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Interferons	 and	 defensins	 are	 antimicrobial	 peptides	 that	 can	 also	 induce	
anti-tumor	 immunity.	 By	 analyzing	 the	 copy	 number	 profiles	 of	 10,759	
patients	 across	 31	 cancer	 types,	 we	 found	 the	 homozygous	 deletions	 of	
interferon	and	defensin	genes	are	prevailing	in	most	human	cancers,	and	that	
patients	 with	 these	 homozygous	 deletions	 exhibited	 significant	 reduced	
overall	 survival	 or	 disease-free	 survival.	 We	 further	 demonstrated	 that	 the	
homozygous	deletion	of	interferon	and	defensin	genes	significantly	impacted	
the	 expression	 of	 genes	 regulated	 by	 tumor	 necrosis	 factor	 (TNF)	 and	 IFNγ.	
Our	 findings	suggested	a	novel	 immune	escape	mechanism	that	disrupts	 the	
tumor	cells’	 ability	 to	be	 recognized,	 and	have	 implications	 for	personalized	
immunotherapy.	
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Abbreviation	of	TCGA	cancer	types	
ACC,  Adrenocortical Carcinoma 
BLCA,  Bladder Urothelial Carcinoma 
BRCA,  Breast Invasive Carcinoma 
CESC,  Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma  
CHOL,  Cholangiocarcinoma 
COAD, Colon Adenocarcinoma 
DLBC,  Diffuse Large B-cell Lymphoma 
ESCA,  Esophageal Carcinoma 
GBM,  Glioblastoma Multiforme 
HNSC,  Head and Neck Squamous Cell Carcinoma 
KICH,  Kidney Chromophobe 
KIRC,  Kidney Renal Clear Cell Carcinoma  
KIRP,  Kidney Renal Papillary Cell Carcinoma 
LAML, Acute Myeloid Leukemia 
LGG,  Brain Lower Grade Glioma  
LIHC,  Liver Hepatocellular Carcinoma 
LUAD, Lung Adenocarcinoma 
LUSC,  Lung Squamous Cell Carcinoma 
MESO, Mesothelioma 
OV,  Ovarian Serous Cystadenocarcinoma 
PAAD,  Pancreatic Adenocarcinoma 
PCPG,  Pheochromocytoma and Paraganglioma 
PRAD,  Prostate Adenocarcinoma 
READ,  Rectum Adenocarcinoma 
SARC,  Sarcoma 
SKCM, Skin Cutaneous Melanoma 
STAD,  Stomach Adenocarcinoma 
TGCT,  Testicular Germ Cell Tumors 
THCA,  Thyroid Carcinoma 
THYM ,  Thymoma 
UCEC,  Uterine Corpus Endometrial Carcinoma 
UCS,  Uterine Carcinosarcoma 
UVM,  Uveal Melanoma		 	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2017. ; https://doi.org/10.1101/101741doi: bioRxiv preprint 

https://doi.org/10.1101/101741
http://creativecommons.org/licenses/by/4.0/


	
	
	
Introduction 

Somatic copy number alteration (SCNA) is one of the major sources of genome 

instability, which plays critical roles in tumorigenesis. Previous studies estiamte that 25% 

of the cancer genome is affected by arm-level SCNAs, and 10% by focal SCNAs with 

2% overlap1. Mapping the focal SCNAs that are recurrent in different tumor types could 

potentially reveal the molecular mechanisms of tumorigenesis and identify therapeutic 

targets. Through the analysis of the copy number profiles of 4934 cancers across 11 

cancer types, The Cancer Genome Atlas (TCGA) project identified 140 recurrent focal 

SCNAs including 70 amplified regions (959 affected genes) and 70 deleted regions (2084 

affected genes)2. Another study explored the copy number profiles of 3131 cancers across 

26 cancer types and identified 158 recurrent focal SCNAs including 76 amplification 

(1566 affected genes) and 82 deletions (2001 affected genes). These large-scale SCNA 

profiling studies significantly improved our understandings of the genomic landscapes of 

human tumors, and have identified hundreds of oncogenes and tumor suppressors located 

in amplified and deleted regions, respectively. However, It is still a challenge to pinpoint 

the common biological pathways given the large number of genes affected by the focal 

SCNAs. 

