 and Cj

i+2 decrease, C
j+2
i increases

(Figure 1(e)).

Event EB1: An edge agent at site i places a daughter agent at site i − 1, where the

gap that includes site i− 1 is greater than length one. Cj
i and Gi−k

k decrease, Cj+1
i−1 and

Gi−k−1
k increase, where j ≥ 2 (Figure 1(f)).

Event EB2: An edge agent at site i places a daughter agent at site i + 1, where the

gap that includes site i+1 is greater than length one. C i−j+1
j and Gk

i+1 decrease, C
i−j+2
j

and Gk−1
i+2 increase, where j ≥ 2 (Figure 1(g)).

Event EB3: An edge agent at site i places a daughter agent at site i−1, where the gap

that includes site i−1 is of length one. Cj
i , G

1
i−1 and C i−k−1

k decrease, C i+j−k
k increases,

where j ≥ 2 (Figure 1(h)).

Event EB4: An edge agent at site i places a daughter agent at site i + 1, where the

gap that includes site i + 1 is of length one. C i−j+1
j , G1

i+1 and Ck
i+2 decrease, Ci−j+k+2

j

increases, where j ≥ 2 (Figure 1(i)).

Event SM1: A single agent at site i moves to site i − 1, where the gap that includes

site i−1 is greater than length one. C1
i , G

i−j
j and Gk

i+1 decrease, C
1
i−1, G

i−j−1
j and Gk+1

i

increase (Figure 1(j)).

Event SM2: A single agent at site i moves to site i + 1, where the gap that includes

site i+1 is greater than length one. C1
i , G

i−j
j and Gk

i+1 decrease, C
1
i+1, G

i−j+1
j and Gk−1

i+2

increase (Figure 1(k)).

Event SM3: A single agent at site i moves to site i − 1, where the gap that includes

site i− 1 is of length one. C1
i , G

1
i−1, G

j
i+1 and Ci−k−1

k decrease, Ci−k
k and Gj+1

i increase

(Figure 1(l)).

Event SM4: A single agent at site i moves to site i + 1, where the gap that includes

site i+ 1 is of length one. C1
i , G

1
i+1, G

i−j
j and Ck

i+2 decrease, Ck+1
i+1 and Gi−j+1

j increase

(Figure 1(m)).

Event EM1: An edge agent at site i moves to site i− 1, where the gap that includes

site i− 1 is greater than length one. Cj
i and Gi−k

k decrease, C1
i−1, G

1
i , C

j−1
i+1 and Gi−k−1

k

increase, where j ≥ 2 (Figure 1(n)).

Event EM2: An edge agent at site i moves to site i + 1, where the gap that includes

site i+1 is greater than length one. Ci−j+1
j and Gk

i+1 decrease, C
1
i+1, G

1
i , C

i−j
j and Gk−1

i+2

increase, where j ≥ 2 (Figure 1(o)).

Event EM3: An edge agent at site i moves to site i− 1, where the gap that includes

site i − 1 is of length one. Cj
i , G

1
i−1 and C i−k−1

k decrease, Cj−1
i+1 , G

1
i and C i−k

k increase,

where j ≥ 2 (Figure 1(p)).

Event EM4: An edge agent at site i moves to site i + 1, where the gap that includes

site i+ 1 is of length one. Ci−j+1
j , G1

i+1 and Ck
i+2 decrease, Ci−j

j , G1
i and Ck+1

i+1 increase,

where j ≥ 2 (Figure 1(q)).

Event SD1: A single agent at site i dies. C1
i , G

i−j
j and Gk

i+1 decrease, Gi+k−j+1
j in-

creases (Figure 1(r)).

Event MD1: A middle agent at site i dies. Ck
j decreases, Ci−j

j , Cj+k−i−1
i+1 and G1

i

increase, where j ≥ 3 (Figure 1(s)).
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Event ED1: An edge agent at site i dies, where site i+ 1 is occupied and site i− 1 is

vacant. Cj
i and Gi−k

k decrease, Cj−1
i+1 and Gi−k+1

k increase, where j ≥ 2 (Figure 1(t)).

Event ED2: An edge agent at site i dies, where site i − 1 is occupied and site i + 1

is vacant. Ci−j+1
j and Gk

i+1 decrease, C
i−j
j and Gk+1

i increase, where j ≥ 2 (Figure 1(u)).

To obtain expressions for the time rate of change of Cn
i and Gm

i , we consider the

rate at which each event occurs at site i, and all possible results of each event. Birth

events are always successful for single agents and, as such, occur at rate P 1
pC

1
i . Simi-

larly, movement events for single agents are always successful and are not influenced by

agent-agent adhesion/repulsion. Therefore single agent movement events occur at rate

P 1
mC

1
i . Birth events for edge agents are, on average, unsuccessful half the time due to

crowding. Hence, birth events occur at rates P n
p C

n
i /2 for n ∈ [2, N ]. Movement events

for edge agents are influenced by both crowding and agent-agent adhesion/repulsion,

and occur at rates P n
mC

n
i (1 − α)/2 for n ∈ [2, N ]. Neither birth or movement events

can occur for middle agents. For all agent types, death events are not influenced by

crowding and occur at rates P n
d C

n
i for n ∈ [1, N ]. Note that all rates are chain-length

dependent. Practical examples that could be described using chain-length dependent

rates arise in a variety of situations [28, 37]. For example, Hedayati et al. [37] demon-

strate that nanoparticle-mediated heating causes cytotoxicity in prostate cancer cells,

provided the volume of cells is above a threshold value. Furthermore, the cytotoxicity

increases with the cell number. Our framework would be suitable for modelling this

process, as we are able to impose death rates that are zero below a threshold length,

and an increasing function with respect to length otherwise.

