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ABSTRACT 

 

The McDonald–Kreitman (MK) test is a widely used method for quantifying the role of positive 

selection in molecular evolution. One key shortcoming of this test lies in its sensitivity to the 

presence of slightly deleterious mutations, which can severely bias its estimates. An asymptotic 

version of the MK test was recently introduced that addresses this problem by evaluating 

polymorphism levels for different mutation frequencies separately, and then extrapolating a 

function fitted to that data. Here we present asymptoticMK, a web-based implementation of this 

asymptotic McDonald–Kreitman test. Our web service provides a simple R-based interface into 

which the user can upload the required data (polymorphism and divergence data for the genomic 

test region and a neutrally evolving reference region). The web service then analyzes the data 

and provides plots of the test results. This service is free to use, open-source, and available at 

http://benhaller.com/messerlab/asymptoticMK.html.  
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INTRODUCTION 

 

The extent to which molecular evolution is driven by positive selection, rather than neutral 

evolutionary processes such as random genetic drift, is one of the central questions of modern 

evolutionary biology. This question can be studied quantitatively by estimating the parameter α, 

which specifies the fraction of nucleotide substitutions in a given genomic region that were 

driven to fixation by positive selection (Eyre-Walker 2006). Values of α close to one indicate 

that most substitutions in the region were indeed the result of positive selection, whereas values 

close to zero indicate neutral evolution. 

One of the most widely used approaches for inferring α from polymorphism and 

divergence data is the McDonald–Kreitman (MK) test (McDonald and Kreitman 1991; Eyre-

Walker 2006), which compares levels of divergence between a genomic test region and a 

neutrally evolving reference region with the levels of polymorphism in the two regions. Early 

applications of the MK test typically focused on nonsynonymous sites in protein-coding regions 

as the test region, while synonymous sites were used as the neutral reference. However, the 

approach can also be applied to arbitrary genomic compartments or classes of mutations 

(Andolfatto 2005). 

The original MK test makes several critical assumptions about the nature of the 

evolutionary process. First, it assumes that the positively selected mutations that ultimately 

contribute to divergence in the test region go to fixation quickly, such that they do not contribute 

noticeably to polymorphism levels. Second, it assumes that deleterious mutations in the test 

region are sufficiently deleterious to be lost quickly, such that they contribute to neither 

polymorphism nor divergence. Finally, neutral mutations in the test region are assumed to be 

subject to drift similar to the mutations in the neutral reference region and can therefore 

contribute to both polymorphism and divergence. Under these assumptions, it holds that 

 

(1) 𝛼 = 1 − %&
%

'
'&

,  

 

where d and d0 are the levels of divergence in the test region and neutral reference region, 

respectively, while p and p0 specify the respective levels of polymorphism in the two regions 

(Eyre-Walker 2006). 
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With the growing availability of genome-level polymorphism and divergence datasets, 

the MK test has become a popular method for inferring positive selection in various organisms 

(Fay 2011). Several software tools and web services with implementations of the test have also 

been developed (Egea et al. 2008; Librado and Rozas 2009; Eyre-Walker and Keightley 2009; 

Stoletzki and Eyre-Walker 2011; Vos et al. 2013). The estimates of α obtained in these studies 

range from as high as ~0.5 for nonsynonymous substitutions in Drosophila (Sella et al. 2009), to 

close to zero in organisms such as yeast (Elyashiv et al. 2010) or many plants (Gossmann et al. 

2010). Indeed, estimates of α obtained from Equation (1) are often negative, indicating that at 

least some of the assumptions of the test were likely not met.    

One major problem with the original MK test lies in its assumption that deleterious 

mutations do not contribute to polymorphism in the test region. This stands in contrast to the 

frequent observation of weakly deleterious mutations in many organisms, and the fact that such 

mutations can substantially affect the site frequency spectrum (SFS) of polymorphisms in 

functional genomic regions (Bustamante et al. 2005; Eyre-Walker et al. 2006). In the presence of 

weakly deleterious mutations, p will overestimate the rate at which polymorphisms go to fixation 

in the test region, which will bias estimates of α downwards (providing one possible explanation 

for the frequent observation of negative α values). 