 

The loss of tumor suppressor genes plays important role in cancer biology. Tumor 

suppressor genes generally follow the “two-hit hypothesis”, which suggests that both 

alleles of the same gene must be deactivated before an negative effect is observed3. 

Therefore, homozygously deleted genes provide an important resource for identifying 

cancer-causing tumor suppressors. Although similar work has been done in cell lines4, 

large-scale and genome-wide analysis have not been conducted in of patient specimens. 

In this study, we re-analyzed the TCGA copy number profiles of 10,759 patients across 

31 cancer types to identify recurrent, homozygously deleted genes, aiming at identifying 

common biological pathways implicated in tumorigenesis.  Strikingly, except for eight 

well-known tumor suppressors such as PTEN and RB1, we found that all identified HDGs 

were located in only two loci–8p21-23 and 9p21.  In particular, we found interferon gene 
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cluster (located in 9p21) and defensin gene cluster (located in 8p21-23) were 

homozygously deleted in at least 7% of patients in 19 out of 31 (61%) cancer types. 

Survival analyses in different tumor types indicated that patients with homozygous 

deletion of interferons or defensins exhibit dramatically reduced overall survival or 

disease-free survival. Since a large body of evidence suggest that interferons and 

defensins have a major role in tumor immunity by recognizing tumor cells and serve as a 

bridge to spontaneous adaptive T cell response5-11, our findings suggested a common 

molecular mechanisms mediated by the loss of interferons and defensins, through which 

tumor cells escape immune detection, and provided solid evidence supporting the 

“evading immune destruction” as the new emerging cancer hallmark12.  

 

Results 

To identify homozygously deleted genes that are common to human cancers, we analyzed 

the CNV profiles of 10,759 patients across 31 cancer types generated from TCGA 

Research Network (Table S1). We first calculated the homozygous deletion frequency 

for each gene in each cancer type (Table S2). Then, we identified 242 genes whose 

average homozygous deletion frequency across 31 cancer types is larger than 3%. 

Strikingly, we found 234/242 genes (96.7%) were located on 8p21-23 or 9p21, with only 

8 genes (3.3%) located in other regions (Table S3). As expected, 7 out of these 8 genes 

are known tumor suppressors including PTEN, RB1, DMD, PTPRD, PDE4D, WWOX and 

LRP1B, and all these 7 genes were identified as the potential targets of focal SCNAs by 

two independent studies1,2. The molecular function of another gene CCSER1 (alias 

FAM190A) is largely unknown, but its homozygous deletion has been frequently 

observed in human cancers13-15. Functional classification of the 234 genes revealed that 

interferons (16 genes, q-value = 8.37×10-20) and defensins (24 genes, q-value = 1.65×10-

30) are the most significantly enriched terms (Table S4). The 16 type I interferon genes 

are located on 9p21, which includes 13 IFN-α genes, 1 IFN-β, 1 IFN-ε and 1 IFN-ω gene. 

The 24 defensin genes are located on 8p21-23, which includes 6 α-defensin and 18 β-

defensin genes. Since both interferons and defensins are involved in innate immune 

response and play important roles in recognizing tumor cells and inducing anti-tumor 
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immune response, the recurrent, homozygous deletion of these genes suggested a 

common molecular mechanism through which tumor cells escape immune destruction. 

