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Abstract 
 
Hepatocellular carcinoma (HCC) is influenced by numerous factors, which results in diverse 
genetic, epigenetic and transcriptional scenarios, thus posing obvious challenges for disease 
management. We scrutinized the molecular heterogeneity of HCC with a multi-omics 
approach in two small cohorts of resected and explanted livers. Whole-genome 
transcriptomics was conducted, including polyadenylated transcripts and micro (mi)-RNAs. 
Copy number variants (CNV) were inferred from whole genome low-pass sequencing data. 
Fifty-six cancer-related genes were screened using an oncology panel assay. HCC was 
associated with a dramatic transcriptional deregulation of hundreds of protein-coding genes 
suggesting downregulation of drugs catabolism, induction of inflammatory responses, and 
increased cell proliferation in resected livers. Moreover, several long non-coding RNAs and 
miRNAs not reported previously in the context of HCC were found deregulated. In explanted 
livers, downregulation of genes involved in energy-producing processes and upregulation of 
genes aiding in glycolysis were detected. Numerous CNV events were observed, with 
conspicuous hotspots on chromosomes 1 and 17. Amplifications were more common than 
deletions, and spanned regions containing genes potentially involved in tumorigenesis. 
CSF1R, FGFR3, FLT3, NPM1, PDGFRA, PTEN, SMO and TP53 were mutated in all tumors, while 
other 26 cancer-related genes were mutated with variable penetrance. Our results highlight 
a remarkable molecular heterogeneity between HCC tumors and reinforce the notion that 
precision medicine approaches are urgently needed for cancer treatment. We expect that our 
results will serve as a valuable dataset that will generate hypotheses for us or other 
researchers to evaluate to ultimately improve our understanding of HCC biology. 
 
Key word: Hepatocellular carcinoma, molecular heterogeneity, transcriptomics, copy 
number variants, mutated oncogenes. 
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Introduction 
 

Hepatocellular carcinoma (HCC) is a lethal neoplasm, often secondary to chronic liver 

diseases induced by infections of hepatitis virus B (HBV) [1] and C (HCV) [2], exposure to 

aflatoxin B1 from Aspergillus [3], alcohol abuse [4], or from non-alcoholic steatohepatitis 

[5,6]. The disease is distributed worldwide [7] but its incidence is particularly high in 

Southeast Asia and the Sub-Saharan Africa [8–11], likely due to the high infection rate of HBV 

and exposure to aflatoxin B1 from contaminated grains; nonetheless, HCC occurrence is also 

growing in Western countries [7]. Despite considerable advances on HCC diagnosis and 

treatment, the proportion of resectable HCC tumors remains low, essentially due to lack of 

effective early diagnosis approaches, and recurrence after resection is high [12].  

 Broadly speaking, the natural history of HCC can be divided into i) molecular, ii) pre-

clinical and iii) clinical or symptomatic phases [13]. The molecular phase refers to tumor 

biogenesis, which regularly follows pre-neoplastic stages characterized by chronic hepatitis 

and cirrhosis, and entails transformation of hepatocytes, biliary epithelial or stem cells 

[14,15]. Genetic alterations in differentiated cells often evolve into highly proliferative and 

recalcitrant-to-apoptosis cells, while transformation of stem cells leads to aberrant cell 

differentiation [13]. Initial epigenetic alterations in transcription are due to exposure to high 

levels of growth factors and pro-inflammatory cytokines, and are followed by chromosomal 

rearrangements that result in amplification and losses of proto-oncogenes and tumor 

suppressors, respectively. HBV integrations also lacerate the genome creating genetic 

aberrations [16]. Moreover, both HBV and HCV have the potential to directly modulate 

pathways that contribute to hepatocyte transformation [17,18], to prompt re-expression of 

TERT –to surmount telomere shortening– and to induce chromosomal instability by 

disrupting mitosis checkpoints [19,20]. In the preclinical phase, the tumor may or may not be 

detectable, and symptoms are still not noticeable in the patient. Finally, the clinical phase is 

associated with symptoms and usually occurs when the tumor is between 4-8 cm [21].  

 Studying the natural history of cancer, i.e. its ontogenesis, is of paramount importance 

because it offers the possibility of intervening patients at the most potentially effective stage 

during disease development. A high resolution picture of HCC’s ontogenesis is being 

portrayed by the accumulation of high-throughput data on cancer genomics, epigenomics, 

transcriptomics, proteomics and metabolomics, and their integration into computational 

frameworks [22]. Although considerable progress has been achieved, our understanding of 

the molecular diversity of HCC is still in its infancy. Ultimately, it should result in improved 
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diagnostic and management strategies, and so will provide the basis for effective surveillance 

programs.  