While the rates at which events occur for each mechanism and agent type

combination are known, multiple events can occur for a mechanism and agent type

combination. For example, there are four types of birth events for single agents and,

as such, we require the proportion of single birth events that are SB1, SB2, SB3 and

SB4 events. For a single birth event to be an SB1 event, the agent at site i must

place a daughter agent at site i − 1 and the gap that contains site i − 1 must be

of length two or greater. Note that the gap cannot include site i, as the selected

agent occupies that site. The proportion of single birth events where the agent at

site i selects a target site at i − 1 is 1/2. The proportion of single birth events

where the agent selects a target site that is part of a gap of length two or greater

is
∑i−2

j=1G
i−j
j /

∑i−1
j=1G

i−j
j , that is, the number of gaps including site i − 1 that are of

length two or greater divided by the total number of gaps including site i − 1. Hence

the rate at which SB1 events occur at site i, and subsequently decrease C1
i and increase

C2
i−1, is (1/2)P

1
pC

1
i

∑i−2
j=1G

i−j
j /

∑i−1
j=1G

i−j
j . SB1 events also decrease Gi−j

j and increase

Gi−j−1
j , where j ∈ [1, i− 2]. The proportion of SB1 events that change Gi−j

j and Gi−j−1
j

for a specific j ∈ [1, i − 2] is (1/2)P 1
pC

1
i G

i−j
j /

∑i−1
k=1G

i−k
k . Therefore, we can determine

the expected rate of change for all chains and gaps affected by an SB1 event at site

i. Following a similar process for all events we obtain transition rates for Cn
i and Gm

i ,
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where i ∈ [1, N ], n ∈ [1, N − i + 1] and m ∈ [1, N − i + 1]. The resulting system of

ODEs is presented in Appendix A.1 for Cn
i and Appendix A.2 for Gm

i .

Traditional mean-field descriptions

Traditional MF descriptions of lattice-based random walk models containing crowding,

birth, death, movement and agent-agent adhesion do not have the flexibility to describe

processes where the rate of birth, death and/or movement is arbitrarily chain-length

dependent. However, with certain simplifying assumptions, MF descriptions of the dis-

crete process can be derived [20, 38]. Here we examine two special cases of the discrete

process, where continuum MF descriptions have been presented previously.

Special case 1: One simplifying assumption is that the birth, death and movement

rates are independent of chain length. Hence we define Pp = P 1
p = P 2

p = ... = PN
p ,

Pd = P 1
d = P 2

d = ... = PN
d , and Pm = P 1

m = P 2
m = ... = PN

m . There is, therefore,

no positive or negative benefit associated with an agent being near other agents.

Furthermore, there is no agent-agent adhesion/repulsion, and hence α = 0. The MF

description for this case takes the form of a reaction-diffusion equation, known as the

Fisher-Kolmogorov model [20, 38, 39, 40],

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
+ (λ−K)ρ(x, t)(1− ρ(x, t)), (1)

where

D = lim
∆→0

Pm∆
2

2
, λ = Pp, K = Pd,

and ρ(x, t) is the agent density [20, 38].

Special case 2: An alternative simplifying assumption is that birth, death and

movement rates depend on whether an agent is isolated or not. An isolated agent

has zero nearest-neighbours [38], corresponding to a chain of length one. All grouped

agents, that is, agents with at least one nearest-neighbour, undergo birth, death and

movement events at the same rate. Grouped agents correspond to agents that are

part of a chain of length two or greater. Hence we define PG
p = P 2

p = ... = PN
p ,

PG
d = P 2

d = ... = PN
d , and PG

m = P 2
m = ... = PN

m . This assumption introduces a

potential positive or negative benefit associated with an agent being adjacent to other

agents. For example, if P 1
d > PG

d then isolated agents are more likely to die, compared

to other agents, and hence there is a positive benefit associated with being adjacent to

other agents. This allows for significant flexibility in modelling a variety of competitive

or co-operative processes [38]. Again, there is no agent-agent adhesion/repulsion, and

α = 0. The MF description for this case is a reaction-diffusion equation with a nonlinear

diffusivity function and Allee kinetics [38],

∂ρ(x, t)

∂t
=

∂

∂x

(
F (ρ(x, t))

∂ρ(x, t)

∂x

)
+R(ρ(x, t)), (2)
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where

F (ρ(x, t)) = DI(1− 4ρ(x, t) + 3ρ(x, t)2) +DG(4ρ(x, t)− 3ρ(x, t)2),

R(ρ(x, t)) = (λI − λG −KI +KG)ρ(x, t)(1− ρ(x, t))2

+ λGρ(x, t)(1− ρ(x, t))−KGρ(x, t),

and

DI = lim
∆→0

P 1
m∆

2

2
, λI = P 1

p , KI = P 1
d ,

DG = lim
∆→0

PG
m∆2

2
, λG = PG

p , KG = PG
d .

While CMF descriptions have been presented for certain lattice-based random walk

models, these descriptions are unsuitable for studying problems containing moving fronts

as the system of governing ODEs is singular at zero agent density [22, 24, 26].