 

We observed the homozygous deletion of interferons (HDIs) and defensins (HDDs) from 

all 31 cancer types except PCPG (pheochromocytoma and paraganglioma), THCA 

(thyroid carcinoma) and LAML (acute myeloid leukemia) (Fig. 1). Using a 5% 

alternation frequency as a threshold, we defined 12/31 (38.7%) tumors as the low 

HDI/HDD group (or L-Type tumors) and 19/31 (61.3%) tumors as the high HDI/HDD 

group (Fig. 1, Table S5). Interestingly, we found that 50% (6/12) of low HDI/HDD 

tumors were rare cancer types according to TCGA’s classification 

(https://cancergenome.nih.gov/cancersselected/RareTumorCharacterizationProjects), but 

only 15.8% (3/19) of high HDI/HDD tumors were rare cancer types (P = 0.056, two-

sided Fisher’s exact test) (Fig. 1, Table S5). This contrast pattern suggested that 

HDI/HDD might be a common molecular mechanism contributing to the prevalence of 

major cancer types.   In the high HDI/HDD group, two brain tumor types LGG (brain 

lower grade glioma) and GBM (glioblastoma multiforme) exhibited the lowest (7.2%) 

and highest (30.5%) alternation frequencies, respectively. We further divided the high 

HDI/HDD group into three subtypes using the prevalence ratio (PR = {# of HDIs}/{# of 

HDDs}) of 5 as the threshold (Fig. 1, Table S5): The I- type was defined as cancer types 

with HDIs at least 5 times more prevalent than that of HDDs (PR ≥ 5), including GBM, 

LGG, MESO, and PAAD (Fig. 2A, Fig. S1-2). The D type was defined as cancer types 

with HDDs at least 5 times more prevalent than that of HDIs (PR ≤ 0.2), including 

COAD, READ, LIHC, UCS and PRAD (Fig. 2B, Fig. S3-4). The C type referred to those 

cancer types with both HDIs and HDDs (0.2 < PR < 5), including BRCA, BLCA, ESC, 

HNSC, LUAD, LUSC, OV, SARC, SKCM and STAD (Fig. 2C, Fig. S5-8).  

 

Since both interferons and defensins play critical roles in anti-tumor immunity, we next 

investigated if patients whose genome contains HDI or HDD lesions exhibited worse 

overall survival (OS) or disease-free survival (DFS). Indeed, HDI or HDD patients 

showed significantly reduced OS or DFS in multiple cancer types (Fig. 3). For examples, 

compared to LGG patients without HDI or HDD (median overall survival time 93.13 
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months), the median overall survival time of patients carrying HDI or HDD was reduced 

by 74% to 24.38 months (LogRank test P-value = 0) (Fig. 3A). Similarly, the median 

disease free survival time for bladder cancer patients was reduced by 60% from 43.96 

months to 17.51 months (LogRank test P-value = 0.0026) (Fig. 3E), and the median 

overall survival time of lung cancer patients was reduced by 30% from 54.30 months to 

37.91 months (LogRank test P-value = 0.0085) (Fig. 3F). The striking associations of 

HDI/HDD status with worse clinical outcomes across cancer types suggested their 

remarkable prognostic values.  

 

We found that interferon genes are located approximately 485 Kb to 890 Kb away from 

CDKN2A (Cyclin Dependent Kinase Inhibitor 2A) (Table S3), a well-known tumor 

suppressor.  The homozygous deletion of these genes have been reported in 

mesothelioma and numerous cancer cell lines4,16,17. Similarly, defensin genes are located 

~5Mb away from another tumor suppressor CSMD1 (CUB And Sushi Multiple Domains 

1)18 (Table S3).  We asked the question whether homozygous deletions of interferon and 

defensin gene clusters were passive events hitchhiked by their nearby known tumor 

suppressors, or they played an active role in tumorigenesis and affected the patient 

survival. Therefore, we tested if the loss of interferon and defensin genes could 

significantly impact gene expression. We performed gene expression analysis on each of 

the 17 cancer types (COAD and READ were combined as colorectal cancer, LUSC and 

LUAD were combined as lung cancer) (Fig. 1, Table S5). Through differential gene 

expression analysis of patients with and without HDI/HDD lesions in each tumor type, 

we detected 4599 genes whose expression were significantly (FDR < 0.01) altered in at 

least one cancer type (Table S6). For example, KLHL9, a gene located within the 

interferon gene cluster, was identified as significantly down-regulated in 12 out of 17 

cancer types (Table S6).  To identify the implicated pathway, we performed Gene Set 