 Many diseases, but very especially cancer, are associated with aberrant genomic and 

transcriptional landscapes [23]. This extends beyond protein-coding genes into several 

classes of structurally and functionally different non-coding RNAs [24–26]. We undertook a 

multi-omics approach to investigate the molecular heterogeneity of HCC tumors at early 

(resected livers) and late (explanted livers) stages of development. Our results provide a 

series of novel insights into the molecular heterogeneity of hepatocellular carcinoma, which 

may be further investigated in search of biomarkers or therapeutic drug targets.      

     

Results 
 
RNAseq profiling of HCC in resected livers 

We sequenced and analyzed the transcriptome of liver sections affected by 

hepatocellular carcinoma or sections in the same livers not affected by cancer, initially from 

patients at early stages of the disease, who were subjected to liver resection. Tumoral tissue 

or corresponding control tissues were collected from twelve patients, ranging from 45 to 77 

years old, exhibiting diverse pathologies (see Supp. Table 1 for details). In addition to this 

cohort of resected samples, we reanalyzed RNAseq data of 50 paired tumor-control samples, 

from resected livers, from The Cancer Genome Atlas database [27] to explore the 

reproducibility of our own findings (Supp. Fig. 1). Henceforth we refer to such samples as the 

TCGA cohort.   

In principal component analyses, non-tumor samples clustered relatively close to 

each other, while tumor samples distributed more dispersedly with two tumors showing 

considerable deviation from the rest of tumors (Fig. 1A; tumors 2 and 4). Tumors 3, 5, 10 and 

11 formed a sub-cluster, while the rest of samples formed a less-compact subcluster (Fig. 1A). 

When a false discovery rate < 0.05 and a fold change > 2 were assumed as thresholds for 

statistical significance, 726 and 1,066 genes were found upregulated and downregulated, 

respectively in HCC samples (Supp. Table 2; Fig. 1B). To provide a more detailed perspective 

on gene deregulation, the Z scores of 200 deregulated genes exhibiting the largest fold change 

are depicted in Fig. 1C. In the upper part of the heatmap agglomerate many genes that are 

considerably upregulated in some tumors, but heterogeneity in their expression across 

tumors is notable. Downwards, a larger set of genes appears severely downregulated in 

tumors. In concordance with the separation observed in the PCA plot, some tumors, like 3, 
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11, 5 and 10, formed a separate clade in the upper dendrogram and tumors 2 and 4 also 

branched apart from the rest of tumors. 

 The magnitude of the downregulation events was greater than the one of 

upregulation events (Fig. 1B). For instance, 97, 25 and 14 genes were downregulated 10-, 25-

, 50-fold or more, while only 36, 10 and 4 genes were upregulated 10-, 25-, 50-fold or more 

(Supp. Table 2). The same trend was also observed in the TCGA cohort (Supp. Table 6). Among 

the most downregulated genes were some encoding members of the type-C lectin domain 

family 4 (CLEC4M* and CLEC4G*), the cholinergic receptor nicotinic alpha 4 subunit 

(CHRNA4*), the urocanate hydratase 1 (UROC1*) and a member of the cytochrome P450 

family 2 (CYP2A7*). Among the most upregulated genes were an aldehyde dehydrogenase 

(ALDH3A1), a glutamate transporter (SLC7A11*), an aldo/keto reductase (AKR1B10*), the 

lipocain2 (LPC2), also known as oncogene 24p3 [28], and the anillin ANLN* (Supp. Table 2). 

Genes marked with asterisks were also found deregulated in the TCGA cohort in an analogous 

way (Supp. Table 6 or [29]). Another interesting set of deregulated genes are different 

effectors of oxidative phosphorylation (Fig. 2 and Supp. Table 2), including subunits of the 

ATP synthase complex (MT-ATP6, MT-ATP8), subunits of the cytochrome C oxidase (MT-CO1, 

MT-CO2, MT-CO3), subunits of the ubiquinol cytochrome C reductase (MT-CYB), subunits of 

the NADH dehydrogenase (MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-

ND6), the mitochondrial ribosomal RNAs 12S and 16S (MT-RNR1, MT-RNR2), a tRNA (MT-

TP), and many metallothioneins (Fig. 2 and Supp. Table 2).  

We also observed a substantial downregulation of many long non-coding RNAs 

(lncRNA) [26,30], with the exception of LINC00152 (aka CYTOR), which was found 

upregulated 3.6-fold (Fig. 3). Especially interesting are LINC01093 and LINC01595, which 

were found 30- and 10-fold downregulated. However, most lncRNAs were downregulated in 

some, but not all, tumors. 