Results

The solution of the MF model leads to a prediction of the average agent density profile

as a function of position and time, whereas the C&G description provides the number

of chains and gaps of all possible lengths as a function of location and time. Hence to

compare the MF descriptions with the C&G description, it is necessary to reconstruct

the agent density at each location, ρi, from Cn
i and Gm

i . The agent density at site i is

the sum of all possible chains that include site i, namely,

ρi(t) =
i∑

j=1

N−j+1∑
k=i−j+1

Ck
j . (3)

An example of the output from the one-dimensional discrete model, illustrating twenty

identically-prepared realisations, is presented in Figures 2(a)-(c) at t = 0, t = 100 and

t = 200, respectively. Identically-prepared realisations refer to simulations of the dis-

crete model performed with the same initial condition, parameter regime and boundary

conditions. Initially, the domain is fully-occupied for 61 ≤ x ≤ 140, and vacant other-

wise. As time increases, the population spreads into the initially-vacant region. Note

that Figures 2(a)-(c) each show twenty one-dimensional simulations, rather than one

two-dimensional simulation. To obtain the average behaviour of the agent population,

M identically-prepared realisations of the discrete model are performed and the binary

lattice occupancy at each site i, ρ̂i, is calculated for each realisation. Note that the

discrete model is simulated with the Gillespie algorithm [41]. The binary lattice occu-

pancy is then averaged, giving ρi = (1/M)
∑

M ρ̂i. The averaged density profile from

the discrete model is presented in Figure 2(d), with the numerical solutions to both

Equation (1) and the C&G governing equations superimposed, at t = 100 and t = 200.

Both continuum descriptions match the averaged discrete model predictions extremely

well. Details of the numerical techniques used to solve the PDEs and systems of ODEs
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(d)t = 0

t = 200
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Figure 2. (a)-(c) Twenty identically-prepared realisations of the one-dimensional

discrete model at (a) t = 0, (b) t = 100, and (c) t = 200, as indicated. (d) Comparisons

of density profiles obtained from the averaged discrete model (blue, dashed), MF

description (red, solid) and C&G description (cyan, solid). Note that the cyan and

red curves are visually indistinguishable at this scale. All results are obtained using

P i
m = 1, P i

p = 0.005, P i
d = 0 for i ∈ [1, 200], N = 200, M = 103 and ∆ = 1. These

parameter choices correspond to Special case 1. Profiles are presented at t = 100 and

t = 200, and the arrow indicates the direction of increasing time. Grey lines represent

the initial condition.

100
0

0.4

1

Gm

m100
0

0.4

1

Cn

n
0

1

1001 x

ρ(x)

(a) (b) (c)

Figure 3. (a) Comparisons of density profiles obtained from the averaged discrete

model (blue, dashed), MF description (red, solid) and C&G description (cyan, solid).

(b) Comparison of the chain distribution obtained from the averaged discrete model

(dark green, dashed) and C&G description (light green, solid). (c) Comparison of

the gap distribution obtained from the averaged discrete model (dark brown, dashed)

and C&G description (light brown, solid). All results are obtained using P i
m = 0.5,

P i
p = 0.5, P i

d = 0 for i ∈ [1, 100], N = 100, M = 103 and ∆ = 1. These parameter

choices correspond to Special case 1. Profiles are presented at t = 100 and t = 200, and

the arrow indicates the direction of increasing time. Grey lines represent the initial

condition.

are presented in Appendix B.

The parameter regime considered in Figure 2 has Pm/Pp ≫ 1 and Pd = 0, and, as

such, we expect the MF description to approximate the average discrete behaviour well

since this combination of parameters avoids the formation of significant agent clustering

[20, 22]. We now consider a parameter regime where Pm/Pp is O(1). In such parameter

regimes, the spatial correlations are significant and, subsequently, the MF description
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Figure 4. (a) Comparisons of density profiles obtained from the averaged discrete

model (blue, dashed), MF description (red, solid) and C&G description (cyan, solid).

(b) Comparison of the chain distribution obtained from the averaged discrete model

(dark green, dashed) and C&G description (light green, solid). (c) Comparison of

the gap distribution obtained from the averaged discrete model (dark brown, dashed)

and C&G description (light brown, solid). All results are obtained using P 1
m = 0.5,

P 1
p = 0.4, P 1

d = 0.7, P i
m = 0.25, P i

p = 0.3, P i
d = 0 for i ∈ [2, 100], N = 100,

M = 103 and ∆ = 1. These parameter choices correspond to Special case 2. Profiles

are presented at t = 50 and t = 100, and the arrow indicates the direction of increasing

time. Grey lines represent the initial condition.

does not provide a valid approximation of the average discrete behaviour [22, 28]. To

highlight this, a comparison between the average discrete behaviour and the numerical

solution of Equation (1) is presented in Figure 3(a). For these results, the domain is

initially fully-occupied for x ≤ 20, and is vacant otherwise. The MF description pre-

dicts a front that is significantly sharper, and has a higher front speed, compared to the

discrete model. In contrast, the numerical solution of the C&G description predicts the

average discrete behaviour well, matching both the shape and position of the averaged

discrete data. Furthermore, the distribution of chain and gap lengths, Cn and Gm,

matches the observed average distribution of chains and gaps in the discrete model, as

shown in Figures 3(b)-(c). As such, the C&G description provides an accurate estimate

of the front shape and speed, as well as a valid prediction of the clustering of occupied

and vacant sites in the system.