Enrichment Analysis (GSEA) for the top 143 genes whose expressions were significantly 

changed in at least 5 cancer types (Table S6, Fig. S9)19.  GSEA results showed that the 

“immune system” was the only gene set that enriched in these 143 genes (FWER 

corrected P = 0.071) (Fig. S10). We further performed Ingenuity Pathway Analysis 

(IPA®) analyses for genes differentially expressed between the two groups for each tumor 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2017. ; https://doi.org/10.1101/101741doi: bioRxiv preprint 

https://doi.org/10.1101/101741
http://creativecommons.org/licenses/by/4.0/


type. Strikingly, we found tumor necrosis factor (TNF) was detected as the top upstream 

regulator for all the 17 cancer types with extremely significant P-values (Table 1). IFN-γ 

(IFNG) was another common upstream regulator detected in eight tumor types including 

MESO, PAAD, LGG, Colorectal (COAD + READ), LUNG (LUSC + LUAD), BLCA, 

SARC and STAD (Table S6). Both TNF and IFN-γ have direct and indirect antitumor 

functions. They are defined as effector molecules of CD4+ helper T (Th1) cells, NK cells 

and CD8+ cytotoxic T cells. TNF is also an effector molecule produced from activated 

macrophages (M1) capable of killing tumors.  On the other hand, IFN-γ induces the up-

regulation of PD-L1, a immune checkpoint molecule in many human cancer cells. The 

fact that HDD and HDI specifically impacted the expression of genes involved in 

immune system demonstrated their active role in tumorigenesis and survival. 

 

We further tested if the additional loss of interferon genes could impact patients’ overall 

survival time, comparing to patients with CDKN2A deletion only. For each tumor type, 

we performed the survival analysis on three patient groups: (I) patients only have 

CDKN2A loss; (II) patients have CDKN2A loss and additional interferon genes deletions; 

and (III) patients have neither CDKN2A nor interferon genes deletions. As expected, the 

overall survival rates of group (II) patients were dramatically reduced as compared to 

those of group (I) in a variety of tumor types including LGG, GBM, BRCA, lung (LUAD 

+ LUSC), colorectal (COAD + READ), SARC, OV, BLCA and SKCM (Fig. 4). The P-

values of several tumor types did not reach statistical significance more likely due to 

limited sample size, for example, only 5 and 14 patients have both CDKN2A and 

interferon genes deletions for colorectal cancer and SARC, respectively. It could be also 

due to other confounding factors such as PTEN and RB1 deletion, which tend to be 

mutually exclusive with interferon gene deletions (Fig. S11).  

 

Discussion 

Evading immune destruction is considered as one of the two new emerging hallmarks of 

cancer12. A growing body of evidence has suggested that interferons and defensins play 

important roles in recognizing tumor cells and inducing immune responses. For example, 

type I interferons are critical for the innate immune to recognize a growing tumor and 
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activate CD8+ T cell responses9, and that intratumoral production of type I interferon 

after innate immune recognition of tumor cells is critical for activating natural adaptive 

immune response against tumors in vivo20. Defensins can promote anti-tumor adaptive 

immune responses in mice21, in vitro tumor cell cytolysis7, and induce antitumor 

immunity when fused with nonimmunogenic tumor antigen and enhance antibody 

responses22,23. In this study, we analyzed the SCNA profiles of 10,759 cancer tissues and 

found homozygous deletions of interferon and defensin gene clusters were highly 

recurrent in 19 cancer types with alternation frequency ranging from 7.2% to 30.5%, 

which is generally much higher than that of PTEN and RB1 in the same cancer type (Fig. 

S11). More importantly, patients with HDI or HDD lesions exhibited significantly 

reduced overall or disease-free survival in a variety of tumors. Given that both interferons 

and defensins play critical roles in initiating tumor immunity, the high prevalence of 

HDIs and HDDs in human cancers indicated that this might be the generic mechanism 

through which tumor cells avoid anti-tumor destruction after tumorigenesis.  