 We then conducted gene ontology (GO) analyses [31]. The main biological process 

deregulated was Drug catabolic processes (13.5-fold decrease; p=1.8e-3; Fig. 1D), which was 

also found downregulated in the TCGA cohort (Supp. Fig. 2), this is reflected in the large 

number of severely downregulated genes belonging to the Cytochrome P450 superfamily of 

enzymes (Supp. Table 2; Supp. Table 6; Supp. Fig. 3) and to a lesser extent glutathione 

transferase genes (Supp. Table 2 and Supp. Table 6). Downregulation of drug catabolic 

process is associated with cancer drug resistance. Another GO term significantly 

downregulated was the Epoxygenase P450 pathway (Fig. 1D), which is also mediated by CYP 
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enzymes (Supp. Fig. 3). In addition to xenobiotics, CYP enzymes subfamilies CYP2C and CYP2J 

also metabolize arachidonic acid to metabolically active epoxyeicosatrienoic acids (EETs), 

which are transient signaling molecules, whose metabolism inversely correlates with 

activation of the immune system and inflammation [32]. Accordingly, we found that CYP2AC8 

and CYP2C9 were downregulated in cancer tissue 7.1- ad 5.2-fold, respectively (Supp. Fig. 3G 

and 3H). Among the predominantly upregulated pathways were those related to mitosis, lipid 

processing and antigen presentation (Fig. 1D).  

    

RNAseq profiling of HCC in explanted livers 

 To gain insights into the transcriptional deregulations associated with late stages of 

HCC, we analyzed cancer and control tissue from explanted livers from three patients affected 

by metastatic HCC (Supp. Table 1). The transcriptional profiles in non-tumor tissues were 

more similar among each other than were to their cancer counterparts (Fig. 4A), further 

highlighting transcriptional heterogeneity in cancer samples. A larger number of 

differentially expressed genes were downregulated (574 downregulated versus 343 

upregulated) and the magnitude in fold-change was larger for downregulated genes (Fig. 4B 

and Supp. Table 3). RNA expression profile in tumors was heterogeneous across the 200 most 

variable deregulated genes (Fig. 4C). The repertoire of deregulated genes was substantially 

different from genes deregulated in resected livers. Indeed, only 69 genes were deregulated 

in both resected and explanted HCC tumors with the same polarity (Supp. Table 8 and Supp. 

Table 9). In gene ontology analysis, the most depleted term was Short-chain fatty acid 

catabolism; short-chain fatty acids, especially butyrate, are associated with cellular 

homeostasis [33]. Other GO terms associated with the production of energy through cellular 

respiration, including the tricarboxylic acid cycle and consequently oxidative 

phosphorylation and terms related to production of amino acids were also found depleted 

(Fig. 4E). Some terms were moderately upregulated including Cellular response to decreased 

oxygen levels and Response to hypoxia.     

   

microRNAseq profiling of HCC in resected and explanted livers  

We explored the miRNAs profile in tumor and non-tumor tissues from all samples 

described above, including the TCGA cohort. Using the same thresholds (FDR < 0.05; fold 

change > 2) we found 30 and 44 miRNAs significantly upregulated or downregulated in our 

resected livers samples, respectively (Supp. Table 4; Fig. 5B). Principal component analysis, 
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as in the case of the RNAseq data, also showed tightly clustered non-tumor samples and more 

dispersedly distributed tumor samples (Fig. 5A). Some tumor samples (i.e. 7 and 8) clearly 

separated from the rest. We noticed that the so-called 19C miRNA oncogenic cluster [34] was 

dramatically upregulated in tumors 7 and 8 (Supp. Fig. 4), and this may explain the location 

of such tumors on the first principal component axis (Fig. 5A). Some other samples, like 1, 3, 

5, 10, 11 and 12 or 2, 4, 6 and 9 also formed sub-clusters (Fig. 4A). When the Z scores of the 

top 96 deregulated miRNAs were subjected to hierarchical clustering, rather discrete blocks 

of miRNAs that were overexpressed or underexpressed in tumors are clearly delineated (Fig. 

4C). Samples 2 and 4 branched apart from the rest of tumor samples in the cladogram, and 

formed their own branch closer to the non-tumor samples. 

The most upregulated miRNAs were miR-1269a (73-fold), miR-10b-5p (12.6-fold), 

miR-217 (6-fold) and miR-452-5p (5.5-fold). The most downregulated miRNAs were the two 

isoforms of miR-483 (3p=13.5-fold and 5p=9.3-fold), miR-4485-3p (8.1-fold), and miR-214-

3p (7.3-fold). Except for miR-483-3p and miR-4485-3p all the above-mentioned miRNAs 

were also found deregulated, with the same polarity, in the TCGA cohort (Supp. Table 7). In 

explanted livers, perhaps because of the reduced number of samples, only five and seven 

upregulated and downregulated miRNAs were found (Fig. 4E).  

