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Abstract: (164 words) 11 

Genome-wide association studies (GWASs) have identified many complex trait loci. To understand 12 

the biological mechanisms underlying these, we pair a flexible Bayesian method with efficient 13 

computational techniques to model functional information in GWASs. We model the effect-size 14 

distribution and probability of causality for variants with different annotation, explicitly allowing for 15 

multiple causal-variants per locus. In simulations, our method shows higher power to identify true 16 

causal-variants than competing methods. In a GWAS of age-related macular degeneration with 17 

33,976 individuals and 9,857,286 variants, we find the strongest enrichment for causality among 18 

non-synonymous variants (54x more likely to be causal, 1.4x larger effect-sizes) and among 19 

variants in active promoters (7.8x more likely, 1.4x larger effect-sizes). Importantly, when multiple 20 

causal-variants reside in the same locus, our approach improves upon the list of candidate variants 21 

produced by sequential forward selection or methods only allowing for a single causal-variant per 22 

locus. In conclusion, our method is shown to efficiently integrate functional information in GWASs, 23 

helping identify causal-variants and underlying biology. 24 

 25 

Keywords: functional annotation, genome-wide association study (GWAS), Bayesian variable 26 

selection regression (BVSR), expectation-maximization (EM), Markov chain Monte Carlo (MCMC). 27 
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Genome-wide association studies (GWASs) have identified thousands of genetic loci for 28 

complex traits and diseases, providing new insights into the underlying genetic architecture1-5. Each 29 

associated locus typically contains hundreds of variants in linkage disequilibrium (LD)6,7, most of 30 

which are of unknown function and located outside protein-coding regions. Unsurprisingly, the 31 

biological mechanisms underlying the identified associations are often unclear8 and pinpointing 32 

causal variants is difficult9.  33 

Recent functional genomic studies help understand and pinpoint causal variants and 34 

mechanisms10-12. Genetic variants can be annotated based on the genomic location (e.g., coding, 35 

intronic, and intergenic), role in determining protein structure and function (e.g., Sorting Intolerant 36 

From Tolerant (SIFT)13 and Polymorphism Phenotyping (PolyPhen)14 scores), ability to regulate 37 

gene expression (e.g., expression quantitative trait loci (eQTL) and allelic specific expression (ASE) 38 

evidence15,16), biochemical function (e.g., DNase I hypersensitive sites (DHS), metabolomic QTL 39 

(mQTL) evidence17, and chromatin states18-20), evolutionary significance (e.g., Genomic Evolutionary 40 

Rate Profiling (GERP) annotations21), and a combination of different types of annotation (e.g., 41 

CADD22). Many statistical methods, including stratified LD score regression23 and MINQUE24, can 42 

now evaluate the role of functional annotations in GWASs through heritability analysis. Preliminary 43 

studies also show higher proportions of associated variants in protein-coding exons, regulatory 44 

regions, and cell-type-specific DHSs25-27.  45 

Integrating functional information into GWASs is expected to help identify and prioritize true 46 

causal associations. However, accomplishing this goal in practice requires methods to account for 47 

both LD and computational cost. Consider two recent methods, Fgwas26 and PAINTOR27, as 48 

examples: Fgwas assumes that variants are independent and there is at most one causal variant 49 

per locus, modeling no LD, which dramatically improves computational speed and allows Fgwas to 50 

be applied at genome-wide scale; PAINTOR accounts for LD, assuming the possibility of multiple 51 

association signals per locus, but is computationally slow and can only be used to fine-map small 52 

regions.  53 

Here, we pair a flexible Bayesian method with an efficient computational algorithm. Together 54 

the two represent an attractive means to incorporate functional information into association 55 
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mapping. Our model accounts for genotype correlation due to LD, allows for multiple causal variants 56 

per locus and, importantly, shares information genome-wide to increase association-mapping 57 

power. Our algorithm takes advantage of the local LD structure in the human genome28-30 and 58 

refines previous Markov chain Monte Carlo (MCMC) algorithms to greatly improve mixing, which is 59 

key when searching for causal variants among many associated variants in LD (but less important in 60 

other applications such as modeling total genomic heritability). Because of these features, we refer 61 

to our method as the Scalable Functional Bayesian Association (SFBA). Below, we illustrate the 62 

benefits of SFBA with extensive simulations and real data analyses of a large-scale GWAS on age-63 

related macular degeneration (AMD)31 with 33,976 individuals and 9,857,286 genotyped or imputed 64 

variants. Our method is implemented in the software SFBA, freely available at 65 

https://github.com/yjingj/SFBA. 66 

 67 

RESULTS 68 

Method overview 69 

Our method is based on the standard Bayesian variable selection regression (BVSR) model 70 

(Online Methods and Supplementary Information; Supplementary Figure 1(a)), allowing for 71 

annotations that classify variants into ܭ non-overlapping categories. We assume that variants in 72 

annotation category ݍ  share a “spike-and-slab” prior32,33 for effect-sizes, ߚ௜	~	ߨ௤ܰ൫0, ߬ିଵߪ௤ଶ൯ +73 ൫1 − (௜ߚ)଴ߜ௤൯ߨ . This model implies effect sizes are normally distributed as ߚ௜~ܰ൫0, ߬ିଵߪ௤ଶ൯  with 74 

probability ߨ௤, or set to zero with probability	(1 −  denoting the point-mass function at 75 (௜ߚ)଴ߜ ௤), withߨ