If the birth, death and movement rates depend on whether an agent has zero or at

least one nearest-neighbour agent then the MF description of the discrete model is Equa-

tion (2) [38]. A comparison of the average discrete behaviour, the numerical solution

of Equation (2) and the numerical solution of the C&G description in an appropriate

parameter regime is presented in Figure 4(a). Interestingly, the MF description predicts

that the agent population moves in the negative x direction, and would subsequently

become extinct. In contrast, both the discrete model and the C&G description suggest

that the agent population persists, and spreads in the positive x direction. Again, the

C&G description matches the average discrete behaviour extremely well. The results

in Figure 4(a) highlight the need for an accurate approximation. If the naive approach

of implementing a MF approximation to describe the spread of an invasive species is
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Figure 5. (a) Comparisons of density profiles obtained from the averaged discrete

model (blue, dashed), MF description (red, solid) and C&G description (cyan, solid).

(b) Comparison of the chain distribution obtained from the averaged discrete model

(dark green, dashed) and C&G description (light green, solid). (c) Comparison of

the gap distribution obtained from the averaged discrete model (dark brown, dashed)

and C&G description (light brown, solid). All results are obtained using P 1
m = 0.5,

P 1
p = 0.45, P 1

d = 0.3, P i
m = 0.25, P i

p = 0.3, P i
d = 0.1 for i ∈ [2, 100], N = 100,

M = 104, ∆ = 1. These parameter choices correspond to Special case 2. Profiles are

presented at t = 25 and t = 50, and the arrow indicates the direction of increasing

time. Insets highlight regions of particular interest. Grey lines represent the initial

condition.

taken, it might be recommended that no culling measures are required to curtail the

spread of the species. Obviously, such a recommendation is incorrect if the aim is to

halt the invasion of the alien species. The clustering present in the system is highlighted

in Figures 4(b)-(c), for chains and gaps, respectively. Intuitively, as time increases and

the population spreads, the average chain length increases and the average gap length

decreases. The C&G description predicts both the average chain and gap distributions

in the discrete model well.

Introducing a non-zero death rate for chains of length two or greater reduces the

carrying capacity in the MF description of the discrete model [38]. To determine whether

this reduction is an accurate reflection of the average discrete behaviour, we present a

comparison of the average discrete behaviour, and the numerical solutions of both Equa-

tion (2) and the C&G governing equations in Figure 5(a). Both the discrete model and

the C&G description predict that the peak agent density near x = 50 decreases between

t = 25 and t = 50, whereas the MF description predicts that the peak agent density at

this location is approximately constant, at ρ = 0.646 [38], after t = 25. Interestingly,

both the discrete model and the C&G description predict that the population eventu-

ally goes extinct. In contrast, the MF description predicts that the population persists

and spreads throughout the domain. Again, these results highlight the importance of

implementing an accurate approximation to obtain meaningful conclusions, as well as

the robust nature of the C&G description.
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Figure 6. Schematic and experimental images of a scratch assay. (a) Schematic of a

confluent cell population. (b) Schematic of a cell population after the scratch has been

performed. Grey regions represent the confluent cell population and white regions

represent the vacant area. (c)-(d) Experimental images of a 3T3 fibroblast scratch

assay at (c) t = 0, and (d) t > 0. (e)-(f) Schematic of a mathematical model of a

scratch assay at (e) t = 0, and (f) t > 0. Scale bar corresponds to 200 µm.

Note that all results presented here have been performed with α = 0, and hence

no agent-agent adhesion/repulsion. Simulations performed with α ̸= 0 (not presented)

confirm that the C&G description accurately predicts the average discrete behaviour in

all cases, even with strong agent-agent adhesion/repulsion.

Experimental case study

To highlight the insight provided about spatial clustering by the C&G description, we

consider a case study motivated by a scratch assay. Scratch assays are widely used to

observe the collective behaviour of a cell population in response to a model wound [42].

We present a schematic representation and experimental images of a scratch assay in

Figure 6. In a scratch assay, a cell population is placed on a dish and allowed to grow

to confluence. A portion of the cell population is then removed, and the remaining cells

spread, through a combination of migration and proliferation, into the newly-vacant

space [42]. A schematic representation of the confluent population before and after the

scratch is performed is presented in Figures 6(a)-(b), with a typical experimental field

of view highlighted in green. To mimic the geometry of this experiment, we consider

1 ≤ x ≤ 100 and initially set ρ(x) = 1 for x ≤ 30 and ρ(x) = 0, otherwise. Note that

scratch assays are two-dimensional processes, as observed in the experimental images

of a scratch assay for a 3T3 fibroblast population in Figures 6(c)-(d), and the corre-

sponding schematics for this experiment in Figures 6(e)-(f). Full experimental details

are given in [6].

As the experiment is approximately spatially-uniform in one direction, we can

approximate the scratch assay with a one-dimensional model [43]. We consider two
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Figure 7. (a) Comparisons of density profiles obtained from the averaged discrete

model (blue, dashed), MF description (red, solid) and C&G description (cyan, solid).