In an ideal transcriptomics study, the expression of at least some transcriptionally 

deregulated genes should correlate with the expression of some transcriptionally 

deregulated miRNAs. We applied the TargetScan algorithm [35] to identify matches between 

deregulated genes and deregulated miRNAs. A total of 1417 deregulated genes were targeted 

by at least one family of miRNA found deregulated in this study (Supp. Table 10). miRNAs 

families are composed by different miRNAs that share the same seed region [24]. The 

putative interactions described in Supp. Table 10 are a valuable source of hypothesis to be 

experimentally validated.  

 

Copy number variants  

CNVs include amplification (gains) or deletions (losses) of chromosomal fragments 

and are often associated with disease [36]. We analyzed CNVs in each of our HCC samples as 

compared to their non-cancer counterpart. In general, amplifications were more common 

than deletions (Fig. 6A and Supp. Fig. 5A). In resected HCC samples, CNVs were not 

distributed homogenously along the genome, instead some chromosomes exhibited 

considerably higher frequency of CNVs, like chromosomes 1, 8, 17 and Y. Conversely, some 
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chromosomes like 2, 3, 4, 13, 14 and 18 exhibited few CNV events. The rest of chromosomes 

deployed an intermediate phenotype (Fig. 6B). Hierarchical clustering of CNVs delineated 

three subgroups of resected tumors (Fig. 6C). 

We inspected some CNVs that were present in several cancer samples, under the 

assumption that they were selected because conferred some advantage for cancer 

progression. On Fig. 6D, we depict some CNV events located on chromosome 17, between 

cytogenetic bands q21.33 and q23.1, which were found in tumor samples 3T, 8T and 9T. The 

amplification ranged from one additional copy in samples 3 and 9, to five additional copies in 

a sub-fragment amplified in tumor 8T. When contrasted to our RNAseq data, some of the 

genes contained in this transect were found upregulated, including TOM1L1 (2.35-fold), MSI2 

(2.32-fold), MRPS23 (2.36-fold), RNF43 (3.26-fold) and INTS2 (2.71-fold). It is possible that 

other genes are also upregulated in these three samples, but were not found differentially 

expressed because of low level of expression in the rest of cancer samples. One and two more 

regions recurrently amplified on chromosome 1 and chromosome 17, respectively, are 

depicted in Supp. Fig. 6.  

 

Diversity of mutations in common cancer-related genes 

 We used the Accel-Amplicon 56G Oncology Panel v2 to assess mutation in genes 

previously reported in several cancers. Invariably, all tumors in our resected or explanted 

cohorts harbored mutations in the proto-oncogenes Colony stimulating factor 1 receptor 

(CSF1R) [37], the Nucleolar phosphoprotein B23 (NPM1) [38], the GPCR-like receptor 

Smoothened (SMO) [39], the Platelet-derived growth factor receptor alpha polypeptide 

(PDGFRA) [40], the fms-like tyrosine kinase 3 (FLT3) [41], the fibroblast growth factor receptor 

3 (FGFR3) [42] as well as in the tumor suppressors Phosphatase and tensin homologue (PTEN) 

[43] and the cell cycle control protein Tumor protein P53 (TP53) [44]. Twenty-six other genes 

were mutated at different frequency (Table 1). 

 

Discussion 

 The multitude of causal agents reported for HCC [7], as well as the mutagenic intrinsic 

ability of HBV [45], contribute to the molecular diversity found among individual tumors. 

Although considerable progress has been made by applying next generation sequencing 

technologies and bioinformatics approaches, our appreciation of the molecular heterogeneity 

of HCC is far from complete. Here, we contribute an additional dataset derived from small 
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cohorts of HCC tumors from resected and explanted livers. In addition, we analyzed 

transcriptome data from 50 HCC tumors and paired controls from the TCGA project [27].  

 At the transcriptional level, a myriad of genes was found deregulated in tumors. The 

biological significance of deregulated genes was different in resected and explanted livers. In 

the former case, it indicated the emergence of drug resistance, the induction of inflammation 

and the increase of cell proliferation, all processes in line with tumor growth [46]. In 

explanted livers, a marked depletion of processes related to energy production was observed 

as well as moderate enrichment of functions related to hypoxia tolerance, which altogether 

may suggest a strong reliance of cancer cells on glycolysis for energy production [47].  

Individual genes warrant further investigation. For instance, the C-type lectin CLEC4G 

(aka LSECtin), was found 156-fold downregulated in our study and 538-fold in the TCGA 

cohort, and has been reported to favor metastasis of colon carcinoma to the liver, likely by 

promoting adhesion of cancer cells in the liver [48]. Also, LSECtin antagonizes activated T 

cells in the liver, to maintain a tolerogenic environment under normal physiological 

conditions [49]. Thus, downregulation of LSECtin in HCC tumors may contribute to 

inflammation and to detachment of cells from the tumor, which will favor tumorigenesis and 

metastasis, respectively. The anilin actin binding protein (ANLN) was found 49-fold 

upregulated in our data and 15-fold upregulated in the TCGA cohort, and has been implicated 

in lung cancer progression [50]. Many other examples could be mentioned.   