 

Immunotherapies targeting PD-1:PD-L-1 interaction have been demonstrated to be 

efficacious in a number of cancer types24-26, however, therapeutic resistance is frequently 

observed and the mechanisms of both de novo and acquired immune-resistance are 

mostly unknown. Defects in the interferon signaling pathway have been proposed as a 

potential mechanism of cancer escape (insensitivity) to immunotherapy in mice and 

prostate cancer cell line27,28. In mice, type I interferon signals are required to initiate the 

antitumor CD8+ response, and mice without INF-α/β receptor cannot reject immunogenic 

tumor cells9,10. Consistent with these preclinical observations, our observation that type I 

interferon genes were frequently deleted in 14 tumor types (I-type and C-type) suggested 

a generic mechanism through which tumors develop acquired immuno-resistance, and 

revealed new ‘omics-’ based biomarkers to identify responsive patients. Our results also 

suggest that personalized immunotherapies based on patient’s interferon and/or defensin 

deletion status could be considered. 

 

When comparing gene expression profiles of patients having HDI/HDD with those 

without HDI/HDD events, all the 16 interferon and the 24 defensin genes were not 
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identified as differentially expressed except for DEFB1 which is significantly down 

regulated in ESCA, LIHC and OV (Table S6). The major reason is that most interferon 

and defensin genes are not normally active in these tissues but can be activated during 

oncogenic process (Fig. S12).  For example, although DEFA1-3 are primarily expressed 

in neutrophils and NK cells, up-regulation of HNP1-3 (encoded by DEFA1-3, 

respectively) have been detected in tumor tissues in colorectal and other cancers 8,29-31. 

Up-regulation of HNP1-3 in tumor tissues might originate from tumor infiltrating 

immune cells, however, several studies performed on cell lines demonstrated that tumor 

cells could produce HNP1-3 by themselves8,32. Similarly, IFN-α and IFN-β genes can be 

produced from both tumor cells and infiltrating innate immune cells to elicit anti-tumor 

immune response33. Given the role of interferons and defensins in recognizing tumor 

cells and inducing immune response, we hypothesize that their homozygous deletion 

could confer to tumor cells a growth/survival advantage after tumorigenesis. Further 

analysis is warranted to validate this point. 

 

We found that patients of I-type tumors almost exclusively have HDI but not HDD (Fig. 

2A, Fig. S1-2), and patients of D-type almost exclusively have HDDs but not HDIs (Fig. 

2B, Fig. S3-4). Even for C-type tumor such as BRCA (n = 1079), there were 20 (1.9%) 

patients having HDIs and 65 (6.0%) patients having HDDs but only 2 (0.2%) patients 

with concurrent HDI and HDD (Fig. S5). These data suggested HDI and HDD had 

tendency towards mutual exclusivity both within and across tumors, even though they did 

not reach statistical significance likely due to limited number of cases. This observation is 

consistent with the concept that alterations within the same pathway are often mutually 

exclusive34,35. One open question is whether patients with concurrent HDI and HDD 

exhibit worse or favorable clinical outcomes. The low occurrence of patients with 

concurrent HDI and HDD in TCGA cohort preclude rigorous statistical analysis. 

However, analysis of LUSC cohort that has the highest concurrent HDI and HDD 

frequency (n=8), we found the diagnosis age of patients with concurrent HDI and HDD 

(median = 60) is much smaller than other patients (median = 68) with Wilcoxon two-

sided p-value 0.079 (Fig. S13), suggesting concurrent HDI and HDD is associated with 
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early tumor onset in LUSC. However, a much larger cohort is needed to test this 

hypothesis in LUSC and other tumors.  

 

Methods 

The Cancer Genome Atlas Copy Number Variation Data and Analysis 

Thresholded copy number variation data of 10,843 patients (33 cancer types) were 

downloaded from the Cancer Genome Hub at the University of California at Santa Cruz 

(https://genome-cancer.ucsc.edu/)36. After removing CHOL (n = 36) and DLBC (n = 48) 

cohorts that have less then 50 patients, SCNA profiles of 10,759 patients were analyzed.  