As one strategy to address this problem, it has been proposed to only consider 

polymorphisms for which the derived allele is above a certain threshold frequency when 

estimating p and p0 (Charlesworth and Eyre-Walker 2008). This is because the fraction of 

weakly deleterious mutations among all polymorphisms should be lower for higher derived-

allele frequencies. Ideally, one would wish to set this cutoff high, to minimize the bias due to 

weakly deleterious mutations; however, the higher this cutoff, the fewer polymorphisms will 

actually remain in the dataset, thus increasing statistical noise. To circumvent this problematic 

tradeoff, more sophisticated extensions of the original MK test first attempt to infer the actual 

distribution of fitness effects among new mutations in the test region from the SFS, and then 

correct fixation probabilities accordingly (Boyko et al. 2008; Eyre-Walker and Keightley 2009). 

Yet these approaches can still suffer from unknown effects of demography or linked selection 

that are also expected to affect the shape of the SFS. The most sophisticated extensions of the 

test therefore additionally incorporate basic demographic models to improve their estimates 

(Keightley and Eyre-Walker 2007; Boyko et al. 2008; Eyre-Walker and Keightley 2009), which 
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requires additional (and often uncertain) assumptions about the demographic history of the 

population of interest. 

In contrast to such model-based approaches, a considerably simpler, heuristic approach 

was recently proposed by Messer and Petrov (2013). This approach generalizes the frequency-

cutoff approach described above, without the need to discard polymorphism data. Instead of 

setting a specific frequency cutoff, it separately estimates α for each of a set of discrete 

mutational frequency classes: 

 

(2) 𝛼(𝑥) = 1 − %&
%
'(+)
'&(,)

.  

 

Here p(x) and p0(x) specify the levels of polymorphism in the test and reference regions, 

respectively, considering only those polymorphisms for which the derived allele is present at 

frequency x in the population (estimated from a population sample, for example). In the presence 

of deleterious mutations, α(x) will underestimate the true value of α for small x, yet should 

converge to the correct value as x approaches one. The asymptotic estimate of α is then obtained 

by fitting a function αfit(x) to the empirical α(x) values and extrapolating this function to x = 1:  

 

(3) 𝛼asymptotic = 𝛼fit(𝑥 = 1).  

 

One key advantage of this approach is that because α(x) does not depend on the 

individual functions p(x) and p0(x) but only on their ratio, any biases due to demography or 

linked selection that affect the SFS in the test and reference regions in the same way will 

effectively cancel out (Messer and Petrov 2013). Another advantage over model-based 

approaches is that the asymptotic McDonald–Kreitman approach is much more computationally 

efficient, as it requires only fitting a simple curve to the data.   

In this paper, we present asymptoticMK, a web-based tool for executing the asymptotic 

McDonald–Kreitman test quickly and easily in any web browser. After the necessary values are 

entered, asymptoticMK generates analyses and plots that are directly usable in publications. It is 

based internally on R, but no knowledge of R is needed to use it, nor does the user of 

asymptoticMK need to have R installed on their computer. For those who do wish to run the test 

themselves in R, the necessary code is freely available online. The asymptoticMK service can 
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also be run in an automated fashion at the command line, for bulk analysis in script-based 

workflows. 

 

MATERIALS AND METHODS 

 

Implementation 

The asymptoticMK web service is implemented in R (R Development Core Team 2016). It uses 

the package FastRWeb (Urbanek 2008) to parse HTTP requests and generate responses, and uses 

the package Rserve (Urbanek 2003) as the lower-level interface that communicates with the web 

server through the standard CGI mechanism. 