Deregulated genes also includes lncRNAs, like upregulation of LINC00152, which has 

been implicated in progression of gastric cancer and HCC [51–54], or downregulation of 

LINC01018 which, when epigenetically silenced, has been shown to promote HCC 

proliferation [55]. The top deregulated lncRNA in our study was LINC01093 (fold-change 

30.4), which has been reported downregulated in association with HCC progression [56,57]. 

Thus, studying the mechanisms whereby LINC01093 antagonizes HCC might be a promising 

avenue for drug discovery, as it could be supplied exogenously to HCC patients or could also 

serve as a biomarker of disease. The rest of lncRNAs depicted in Fig. 3 have not been 

previously implicated in HCC and their potential contribution to disease remains to be 

elucidated. miRNAs are another important class of regulatory non-coding RNAs involved in 

liver diseases [24,25,58]. The most dramatically deregulated miRNA in our samples was miR-

1269a (73-fold upregulated), which has been reported associated with colorectal carcinoma 

relapse and metastasis [59], relapse of esophageal squamous cell carcinoma [60], and 

proliferation of HCC via downregulation of FOXO1 [61]. However, we only detected an slight 
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downregulation of FOXO1 (2.9-fold), which suggests that other targets of miR-1269a may 

also be involved in the HCC pathology. Another interesting example is miR-4485-3p, which 

was downregulated in our data, was found deregulated in a gastric cancer cell line [62], and 

has been suggested to counter angiogenesis in Kaposi’s sarcomas [63]. Given its therapeutic 

potential as an antagonist of angiogenesis, further research on this miRNA is needed.  

Copy number variants were abundant and represent a mechanism to promote 

tumorigenesis. Especially interesting is Chr 17, because of its high susceptibility to structural 

variations in several of our tumors, which suggest that they have been shaped by selection 

pressure during cancer evolution. Some amplified regions on Chr 17 contained genes 

upregulated in the RNAseq data. This included MRPS23, which has been associated with 

metastatic phenotypes of uterine cervical cancer [64] and breast cancer [65]; MSI2, which 

promotes metastasis of non-small cell lung cancer through regulation of TGFβ [66] or 

TOM1L1, which promotes breast cancer cell invasion [67].  Finally, the tumor genomes were 

found highly lacerated. Out of 56 genes screened, 34 were mutated with different degree of 

penetrance. Typical tumor suppressors like PTEN and TP53 and few other cancer-related 

genes were mutated in all tumors, as often occurs in many type of cancers, but a number of 

other genes were mutated in some, but not all, tumors. This further highlights the molecular 

heterogeneity of individual HCC tumors. 

A unifying theme in our data is heterogeneity across samples. Recently, it has been 

proposed that cancer could be better managed if they are stratified into subgroups that are 

molecularly and clinically similar. Clustering techniques applied to our RNAseq, miRNAseq 

and CNV profiling lead to substantially different subgroups of tumor samples, evidencing an 

intrinsic limitation of stratification of tumors based on single layers of information (i.e. 

genomics, transcriptomics, CNVs, etc.). A possible solution to such problem could be the 

incorporation of multiple omics data sets together with clinical metadata and disease 

outcome information, into machine learning approaches able to model the combined 

contribution of several layers of information and its correlation with disease outcome. This 

is consistent with a biological scenario where a battery of protein-coding genes, non-coding 

RNAs, mutant proteins, copy number variants, silent loci and other attributes act in concert 

to mediate transition towards the cancer phenotype. Performance of such computational 

approaches will increase as data sets from different laboratories across the world continue 

to accumulate, broadening the inventory of molecular aberrations in cancers. We expect that 
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the information we generated in this study will elicit hypotheses that other researchers will 

evaluate, to ultimately increase our comprehension of liver cancer biology.  

 

Materials and Methods 

Samples, nucleic acids and libraries 

Explanted liver samples were collected according to protocols reviewed and 

approved by the Human Research Ethics Board of the University of Alberta. Resected liver 

samples were acquired from the tumor bank at the Cross Cancer Institute, University of 

Alberta.  

 Total RNA was extracted with TRIzol Reagent (Invitrogen) as per manufacturer 

recommendations and the same prep was used for RNAseq and miRNA libraries construction. 

Genomic DNA was extracted using the DNeasy Blood & Tissue kit (QIAGEN) following 

manufacturer’s protocol. RNA integrity and concentration was determined using an Agilent 

Bioanalyzer and a chip from the RNA 6000 nano kit. DNA was quantified fluorometrically in 

a Qubit instrument and a dsDNA HS assay kit. 