(b) Comparison of the chain distribution obtained from the averaged discrete model

(dark green, dashed) and C&G description (light green, solid). (c) Comparison of the

gap distribution obtained from the averaged discrete model (dark brown, dashed) and

C&G description (light brown, solid). All results are obtained using P i
m = 0.66 h−1,

P i
p = 0.056 h−1, P i

d = 0 h−1 for i ∈ [1, 100], N = 100, M = 103, ∆ = 1. These

parameter choices correspond to 3T3 fibroblast cells. Profiles are presented at t = 75

and t = 150, and the arrow indicates the direction of increasing time. Insets highlight

regions of particular interest. Grey lines represent the initial condition.

scratch assays performed with two different cell lines where parameter estimates for the

cell motility and cell proliferation rates have been presented previously: 3T3 fibroblast

cells (3T3 cells) and MDA MB 231 breast cancer cells (231 cells) [44]. The investigation

performed by Simpson et al. [44] resulted in parameter estimates of P i
p = 0.056 h−1,

P i
m = 0.66 h−1 and P i

d = 0 h−1 for all i for 3T3 cells, and P i
p = 0.069 h−1, P i

m = 0.04

h−1, P i
d = 0 h−1 for all i for 231 cells. Note that the ratio P i

p/P
i
m is approximately one

order of magnitude higher for the breast cancer cells compared to the fibroblasts, which

implies that the spatial correlations between breast cancer cells will be more significant

[22].

For the numerical solution corresponding to the 3T3 cell population, presented in

Figure 7, both the MF description and the C&G description approximate the average

discrete behaviour reasonably well. However, the C&G description provides additional

information regarding the clustering present within the migrating cell population. The

chain distribution, presented in Figure 7(b), suggests that the 3T3 population does not

form significant clusters, as the majority of the chains are short length.

In contrast, for the numerical solution corresponding to the 231 cell population,

presented in Figure 8, the C&G description accurately approximates the average

discrete behaviour, while the MF description does not. This is result is intuitive as

we observe that there is significantly more clustering present in the system, compared

to the numerical solution corresponding to the 3T3 cell population. That is, the

chain distribution in Figure 8(b) contains significantly fewer chains of short length,

compared to the chain distribution in Figure 7(b). For example, at the times shown,
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Figure 8. (a) Comparisons of density profiles obtained from the averaged discrete

model (blue, dashed), MF description (red, solid) and C&G description (cyan, solid).

(b) Comparison of the chain distribution obtained from the averaged discrete model

(dark green, dashed) and C&G description (light green, solid). (c) Comparison of the

gap distribution obtained from the averaged discrete model (dark brown, dashed) and

C&G description (light brown, solid). All results are obtained using P i
m = 0.04 h−1,

P i
p = 0.069 h−1, P i

d = 0 h−1 for i ∈ [1, 100], N = 100, M = 103, ∆ = 1. These

parameter choices correspond MDA MB 321 breast cancer cells. Profiles are presented

at t = 250 and t = 500, and the arrow indicates the direction of increasing time. Grey

lines represent the initial condition.

Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7

Discrete model (single realisation) 3.42 1.13 0.22 0.11 0.37 0.27

Discrete model (1000 realisations) 2838.1 954.4 134.1 39.1 313.6 177.9

C&G description 601.3 52.3 25.2 34.7 27.1 27.6

Table 1. Time in seconds taken to perform: (i) a single realisation of the discrete

model; (ii) 1000 realisations of the discrete model, and (iii) a numerical solution of

the C&G system of equations for the parameter values in Figures 2-7. All solutions

are obtained using a single 3.0 GHz Intel i7-3540M desktop processor. Note that the

computation time for 1000 realisations is lower than performing 1000 repeats of a single

realisation due to the time associated with initial set-up.

C1 is approximately 25 times higher in the 3T3 cell population, compared to the 231

cell population. Critically, the C&G description accurately predicts the experimental

observation that 231 cells form clusters while 3T3 cells do not [44]. Specifically, during

monolayer formation, 3T3 cells form an approximately spatially uniform monolayer

while 231 cells develop into clusters [44].

Discussion and conclusions

Processes that involve moving fronts are common in cell biology and ecology [1, 2, 4, 5,

6, 7, 9, 10, 11, 12], and lattice-based random walks are widely employed to describe these

processes [6, 16, 18, 19, 20, 21, 45]. Due to the stochastic nature of random walks, it

can be computationally intractable to perform sufficiently many realisations of a random
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walk model to obtain average behaviour that is not dominated by fluctuations. Fur-

thermore, it is difficult to extract meaningful information about population behaviour

through analysis of the random walk. The standard approach to overcome these issues

is to derive a MF description of the random walk [19, 20, 25]. However, this approach

relies on the assumption that any spatial correlations within the random walk are weak

[22, 24]. CMF descriptions that account for the spatial correlations have been proposed

[22, 24, 46]. Unfortunately, these descriptions are not applicable to problems involving

moving fronts as the ODEs governing the CMF description are singular in regions where

the density of agents is zero [22, 24].

Here we develop and present an accurate continuum description for moving fronts

associated with lattice-based random walks that contain crowding, birth, death, move-

ment and agent-agent adhesion. We consider processes that are spatially variable, and

include birth, death and movement rates that are chain-length dependent. Our C&G

description provides predictions that match the average behaviour of the discrete model

well in all parameter regimes. In contrast, the MF description is less flexible in terms

of the birth, death and movement rates and only provides a valid approximation of the

average discrete behaviour in extremely limited parameter regimes. Furthermore, for

all cases considered in this work, the C&G description requires less computation time

than performing 1000 realisations of the discrete model. A comparison between the

time taken to perform a single realisation of the discrete model, 1000 realisations of the

discrete model, and to obtain the numerical solution to the C&G system of equations

is presented in Table 1.