 

Usage 

The web service is free to use, without license restrictions of any kind, and is available at 

http://benhaller.com/messerlab/asymptoticMK.html. That URL displays an entry page (Figure 1) 

with an input form in which the user may enter the necessary data for the test: d (the substitution 

rate in the test region), d0 (the substitution rate in the neutral reference region), and an uploaded 

file containing tab-delimited rows of data with values for x (the derived allele frequency), p(x) 

(the polymorphism level in the test region at that frequency), and p0(x) (the polymorphism level 

in the neutral reference region at that frequency). A sample polymorphism file is provided on the 

website. In practice, it is often advisable to combine polymorphism levels into a smaller number 

of frequency bins, where x then specifies the central frequency of the bin. This is particularly 

relevant when the data includes frequencies at which no polymorphisms are actually present in 

the neutral region, in which case α(x) would be undefined for those particular frequencies 

according to Equation (2). The input form also allows entry of minimum and maximum values 

defining a cutoff interval for x, such that the test is run using only the polymorphisms whose 

frequencies fall within that cutoff interval; this is usually desirable as a means of excluding the 

lowest- and highest-frequency polymorphisms, where SNP quality issues and polarization errors 

are generally most pronounced. This frequency cutoff is set to [0.1, 0.9] by default. 

Upon submission of the web form, asymptoticMK conducts its analysis and then opens a 

results page in a new browser tab, presenting a summary of the input data and the results from 

the analysis. The first plot on this results page shows binned polymorphism counts, p0(x) and 
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p(x), for the submitted data; the second plot shows that same data normalized (i.e., the 

normalized SFS in the test and reference regions). A third plot shows the calculated empirical 

α(x) as a function of x, estimated from the input data according to Equation (2). The fourth plot 

shows the same α(x) data, with the best-fitting model and the asymptotic estimate of α 

superimposed upon the data. 

 Below these plots, the results of the analysis are presented in two tables. The first table 

provides the coefficients a, b, and (for exponential fits) c of the model yielding the best fit to the 

data. The second table provides the estimated αasymptotic according to Equation (3), and the upper 

and lower limits of the 95% confidence interval around that estimate, as well as the estimated α 

from the original non-asymptotic McDonald–Kreitman test (αoriginal) for comparison (also 

estimated from all polymorphisms falling within the frequency cutoff interval specified on the 

input page). 

For purposes of automation, asymptoticMK can also be run at the command line using 

the Linux/Unix curl command. For example, the command 

 
curl -F"d=593" -F"d0=930" -F"xlow=0.1" -F"xhigh=0.9" -
F"datafile=@polymorphisms.txt" -F"reply=table" -o "MK_table.txt" 

http://benhaller.com/cgi-bin/R/asymptoticMK_run.html 

 

would run asymptoticMK with the given values of d and d0, the given x cutoff interval, and 

polymorphism data uploaded from the local file polymorphisms.txt, and would output a simple 

table of results to the file MK_table.txt. Further documentation on the use of this feature is 

provided on the asymptoticMK web page. 

 

Fitting and analysis procedure 

The asymptotic McDonald–Kreitman test first involves calculating values of α(x) by applying 

Equation (2) to each frequency bin provided, as described by Messer and Petrov (2013). The 

next step involves fitting a function αfit(x) to these empirical α(x) values. For greater robustness, 

asymptoticMK fits two functions to the data. The first function is exponential, of the form αfit(x) 

= a + b exp(−cx) and is fitted using the nls2() function, from the R package nls2 (Grothendieck 

2013). This fit is done in two steps. First, a brute-force scan for the closest fit is conducted across 

the likely portion of the three-dimensional parameter space defined by a, b, and c, by exhaustive 
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search. This supplies reasonably good starting values for the second step, which refines those 

starting values using standard nonlinear least-squares regression. This two-step procedure 

generally works well, but can occasionally fail to converge if the data is not, in fact, exponential 

in form. 

To address this possibility of nonconvergence of the exponential fit, asymptoticMK also 

fits a linear function of the form αfit(x) = a + bx, with the lm() function that is part of the stats 

package included in R. This fit always converges, and thus provides a backstop that allows the 

test to complete even when given irregular or extremely noisy data; however, it is always 

recommended that the results of the analysis be inspected visually to confirm that they are in fact 

meaningful. 