 For construction of RNAseq libraries, the Illumina TrueSeq® RNA Sample 

Preparation Kit V2 was used as per manufacturer’s instructions. Libraries from explanted 

livers were sequenced in a HiSeq 2500 instrument, using a paired-end 300 cycles protocol at 

an average depth of ~ 40 M paired end reads per sample. Samples from explanted livers were 

sequenced in a MiSeq instrument using a paired-end 150 cycles protocol at an average depth 

of ~ 2 M paired-end reads per sample. Whole genome libraries for evaluation of copy number 

variants were constructed using the Illumina Nextera XT library prep kit, according to 

manufacturer instructions. Libraries were sequenced in a MiSeq instrument using a paired-

end 500 cycles kit at an average coverage of 0.15X. For detection of mutations in oncogenes 

the Accel-AmpliconTM 56G Oncology Panel v2 (Swift Biosciences) was used as per provided 

protocols. Libraries were sequenced in a MiSeq instrument using a paired-end 500 cycles kit 

at an average depth of 500,000 paired-end reads per sample. All samples were sequenced 

following a workflow that includes demultiplexing and adapter trimming. 

 

Bioinformatics 

Low quality sequences (Q < 25) were trimmed off with the FastqMcf software and 

only paired-end reads with a length of at least 75% of the original length were kept for further 

processing.  
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RNAseq libraries. Sequences were aligned to the GRCh38.81 assembly of the human 

genome using the TopHat2 aligner [68]. Reads that aligned to each gene sequence were 

counted with HTSeq [69]. Differential expression analysis was conducted with the DESeq2 R 

package and genes that were deregulated 2-fold or more and had a false discovery rate < 0.05 

were considered truly differentially expressed. 

miRNA libraries. Libraries adapters were removed with in-house Perl scripts. 

Trimmed sequences were aligned to the version 21 of the miRBase mature sequences with 

the Bowtie aligner [70]. Aligned sequences were parsed with in-house Perl scripts and 

differential expression analysis was conducted as above. 

Copy Number Variants. Sequences were aligned to the GRCh38.81 assembly of the 

human genome using the Bowtie2 aligner [71]. Sam files were then used to infer CNVs using 

the copy number estimation by a mixture of PoissonS (CN-MOPS) R package [72], using 

paired non-tumor samples as references. 

Detection of mutations in oncogenes. Mutations were detected using the Genome 

Analyzer Toolkit (GATK) [73]. In brief, sequences were aligned to the g1k_v37.fasta human 

genome sequence provided by GATK  (https://software.broadinstitute.org/gatk/) with the BWA 

aligner [74]. Reads were tagged, sorted and indexed with the Picard tools 

(http://broadinstitute.github.io/picard). Base qualities were recalibrated and indels were 

realigned with GATK. Variants were called with the HaplotypeCaller of GATK and finally 

filtered (FS > 30; QD < 2.0) with the VariantFiltration program of GATK. All plots were created 

using the R programing language or Circos [75]. Parsing and pre-processing of data was 

carried out with in-house Perl or Python scripts. 

 

Figures and Tables legends 

Figure 1. Dramatic transcriptional deregulation in HCC resected tumors hints at biogenesis of 
drug resistance and activation of inflammation. (A) Principal component analysis clearly separated 
tumor and non-tumor samples. While non-tumor samples clustered rightly, tumor samples dispersed 
along the two axis (components) forming apparent sub-clusters. (B) Classification of differentially 
expressed genes according to false discovery rate (FDR) and log2 fold change. Deregulated genes with 
a FDR < 0.05 (green dots) and log2 fold change > 1 were considered as truly differentially expressed 
in this study (turquoise asterisks). (C) Hierarchical clustering using the Z scores of the 200 deregulated 
genes that exhibited the largest variance also separated tumor and non-tumor samples into separate 
branches of a dendrogram, with larger distances in the tumor branches. Tumors were divided into the 
same sub-clusters illustrated in the PCA plot. (D) Gene ontology analyses were conducted in the Gene 
Ontology Consortium web portal (http://www.geneontology.org/). The ten most enriched or most 
depleted terms are presented along with the corresponding P values. In general, the magnitude of 
depletion is larger than the magnitude of enrichment. The most depleted terms were Drug catabolic 
processes and the Epoxygenase P450 pathway which are indicative of drug resistance emergence and 
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activation of the immune system, respectively. Top enriched terms are related to DNA synthesis and 
mitosis, suggestive of increase cell proliferation in tumors. 
 