For the special case where the rates of birth, death and movement are independent

of the chain length, the MF description correctly predicts the persistence of the popula-

tion but inaccurately predicts the front velocity. For the special case where the rates of

birth, death and movement are different depending on whether the agents are part of a

chain of length one, or are part of a chain of length two or greater, the MF description

predicts persistence when the population becomes extinct, and predicts extinction when

the population persists. In both these cases the C&G description accurately predicts

the front velocity, and the persistence or extinction of the population. Furthermore, the

C&G description provides information about the spatial clustering of both occupied and

unoccupied sites, and the clustering predictions approximate the clustering observed in

the discrete model accurately.

The work presented here could be extended in several ways. The influence of local

spatial structure on the persistence of species is a key question in ecology [34, 35, 45, 47].

The C&G description provides an explicit estimate of the spatial clustering of both

agents and unoccupied space. Therefore, it would be instructive to apply the C&G

description to ecological processes to obtain insight into the clustering present in the

system for parameter regimes where the agent population becomes extinct. Another
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approach would be to investigate a truncated system of governing equations, where

there is a maximum chain or gap length. If there is prior knowledge about the

long-time density of the system, an assumption could be made that chains or gaps

above a threshold length could be neglected, and hence the system of equations could

be truncated. This truncation would reduce the computational cost associated with

obtaining a numerical solution to the governing equations. It would be insightful to

examine the trade-off between the reduction in computational cost and the decreased

accuracy caused by the truncation. Alternatively, the C&G description presented here

could be calibrated to experimental data from the cell biology literature. For example,

lattice-based random walks have been calibrated to in vitro cell biology experiments

to obtain estimates of cell diffusivity and cell proliferation rates [6, 21]. However,

the calibration of stochastic models to experimental data is computationally expensive

[6, 48]. As the C&G description accurately approximates the average random walk

behaviour in all parameter regimes, it would be instructive to determine whether similar

cell diffusivity and cell proliferation rates could be obtained from calibration of the

deterministic C&G description to experimental data, and to quantify the reduction in

computation time to obtain the parameter estimates. However, we leave these extensions

for future consideration.
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Appendix A. Governing equations

Appendix A.1. Chains

Here we present the time rate of change for each chain length and location, obtained by

considering the potential outcomes of each type of birth, death and movement event.
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Appendix A.2. Gaps

Here we present the time rate of change for each gap length and location, obtained by

considering the potential outcomes of each type of birth, death and movement event.
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pY (Ci

k−i−1, G
2
k−1)−

N−k∑
i=1

P i
pY (Ci

k+1, G
1
k)−

k−1∑
i=1

P i
pY (C i

k−i, G
1
k)

]

+

[
k−1∑
i=1

N−i+1∑
j=k−i+2

P j
d

{
Cj

i

}
−

k−1∑
i=1

P i
dY (C i

k−i, G
1
k)−

N−k∑
i=1

P i
dY (Ci

k+1, G
1
k)

]

+
P 1
m

2

[
− 2Y (C1

k−1, G
1
k)− 2Y (C1

k+1, G
1
k) + Y (C1

k−2, G
2
k−1) + Y (C1

k+2, G
2
k)

]
+

1− α

2

[
k∑

i=2

P i
m

{
C i

k−i+1

}
+

N−k+1∑
i=2

P i
m

{
Ci

k

}
−

k−1∑
i=2

P i
m

{
Y (Ci

k−i, G
1
k)
}

−
N−k∑
i=2

P i
m

{
Y (C i

k+1, G
1
k)
}
+

k−2∑
i=2

P i
mY (Ci

k−i−1, G
2
k−1) +

N−k−1∑
i=2

P i
mY (C i

k+2, G
2
k)

]
,

k = 3, . . . , N − 2,

dG1
N−1

dt
=

1

2

[
N−3∑
i=1

P i
p

{
Y (Ci

N−i−2, G
2
N−2)

}
− P 1

p Y (C1
N , G

N−1
1 )−

k−1∑
i=1

P i
pY (C i

N−i−1, G
1
N−1)

]

+

[
N−2∑
i=1

P i
d

{
CN−i+1,i

}
−

N−2∑
i=1

P i
d

{
Y (C i

N−i−1, G
1
N−1)

}
− P 1

dY (C1
N , G

1
k)

]

+
P 1
m

2

[
− 2Y (C1

N−2, G
1
N−1)− Y (C1

N , G
1
N−1) + Y (C1

N−3, G
2
N−2)

]
+

1− α

2

[
N−1∑
i=2

P i
m

{
C i

N−i

}
+ P 2

mC
2
N−1 −

N−2∑
i=2

P i
m

{
Y (Ci

N−1−i, G
1
N−1)

}
+

N−3∑
i=2

P i
mY (C i

N−i−2, G
2
N−2)

]
,

dG1
N

dt
=

1

2

[
N−2∑
i=1

P i
pY (Ci

N−i−1, G
2
N−1)−

N−1∑
i=1

P i
pY (C i

N−i, G
1
N)

]

+

[
N∑
i=2

P i
dC

i
N−i+1 −

N−1∑
i=1

P i
dY (Ci

N−i, G
1
N)

]

+
P 1
m

2

[
C1

N − 2C1
N−1 + Y (C1

N−2, G
2
N−1)

]
+

1− α

2

[
−

N−1∑
i=2

P i
m

{
C i

N−i

}
+

N−2∑
i=2

P i
mY (Ci

N−i−1, G
2
N−1)

]
,

dGL
1

dt
=

1

2

[
N−L−1∑

i=1

P i
pY (Ci

L+2, G
L+1
1 )−

N−L∑
i=1

P i
pY (Ci

L+1, G
L
1 )

]
+

[
P 1
dY (C1

1 , G
L−1
2 )