These 10,759 patients composed 31 cancer types, which include 22 common cancers and 

9 rare cancers. Common and rare tumor designation is according to 

http://cancergenome.nih.gov/cancersselected/RareTumorCharacterizationProjects. 

Matched overall survival or disease-free survival data were downloaded from CBioPortal 

(http://www.cbioportal.org/)37. In brief, Gistic2 generated gene level CNV estimates were 

thresholded into discrete values -2, -1, 0, 1, 2 representing homozygous deletion, single 

copy deletion, diploid neutral, low copy number gain and high copy number 

amplification, respectively. Homozygous deletion frequency is calculated as: 

Homozygous deletion frequency = !"#$%& !" !"#$%&#' !"#$ "-2" status
!"#$%& !" !"!#$ !"#$%&#'

 

 

Functional annotation of the homozygously deleted genes was performed by DAVID 

(https://david.ncifcrf.gov/)38 and ConsensusPathDB gene set overrepresentation analysis 

(http://cpdb.molgen.mpg.de/CPDB)39. Both tools produced the similar results. The p-

values and q-values in Table S4 were produced by ConsensusPathDB.  

 

Gene expression analysis 

For each tumor type, cancer patients were first divided into two groups according to the 

HDI and/or HDD status. Patients without RNA-seq data were removed. Gene level 

expression estimates (i.e. RSEM normalized read count) were downloaded from TCGA 

Data Portal (https://tcga-data.nci.nih.gov/). EdgeR was used to compare gene expression 

profiles between patients with HDI/HDD and those without HDI/HDD. Differentially 

expressed genes were determined by the p-value cutoff 0.0140.  
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Gene set enrichment analysis 

A total of 143 genes whose expression significantly (p-value < 0.01) changed in at least 5 

tumor types were selected for Gene Set Enrichment Analysis (GSEA). These 143 genes 

were pre-ranked by the average fold change among 17 tumor types before running 

GseaPreranked module. Used gene sets include Biocarta (v5.2), KEGG (v5.2), Reactome 

(v5.2). Gene sets larger than 500 or smaller than 15 were removed.   

 

Survival and statistical analysis 

Cancer patients were divided into two groups according to the HDI and/or HDD status. 

Survival analysis was performed using the “survival” R package available from 

http://cran.r-project.org. The Log-rank test was used to evaluate if the difference of 

overall survival or disease-free survival between the above two subgroups was 

statistically significant. CoMEt exact test was used to evaluate the mutual exclusivity of 

HDIs and HDDs in each tumor type41. 
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Figure 1 

 
Homozygous deletion frequencies of interferon and defensin genes in 31 cancer types. 
Within each cancer type, patients were divided into three groups: homozygous deletion of 
interferon genes (HDI) only (green), homozygous deletion of defensin genes (HDD) only 
(orange) and concurrent HDI and HDD (red). The 31 cancers were classified into 4 types: 
L-type refers to cancer types with overall homozygous deletion frequency of HDI and 
HDD less than 5% (blue triangle); I-type refers to cancer types in which HDI is dominant 
(green circle); D-type refers to cancer types in which HDD is dominant (orange circle); 
C-type refers to cancer types in which both HDI and HDD are prevalent (blue circle). 
Common and rare tumors are designed by TCGA and indicated using black and red 
circles, respectively. 
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Figure 2 

 
Oncoprint plots showing gene level alteration patterns of interferon and defensin genes. 
Each row represents a gene and each column represents a patient. Blue vertical bars 
indicate patients with either HDD or HDI, green vertical bars indicate patients with 
concurrent HDD and HDI.  (A) I-type cancers using Brain Lower Grade Glioma and 
Glioblastoma multiforme as examples. (B) D-type cancers using prostate adenocarcinoma 
and colorectal cancer as examples. (C) C-type cancers using bladder urothelial carcinoma 
and lung cancer as examples.  Colorectal cancer is the combined cohort of colon 
adenocarcinoma and rectum adenocarcinoma. Lung cancer is the combined cohort of 
lung adenocarcinoma and lung squamous cell carcinoma. 
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Figure 3 