Figure 2. HCC is associated with a dramatic downregulation, but not shut-off, of enzymes 
involved in oxidative phosphorylation. Only genes that were found exclusively deregulated in our 
resected livers cohort, but neither in explanted livers, nor in the TCGA cohort, are presented here. Only 
genes that were found downregulated 10-fold or more are shown. Downregulated genes include 
subunits of the ATP synthase (A, B), a subunit of the cytochrome C oxidase (C), a subunit of the 
respiratory chain protein ubiquinol cytochrome C reductase (D), subunits of the NADH dehydrogenase 
(E-J), mitochondrial ribosomal RNAs (K, L), a mitochondrial tRNA (M) and pseudogenes for the 
mitochondrially-encoded NADH ubiquinone oxidoreductase core subunits (N-Q). The importance of 
pseudogenes on disease in currently under intense debate [76]. 
 
Figure 3. Many long non-coding RNAs (lncRNAs) are deregulated in resected HCC samples. (A) 
LINC00152 was the only lncRNA found upregulated in tumor tissue. All other lncRNAs found 
deregulated were downregulated in tumor samples (B-M). ** lncRNAs that were found deregulated in 
the resected and explanted HCC cohorts. 
 
Figure 4. Transcriptional deregulation in HCC from explanted end-stage livers suggest general 
reduction of energetic processes. (A) Principal component analysis, as in the case of resected 
tumors, separated tumor from non-tumor samples, with the former ones exhibiting a more disperse 
distribution along the two principal components. One of the tumors (315) was located in close 
proximity to non-tumor samples. (B) Classification of differentially expressed genes according to false 
discovery rate (FDR) and log2 fold change. Deregulated genes with a FDR < 0.05 (green dots) and log2 
fold change > 1 were considered as truly differentially expressed in this study (turquoise asterisks). 
(C) Hierarchical clustering using the Z scores of the 200 deregulated genes that exhibited the largest 
variance also separated tumor and non-tumor samples into separate branches of a dendrogram, with 
larger distances in the tumor branches. (D) Gene ontology analyses were conducted in the Gene 
Ontology Consortium web portal (http://www.geneontology.org/). The ten most enriched or most 
depleted terms are presented along with the corresponding P values. In general, the magnitude of 
depletion is larger than the magnitude of enrichment. (E) Few miRNAs were found deregulated in 
tumor samples, most of which have already been characterized in the context of HCC. 
 
Figure 5. miRNA profiling reveals deregulated miRNAs that have not been previously 
characterized in the context of HCC. (A) Principal component analysis of the miRNA expression data 
clearly separated tumor from non-tumor samples. As in the case of RNAseq data, non-tumor samples 
formed a much more compact cluster than their tumor counterpart. Tumors 7 and 8 were considerably 
different from the rest of tumors; tumors 1,3,5,10,11, and 12 formed an apparent sub-cluster, as did 
tumors 2,4,6 and 9. (B) Classification of differentially expressed miRNAs according to false discovery 
rate (FDR) and log2 fold change. Deregulated genes with a FDR < 0.05 (green dots) and log2 fold change 
> 1 were considered as truly differentially expressed in this study (turquoise asterisks).  miR-10b-5p 
and miR-1269a were substantially more deregulated that the rest of miRNAs and for this reason are 
explicitly shown here. (C) Hierarchical clustering of the Z scores of the 96 deregulated miRNAs 
exhibiting the largest variance separated most tumor from non-tumor samples, with the exception of 
tumors 2 and 4, which formed a branch apart from the rest of tumors, and closer to non-tumor samples. 
(D) The top four upregulated or downregulated miRNAs are shown.  
 
Figure 6. Copy number variants profile is highly variable between samples and is generally 
associated with amplification of oncogenes. (A) Number of CNV events (losses and gains) in each 
of the resected tumor samples.   (B) Ideogram depicting the location and size of the CNV events in each 
resected tumor sample (copy number is not show here, but is shown in Supp. Table 10. (C) A 
dendrogram was derived from the CNV profiles using hierarchical clustering with complete linkage 
and the GRCh38.81 human genome assembly to root the dendrogram. For each tumor sample, its non-
tumor counterpart was used as reference. Many of the amplified chromosomal regions contain genes 
potentially involved in tumorigenesis, as depicted on Fig. 7 and Supp. Fig. 6. For the sake of clarity, 
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cytogenetic bands and genes included in the corresponding transect are shown. (D) An amplified 
region in HCC resected tumors that spans genes involved in cell proliferation and metastasis. A 
representative region on chromosome 17, which was amplified in tumor samples 3, 8 and 9 is shown. 
Genes TOM1L1, MSI2, MRPS23, RNF43 and INTS2 were found upregulated in the RNAseq libraries. 
 
Table 1. Cancer-related genes mutated in each of the analyzed samples. Numbers indicate the number 
of mutations detected per gene. 
 