Once these two models have been fitted, asymptoticMK chooses which model will be 

used for the remainder of the analysis. If the exponential fit failed to converge, then the linear 

model is chosen; if both fits succeeded, then the better model is chosen using the Akaike 

information criterion (AIC). Occasionally, in pathological cases, the exponential fit will have the 

better AIC but will have extremely large coefficient standard error(s); in this case, the linear fit is 

chosen since predictions from the exponential model would be effectively worthless. 

The chosen model is then used to provide an estimate of the value of αasymptotic according 

to Equation (3), by evaluating the fitted function αfit(x) at x = 1; this is the primary result of the 

test, and provides the test’s estimate of the true value of α within the test region. A 95% 

confidence interval around this estimate is also calculated. For the exponential model, this is 

done using Monte Carlo simulation based upon the fitted model, using the predictNLS() function 

published online by Spiess (2013); for the linear model, it is done using the standard R function 

predict(). 

 

Test datasets 

To provide a test of asymptoticMK using empirical data, we used the same Drosophila 

melanogaster dataset that Messer and Petrov (2013) used in their Figure 3C. This data set 

consists of SNPs obtained from the genome sequences of 162 inbred fly lines generated by the 

Drosophila genetic reference panel (Mackay et al. 2012). Divergence data was obtained from 

genome alignments between D. melanogaster and D. simulans, extracted from the 12 Drosophila 

genomes data (Clark et al. 2007). The test data in the asymptoticMK analysis (d and p) are 
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genome-wide nonsynonymous mutations, while synonymous sites were used as the neutral 

reference (d0 and p0). The polymorphism data is available online at 

http://benhaller.com/messerlab/sample_polymorphism_levels.txt, with associated values d = 

59570 and d0 = 159058. The default frequency cutoff interval of [0.1, 0.9] was used in the 

analysis of this dataset with asymptoticMK.  

We also tested asymptoticMK on simulated data, using the forward genetic simulation 

framework SLiM 2 (Haller and Messer 2017). A population of 1000 diploid individuals was 

simulated to evolve for 200,000 generations. The simulated chromosome was 107 base pairs 

long. Nucleotide mutations occurred uniformly at a rate of 10−9 per base per generation, and 

recombination occurred uniformly at a rate of 10−7 per base per generation. Each new mutation 

was either of neutral type “m1” (relative proportion of 0.5 of all new mutations), of functional 

non-beneficial type “m2” (relative proportion of 0.5 of all new mutations), or of functional 

beneficial type “m3” (a relative proportion of 0.0005 of all new mutations). The neutral m1 

mutations always had a selection coefficient of s = 0.0; the selection coefficients of m2 mutations 

were drawn from a gamma distribution with a mean of s = −0.02 and a shape parameter of 0.2; 

and m3 mutations always had a selection coefficient of s = 0.1. Fitness effects were assumed to 

be codominant. A burn-in of 10000 generations was run to equilibrate the model. Every 500 

generations thenceforth, all polymorphisms were recorded in the population by dividing them 

according to their frequency into 50 equal-width frequency bins, and then adding them to an 

ongoing binned tabulation. The SLiM configuration script used for these simulations is provided 

online at http://benhaller.com/messerlab/asymptoticMK_SLiM.html. 