 
Comparing overall survival or disease-free survival between patients with (red) and 
without (blue) HDIs/HDDs. Survival curves for Brain Lower Grade Glioma, 
Glioblastoma multiforme, Prostate adenocarcinoma, Colorectal cancer, Bladder 
Urothelial Carcinoma and Lung cancer are indicated in panel (A) - (F), respectively.  
Colorectal cancer is the combined cohort of colon adenocarcinoma and rectum 
adenocarcinoma. Lung cancer is the combined cohort of lung adenocarcinoma and lung 
squamous cell carcinoma.  
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Figure 4 

 
Comparing overall survival between patients have neither CDKN2A nor interferon gene 
deletions (green), patients only have CDKN2A deletion (blue), and patients have both 
CDKN2A and interferon gene deletions (red). Survival curves for brain lower grade 
glioma, glioblastoma multiforme, breast invasive carcinoma, lung cancer, colorectal 
cancer, sarcoma, ovarian serous cystadenocarcinoma, bladder urothelial carcinoma, skin 
cutaneous melanoma are indicated in panel (A) – (I), respectively. Colorectal cancer is 
the combined cohort of colon adenocarcinoma and rectum adenocarcinoma. Lung cancer 
is the combined cohort of lung adenocarcinoma and lung squamous cell carcinoma. Log 
rank test P-values were calculated by comparing patients only have CDKN2A deletion 
(blue), and patients have both CDKN2A and interferon gene deletions (red). 
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Table 1: Ingenuity IPA identified top "upstream regulator genes or proteins" from genes 
that are differentially expressed (FDR < 0.01) in each cancer type.   
 

    Down-regulated genes after HDI/HDD Up-regulated genes after HDI/HDD 

    
Upstream 
regulator P-value Rank 

Upstream 
regulator P-value Rank 

I- type 

MESO 
IFNL1 4.70E-27 #1 VEGF 1.72E-13 #1 
IFNG 3.74E-25 #2 TGFB1 2.79E-13 #2 
TNF 2.00E-24 #3 CDKN1A 4.10E-13 #3 

PAAD 
TGFB1 4.43E-13 #1 HIF1A 1.10E-14 #1 
IFNG 2.27E-10 #4 TNF 9.73E-14 #2 
TNF 1.05E-08 #9 IL1B 9.92E-12 #6 

GBM HTT 4.08E-15 #1 TNF 2.85E-08 #8 
BDNF 4.73E-14 #2 IL1B 5.86E-08 #9 

LGG HTT 2.72E-18 #1 TNF 5.52E-50 #3 
REST 4.39E-15 #2 IFNG 2.62E-50 #4 

D-type 

PRAD TNF 6.46E-40 #1 GHSR 7.86E-05 #1 
IL1B 1.30E-26 #4 LGALS7 1.65E-04 #2 

LIHC 
NEDD9 7.10E-07 #1 EIF3 1.84E-05 #1 
IL1B 2.69E-06 #3 WAC 2.40E-05 #2 
TNF 3.16E-05 #10 STAT3 4.43E-05 #3 

Colorectal  cancer 
(COAD + READ) 

IFNG 1.68E-13 #1 ERBB2 2.54E-11 #1 
IL10 2.38E-09 #2 RICTOR 5.34E-07 #2 
TNF 1.15E-08 #4 TP53 1.11E-06 #3 

UCS SIX5 2.54E-04 #1 MYH11 1.25E-05 #1 
SMARCB1 5.67E-04 #2 TNF 1.77E-03 #27 

C-type 

Lung cancer 
(LUSC + LUAD) 