+
N−L+1∑

i=2

P i
dY (C i

L, G
L−1
1 ) +

L−2∑
i=1

P 1
dY (C1

i+1, G
i
1, G

L−i−1
i+2 )−

N−L∑
i=1

P i
dY (Ci

L+1, G
L
1 )

]
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+
P 1
m

2

[
Y (C1

L, G
L−1
1 )− 2Y (C1

L+1, G
L
1 ) + Y (C1

L+2, G
L+1
1 )

]
+

1− α

2

[
−

N−L∑
i=2

P i
m

{
Y (C i

L+1, G
L
1 )
}
+

N−L−1∑
i=2

P i
mY (Ci

L+2, G
L+1
1 )

]
,

L = 2, . . . , N − 2,

dGL
2

dt
=

1

2

[
N−L−2∑

i=1

P i
pY (Ci

L+3, G
L+1
2 )−

N−L−1∑
i=1

P i
p

{
Y (Ci

L+2, G
L
2 )

}
− P 1

p Y (C1
1 , G

L
2 )

]

+

[
P 2
dY (C2

1 , G
L−1
3 ) +

N−L∑
i=2

P i
dY (Ci

L+1, G
L−1
2 ) +

L−2∑
i=1

P 1
d

{
Y (C1

i+2, G
i
2, G

L−i−1
i+3 )

}
−P 1

dY (C1
1 , G

L
2 )−

N−L−1∑
i=1

P i
dY (Ci

L+2, G
L
2 )

]
+

P 1
m

2

[
Y (C1

2 , G
L−1
3 ) + Y (C1

L+1, G
L−1
2 )

− Y (C1
1 , G

L
2 )− 2Y (C1

L+2, G
L
2 ) + Y (C1

L+3, G
L+1
2 )

]
+

1− α

2

[
−

N−L−1∑
i=2

P i
mY (C i

L+2, G
L
2 ) +

N−L−2∑
i=2

P i
mY (Ci

L+3, G
L+1
2 )

]
,

L = 2, . . . , N − 3,

dGL
k

dt
=

1

2

[
N−L−k∑

i=1

P i
pY (Ci

L+k+1, G
L+1
k ) +

k−2∑
i=1

P i
pY (C i

k−i−1, G
L+1
k−1 )

−
N−L−k+1∑

i=1

P i
pY (Ci

L+k, G
L
k )−

k−1∑
i=1

P i
pY (C i

k−i, G
L
k )

]

−

[
k∑

i=2

P i
dY (Ci

k−i+1, G
L−1
k+1 ) +

N−L−k+2∑
i=2

P i
dY (C i

L+k−1, G
L−1
k )

+
L−2∑
i=1

P 1
dY (C1

k+i, G
i
k, G

L−i−1
k+i+1 )−

k−1∑
i=1

P i
dY (Ci

k−i, G
L
k )−

N−L−k+1∑
i=1

P i
dY (Ci

L+k, G
L
k )

]

+
P 1
m

2

[
Y (C1

k , G
L−1
k+1 ) + Y (C1

L+k−1, G
L−1
k )− 2Y (C1

k−1, G
L
k )− 2Y (C1

L+k, G
L
k )

+ Y (C1
k−2, G

L+1
k−1 ) + Y (C1

L+k+1, G
L+1
k )

]
+

1− α

2

[
−

k−1∑
i=2

P i
mY (Ci

k−i, G
L
k )−

N−L−k+1∑
i=2

P i
mY (Ci

L+k, G
L
k )

+
k−2∑
i=2

P i
mY (Ci

k−i−1, G
L+1
k−1 ) +

N−L−k∑
i=2

P i
mY (C i

L+k+1, G
L+1
k )

]
,

L = 2, . . . , N − 4, k = 3, . . . , N − L− 1,

dGL
N−L

dt
=

1

2

[
N−L−2∑

i=1

P i
p

{
Y (Ci

N−L−i−1, G
L+1
N−L−1)

}
− P 1

p Y (C1
N , G

L
N−L)
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−
N−L−1∑

i=1

P i
pY (Ci

N−L−i, G
L
N−L)

]
+

[
N−L∑
i=2

P i
d

{
Y (Ci

N−L−i+1, G
L−1
N−L+1)

}
+P 2

dY (C2
N−1, G

L−1
N−L) +

L−2∑
i=1

P 1
dY (C1

N−L+i, G
i
N−L, G

L−i−1
N−L+i+1)

−
N−L−1∑

i=1

P i
d

{
Y (Ci

N−L−i, G
L
k )
}
− P 1

dY (C1
N , G

L
N−L)

]

+
P 1
m

2

[
Y (C1

N−L, G
L−1
N−L+1) + Y (C1

N−1, G
L−1
N−L)− 2Y (C1

N−L−1, G
L
N−L)

− Y (C1
N , G

L
N−L) + Y (C1

N−L−2, G
L+1
N−L−1)

]
+

1− α

2

[
−

N−L−1∑
i=2

P i
mY (Ci

N−L−i, G
L
N−L +

N−L−2∑
i=2

P i
mY (Ci

N−L−i−1, G
L+1
N−L−1)

]
,

L = 2, . . . , N − 3,

dGL
N−L+1

dt
=

1

2

[
N−L−1∑

i=1

P i
pY (Ci

N−L−i, G
L+1
N−L)−

N−L∑
i=1

P i
pY (Ci

N−L−i+1, G
L
N−L+1)

]