At the end of the model run, we obtained binned values for p(x) and p0(x), where p0 was 

estimated from all mutations of type m1, while p was estimated from the combined mutations of 

types m2 and m3. Values for d and d0 were obtained from the set of mutations fixed during the 

simulation; as with p0 and p, d0 was estimated from all mutations of type m1, while d was 

estimated from the combined mutations of types m2 and m3. These values, output by the model, 

were used in asymptoticMK with the default x interval of [0.1, 0.9]. The true value of α was also 

calculated by the SLiM model as the fraction d3 / (d2 + d3), where d2 is the number of m2 

mutations fixed and d3 is the number of m3 mutations fixed. This value provides a metric for the 

accuracy of asymptoticMK – a benefit of using simulated data, where the true α can be 

calculated. 
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RESULTS AND DISCUSSION 

 

Results from our test of asymptoticMK with the empirical D. melanogaster dataset are shown in 

Figures 2A and 2B. The fitted exponential function is: αfit(x) = 0.585 − 0.622 exp(−3.80x). The 

asymptotic McDonald–Kreitman α estimate provided by this model is 0.571. These results match 

those obtained by Messer and Petrov (2013) using the same dataset (their Figure 3C), as 

expected. The α estimate provided by the original McDonald–Kreitman test is 0.407, by 

comparison (shown in Figure 2B). 

The asymptoticMK results from the analysis of the SLiM simulation dataset are shown in 

Figures 2C and 2D. In this case, asymptoticMK deemed the linear fit to be superior to the 

exponential fit (and indeed, the data within the cutoff interval looks very linear in shape). The 

fitted linear function in this case is: αfit(x) = 0.143 + 0.234x. The asymptotic McDonald–

Kreitman α estimate provided by this model is 0.377. This may be compared to the true α value 

provided by the simulation, 0.331. The α value from the original McDonald–Kreitman test 

within the cutoff interval, on the other hand, is 0.228 (shown in Figure 2D). If the cutoff interval 

is widened to [0.05, 0.95], the encompassed data then has a more exponential shape, and 

asymptoticMK then prefers the exponential fit (not shown), providing an improved asymptotic 

McDonald–Kreitman α estimate of 0.317 (as compared to the same true α value of 0.331, and an 

original McDonald–Kreitman α estimate of 0.170 within this cutoff interval). The default cutoff 

interval thus obscured the exponential shape of the data and prevented a good fit; this underlines 

the importance of choosing a cutoff interval that fits the shape of the data, and of examining the 

quality of the fit critically rather than simply accepting the default fit. Nevertheless, even the 

linear fit provided by the default cutoff interval provided a much closer estimation of the true α 

value than did the original non-asymptotic test. 

In this paper, we presented asymptoticMK, a new web-based tool for executing the 

asymptotic McDonald–Kreitman test. To demonstrate its functionality, we analyzed both 

empirical data and a simulation-generated dataset. Results from both of these datasets illustrate 

the greater power of the asymptotic McDonald–Kreitman test to estimate the true value of α, 

compared to the estimates provided by the original non-asymptotic test. The asymptoticMK 
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service presented here allows the user to obtain these results quickly and easily through any web 

browser.  
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FIGURES 

 
 

Figure 1.  A screenshot of the web page for asymptoticMK. After entering values for d and d0, 

choosing an input file with binned values for x, p, and p0, and choosing the x interval to fit, the 

user can click the Submit button and asymptoticMK will provide its results in a new browser 

window or tab. 
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Figure 2.  Results from asymptoticMK for two test datasets. A and B show results from the 

Drosophila dataset of Messer and Petrov (2013); C and D show results from a SLiM simulation 

run (see Materials & Methods). A and C show the normalized site frequency spectra (SFS) for 

their respective datasets. B and D show the results of the asymptotic MK test. In B and D, the 

two vertical blue lines show the limits of the frequency cutoff interval used for fitting. Points 

indicate binned values of α(x), estimated according to Equation 2; points are gray if they are 

outside the cutoff interval (and thus not used in fitting). The solid red curves show the fitted 

functions (exponential in B and linear in D). The dashed red lines show the estimates of 

αasymptotic, obtained from the fitted function according to Equation 3; this is the main result of the 

asymptotic MK test. The gray bands indicate the 95% confidence intervals around the αasymptotic 

estimates. The dotted gray lines show αoriginal, the estimates of α from the original (non-

asymptotic) MK test, for comparison (also calculated using only the data within the cutoff 

interval). 
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