TNF 1.47E-29 #1 TP53 5.89E-16 #1 
TGFB1 5.18E-22 #2 ERBB2 1.69E-10 #2 
IFNG 3.27E-15 #4 ESR1 9.32E-09 #3 

BLCA IFNG 6.31E-41 #1 MAFG 3.37E-10 #1 
TNF 9.60E-34 #2 TNF 2.10E-06 #7 

BRCA TNF 4.24E-19 #1 TP53 1.57E-52 #1 
ESR1 5.46E-13 #2 TGFB1 1.49E-37 #2 

ESCA 
IgG 1.40E-15 #2 NFE2L2 2.03E-14 #1 
IL1A 5.42E-15 #3 TNF 1.28E-10 #2 
TNF 1.44E-12 #17 NOTCH1 1.66E-09 #3 

HNSC 
ELF3 1.01E-09 #1 TNF 2.85E-08 #1 
ESR1 5.35E-07 #2 NFKB 4.72E-08 #2 
IL1 9.99E-07 #3 RELA 1.11E-07 #3 

OV 
FOS 7.58E-06 #1 IGFBP2 1.41E-06 #1 
TGFB1 4.52E-05 #2 IL1B 2.13E-06 #2 
HIPK2 5.83E-05 #3 TNF 1.27E-04 #13 

SARC 
MYOCD 1.04E-14 #1 IFNG 1.35E-34 #1 
SRF 1.67E-14 #2 TGFB1 8.96E-28 #2 
TNF 1.14E-12 #6 TNF 3.44E-18 #4 

SKCM 
MITF 7.03E-08 #1 TGFB1 6.12E-27 #1 
TENM1 2.66E-06 #2 TWIST1 6.40E-18 #2 
TNF 3.91E-06 #3 TNF 1.57E-16 #4 

STAD 

IL2 4.48E-19 #1 ESRRA 3.16E-08 #1 
IL15 5.74E-17 #2 RARA 3.95E-06 #2 
TNF 5.32E-13 #11 IL1B 6.40E-06 #3 
IFNG 9.09E-13 #12 TNF 2.44E-04 #16 
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Figure S1-S8 
Oncoprint plots for Pancreatic adenocarcinoma (PAAD), Mesothelioma (MESO), Liver 
hepatocellular carcinoma (LIHC), Uterine carcinosarcoma (UCS), Breast invasive 
carcinoma (BRCA), Ovarian serous cystadenocarcinoma (OV), Head and Neck 
squamous cell carcinoma (HNSC), and Skin Cutaneous Melanoma (SKCM).  
 
Figure S9 
Distribution of 4599 genes that differentially expressed between HDI/HDD positive 
group and HDI/HDD negative group in at least one tumor type.  
 
Figure S10 
The top enriched gene set detected by GSEA from 143 genes that were commonly altered 
in at least five tumor types. GSEA, Gene Set Enrichment Analysis. 
 
Figure S11 
Oncoprint plot showing mutually exclusive patterns between HDI/HDD, PTEN and RB1 
homozygous deletions in 17 tumor types. 
 
Figure S12 
Distribution of gene expression measured by log2 (RSEM normalized read count) for 
GBM (A), LGG (B), BLCA (C), BRCA (D), SARC (E), and SKCM (F). Red circles 
indicate interferon and defensin genes. 
 
Figure S13 
Comparing the median diagnosis ages of LUSC patients who have concurrent HID/HDD 
(red, n = 8), HDI only (green, n = 51), HDD only (orange, n = 27) and no homozygous 
deletion (blue, n = 398). The p-value is calculated by Wilcoxon rank sum test (two-
sided). 
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Cancer type: Ovarian serous cystadenocarcinoma (OV)
Total cases: 579
Total alterations: 61 (10.5%) 
HDI cases: 16 (2.8%)
HDD cases: 42 (7.3%)
Concurrent HDI/HDD cases: 3 (0.5%) 
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Cancer type: Head and Neck squamous cell carcinoma (HNSC)
Total cases: 56
Total alterations: 7(12.5%) 
HDI cases: 0 (0%)
HDD cases: 7 (12.5%)
Concurrent HDI/HDD cases: 0 (0%) 
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Cancer type: Skin Cutaneous Melanoma (SKCM)
Total cases: 366
Total alterations: 46 (12.6%) 
HDI cases: 37 (10.1%)
HDD cases: 8 (2.2%)
Concurrent HDI/HDD cases: 1 (0.3%) 
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