+

[
P 1
dY (C1

N , G
L−1
N−L+1) +

N−L+1∑
i=1

P i
dY (C i

N−L−i+2, G
L−1
N−L+2)

−
N−L∑
i=1

P i
dY (Ci

N−L−i+1, G
L
N−L+1) +

L−2∑
i=1

P 1
dY (C1

N−L+i+1, G
i
N−L+1, G

L−i−1
N−L+i+2)

]

+
P 1
m

2

[
Y (C1

N−L+1, G
L−1
N−L+2)− 2Y (C1

N−L, G
L
N−L+1) + Y (C1

N−L−1, G
L+1
N−L)

]
+

1− α

2

[
−

N−L∑
i=2

P i
mY (Ci

N−L−i+1, G
L
N−L+1) +

N−L−1∑
i=2

P i
mY (Ci

N−L−i, G
L+1
N−L)

]
,

L = 2, . . . , N − 2,

dGN−2
2

dt
=

1

2

[
− P 1

p Y (C1
N , G

N−2
2 )− P 1

p Y (C1
1 , G

N−2
2 )

]
+

[
P 2
dY (C2

1 , G
N−3
3 ) + P 2

dY (C2
N−1, G

N−3
2 )

+
N−4∑
i=1

P 1
d

{
Y (C1

i+2, G
i
2, G

N−i−3
i+3 )

}
− P 1

dY (C1
1 , G

N−2
2 )− P 1

dY (C1
N , G

N−2
2 )

]

+
P 1
m

2

[
Y (C1

2 , G
N−3
3 ) + Y (C1

N−1, G
N−3
2 )− Y (C1

1 , G
N−2
2 )− Y (C1

N , G
N−2
2 )

]
,

dGN−1
1

dt
=

1

2

[
− P 1

p Y (C1
N , G

N−1
1 )

]
+

[
P 1
dY (C1

1 , G
N−2
2 ) + P 2

dY (C2
N−1, G

N−2
1 )

+
N−3∑
i=1

P 1
d

{
Y (C1

i+1, G
i
1, G

N−i−2
i+2 )

}
− P 1

dY (C1
N , G

N−1
1 )

]
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+
P 1
m

2

[
Y (C1

N−1, G
N−2
1 )− Y (C1

N , G
N−1
1 )

]
,

dGN−1
2

dt
=

1

2

[
− P 1

p Y (C1
1 , G

N−1
2 )

]
+

[
P 1
dY (C1

N , G
N−2
2 ) + P 2

dY (C2
1 , G

N−2
3 )

−P 1
dY (C1

1 , G
N−1
2 ) +

N−3∑
i=1

P 1
dY (C1

i+2, G
i
2, G

N−i−2
i+3 )

]

+
P 1
m

2

[
Y (C1

2 , G
N−2
3 )− Y (C1

1 , G
N−1
2 )

]
,

dGN
1

dt
= P 1

d

[
Y (C1

1 , G
N−1
2 ) + Y (C1

N , G
N−1
1 ) +

N−2∑
i=1

Y (C1
i+1, G

i
1, G

L−i−1
i+2 )

]
.

The Y function represents the number of configurations that contain the specified chains

and gaps within the parentheses, and is defined as

Y (Ci
j, G

k
l ) = Ci

jP (Gk
l |C i

j),

where P (Gk
l |Ci

j) represents the probability that a gap of length k at site l exists, given

that there is a chain of length i at site j, and can be calculated as

P (Gk
l |Ci

j) = Gk
l /AG(C

i
j),

where AG(C
i
j) are all the possible gaps that can exist on either side of the chain of length

i at site j. If we are interested in gaps on the positive x side of the chain, we require

l = i + j and k ≤ N − i− j + 1. If we are interested in gaps on the negative x side of

the chain, we require l ≤ j − 1, k = j − k. Similarly,

Y (Ci
j, G

k
l , G

m
n ) = Ci

jP (Gk
l |Ci

j)P (Gm
n |Ci

j, G
k
l ),

where P (Gm
n |C i

j, G
k
l ) is the probability a gap of length m at site n exists, given that

there is a chain of length i at site j and a gap of length k at site l. Note that the gaps at

site l and site n must necessarily be on opposing sides of the chain at site j and hence

P (Gm
n |Ci

j, G
k
l ) is calculated in the same manner as P (Gk

l |C i
j).

Appendix B. Numerical techniques

Appendix B.1. Ordinary differential equations

The system of ODEs describing the dynamics of the chains and gaps, presented in

Appendices A.1 and A.2, are solved using an adaptive Runge-Kutta method with a strict

truncation error control of 10−6 [49]. All results presented are found to be insensitive

to a reduction in the strict truncation error control.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 20, 2017. ; https://doi.org/10.1101/101824doi: bioRxiv preprint 

https://doi.org/10.1101/101824
http://creativecommons.org/licenses/by/4.0/


A new and accurate continuum description of moving fronts 28

Appendix B.2. Partial differential equations

The two mean-field descriptions of the discrete process, Equation (1) and Equation (2),

are discretised onto a spatially uniform finite difference grid with grid spacing δx. The

spatial derivative terms are approximated using a central finite difference approximation.

We approximate the temporal derivative using the backward Euler method with constant

time step δt, and the resulting system of nonlinear algebraic equations is solved using

Picard iteration with absolute convergence tolerance ϵ. Finally, the system of tridiagonal

algebraic equations is solved using the Thomas algorithm [49]. In all cases, δx = 0.1,

δt = 0.01 and ϵ = 10−6.
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