Supplementary Figure 1. RNAseq and miRNA profiles for the TCGA cohort. Data was downloaded 
from the TCGA data portal (https://tcga-data.nci.nih.gov/docs/publications/tcga/?) and then 
processed using the same pipeline we used to analyze our own data. Only 50 tumros for which paired 
non-tumor controls were available were included in this analysis. (A) Principal component analysis 
for RNAseq data. (B) Differentially expressed genes (C) Principal component analysis for miRNAs data. 
(D) Differentially expressed miRNAs. (E) Hierarchical clustering of top differentially expressed genes. 
(F) Hierarchical clustering of top differentially expressed miRNAs.  
 
Supplementary Figure 2. Gene ontology analysis of the TCGA cohort. As in the case of our resected 
livers cohort, the predominant deregulated gene ontology terms in the TCGA cohort were related with 
activation of the immune systems and emergence of drug resistance.  Cell proliferation and DNA 
synthesis were the most enriched terms.  
 
Supplementary Figure 3. Many monooxigenases in the cytochrome P450 superfamily are 
deregulated in resected HCC tumors. Upregulated genes included the monooxygenases (A, B, C), and 
oxidase involved in oxidation of nicotine of cotidine (D, F),  oxidases involved in the metabolism of 
long-chain polyunsaturated fatty acids (G), oxidases involved in metabolism of arachidonic acid and 
about 100 drugs (H, J, K),  enzymes involved in the synthesis of cholesterol, steroids and other lipids 
(L). The only oxygenase found upregulated was the cholesterol 7 alpha hydroxylase (CYP7A1) (M). *: 
found deregulated in our resected cohort and in the TCGA cohort. **: Found deregulated in our 
resected and explanted cohorts. ***: found deregulated in the three cohorts. 
 
Supplementary Figure 4. Tumor samples 7 and 8 exhibit a dramatic upregulation of miRNAs in 
the 19C cluster. Hierarchical clustering of 50 miRNAs exhibiting the largest variance between groups 
(cancer vs non-cancer), irrespectively of whether they were differentially expressed or not, illustrates 
a dramatic upregulation of many miRNAs in the 19C cluster in tumors 7 and 8. This may explain the 
separation of these two samples in the principal component analysis plot presented in Fig. 5A. 
 
Supplementary Figure 5. Copy number variants profile of tumors in explanted livers. (A) As in 
the case of resected livers (Fig. 6), number of CNV events demonstrate that gains were more common 
than losses in explanted livers. (B) CNV events were not distributed evenly along all chromosomes of 
the genome. Chromosome 17 seems to constitute a hotspot for CNV events generation. In general, 
explanted livers presented less CNV events than resected livers. The reasons for such difference is not 
known. 
 
Supplementary Figure 6. Recurrent CNV hotspots found in chromosomes 1 or chromosome 17. 
For the sake of clarity, cytogenetic bands and genes included in the corresponding transect are shown. 
 
Supplementary Table 1. Description of resected and explanted HCC samples analyzed in this study. 
 
Supplementary Table 2. Differential expression analysis results from RNAseq data generated from 
12 HCC resected livers. Downregulated genes are in blue font. 
 
Supplementary Table 3. Differential expression analysis results from RNAseq data generated from 3 
HCC explanted livers. Downregulated genes are in blue font. 
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Supplementary Table 4. Differential expression analysis results from microRNAseq data generated 
from 12 HCC resected livers. Downregulated miRNAs are in blue font. 
 
Supplementary Table 5. Differential expression analysis results from microRNAseq data generated 
from 3 HCC explanted livers. Downregulated miRNAs are in blue font. 
 
Supplementary Table 6. Differential expression analysis results from RNAseq data retrieved from 
TCGA corresponding to 50 HCC cancer-nonCancer pairs. Downregulated genes are in blue font. 
 
Supplementary Table 7. Differential expression analysis results from microRNAseq data retrieved 
from TCGA corresponding to 50 HCC cancer-nonCancer pairs. Downregulated miRNAs are in blue font. 
 
Supplementary Table 8. Number of genes that were found deregulated in one, two or three cohorts 
of samples. 
 
Supplementary Table 9. HGCN symbol of genes that were found deregulated in one, two or three 
cohorts of samples. 
 
Supplementary Table 10.Putative targets identified by TargetScan for all miRNAs found deregulated 
in our resected livers cohort. Targets are restricted to genes found deregulated in the RNAseq libraries 
from resected livers. 
 
Supplementary Table 11. Copy number variants in each tumor sample of our resected and explanted 
livers cohorts, as determined by cn-mops. 
 
Supplementary Table 12. Allelic frequency of mutations in genes related to cancer according to the 
Accel-Amplicon 56G oncology panel v2. The number of mutations in each gene is not necessarily an 
indicative of the actual mutation susceptibility because the number of amplicons per gene in the assay 
used is variable.  
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