0. Here, ߨ௤  represents the (unknown) causal probability for variants in the ݍth category and ߪ௤ଶ 76 

represents the (unknown) corresponding effect-size variance. An enhancement to previous 77 

Bayesian models33-35 is that we model both the proportion of associated variants and their effect-78 

size distribution in each annotation category.  79 

Our goal is to simultaneously make inference on category specific parameters (ߨ௤,  ௤ଶ) that 80ߪ

represent the importance of each functional category, and on the variant specific parameters ––– 81 

effect-size ߚ௜  and the probability of ߚ௜ ≠ 0  (referred as posterior inclusion probability ( ܲ ௜ܲ ), 82 
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representing association evidence). Our model shares information among genome-wide to estimate 83 

category specific parameters, which then inform the variant specific parameters. As a result, variant 84 

associations will be prioritized based on the inferred importance of functional categories.  85 

Because standard MCMC algorithms suffer from heavy computational burden and poor 86 

mixing of posterior samples for large GWASs, we develop a novel scalable expectation-87 

maximization MCMC (or EM-MCMC) algorithm. Our algorithm is based on the observation that LD 88 

decays exponentially with distance and displays local block-wise structure along the human 89 

genome28-30,36,37. This observation allows us to decompose the complex joint likelihood of our model 90 

into a product of block-wise likelihoods (Online Methods and Supplementary Information). Intuitively, 91 

conditional on a common set of category specific parameters (ߨ௤, ,௜ߚ) ௤ଶ), we can inferߪ ܲ ௜ܲ) by 92 

running the MCMC algorithm per genome-block. A diagram of this EM-MCMC algorithm is shown in 93 

Supplementary Figure 1(b). 94 

Running MCMC per genome-block facilitates parallel computing and reduces the search 95 

space. Unlike previous MCMC algorithms for GWAS that use proposal distributions based only on 96 

marginal association evidence (such as implemented in GEMMA38), our MCMC algorithm uses a 97 

proposal distribution that favors variants near the “causal” variants being considered in each 98 

iteration, and prioritizes among these neighboring variants based on their conditional association 99 

evidence (see Supplementary Information). Our strategy dramatically improves the MCMC mixing 100 

property, encouraging our method to explore different combinations of potentially causal variants in 101 

each locus (Supplementary Figure 2). In addition, we implemented memory reduction techniques 102 

that reduce memory usage up to 97%, effectively reducing the required physical memory from 120 103 

GB (usage by GEMMA38) to 3.6 GB for a GWAS with ~33K individuals and ~400K genotyped 104 

variants (Online Methods and Supplementary Information).  105 

In practice, we segment the whole genome into blocks of 5,000 ~ 10,000 variants, based on 106 

marginal association evidence, genomic distance, and LD. We always ensure variants in LD (R2 107 

>0.1) with significant signals (P-values <5 × 10ି଼) are in the same block (Online Methods). We first 108 

initialize category specific parameters (ߨ௤,  ௤ଶ), then run the MCMC algorithm per block (E-step), 109ߪ
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summarize the MCMC posterior estimates of (ߚ௜, ܲ ௜ܲ) across all blocks to update (ߨ௤,  ௤ଶ) (M-step), 110ߪ

and repeat the block-wise EM-MCMC steps until (ߨ௤, ௤ଶߪ ) estimates converge (Supplementary 111 

Figure 1(b)).  112 

In addition, we calculate the regional posterior inclusion probability (regional-PP) per block 113 

that is the proportion of MCMC iterations with at least one “causal” variant (see Supplementary 114 

Information). Because Bayesian PP might be split among multiple variants in high LD, the threshold 115 

of regional-PP >0.95 (conservatively analogous to false discovery rate 0.05) is used for identifying 116 

loci. 117 

 118 

Simulation 119 

We simulated phenotypes with the genotype data (chromosomes 20-22) from the AMD 120 

GWAS31, including 33,976 individuals and 241,500 variants with minor allele frequency (MAF) >0.1. 121 

We segmented this small genome into 50 x 2.5Mb blocks, each with ~5,000 variants. Within each 122 

block, we marked a 25KB continuous region (starting 37.5Kb from the beginning of a block) as the 123 

causal locus and randomly selected two causal single nucleotide polymorphisms (SNPs) per locus. 124 

We simulated two complementary annotations to classify variants into “coding” and “noncoding” 125 

groups, where the coding variants account for ~1% overall variants but ~10% variants within the 126 

causal loci (matching the pattern in the real AMD data). We simulated two scenarios: (i) coding 127 

variants ~44x enriched among causal variants (30 coding vs. 70 noncoding); (ii) no enrichment (1 128 

coding vs. 99 noncoding). A total of 15% of phenotypic variance was divided equally among causal 129 

variants. We compared SFBA with single variant likelihood-ratio test, conditional analysis (CA), and 130 

Fgwas. The single variant test P-value (also referred to as P-value), conditioned P-value, Fgwas 131 

posterior association probability (PP, see Online Methods), and our Bayesian PP were used as 132 

criteria to identify associations.  133 

We first compared power of different methods using average ROC curves27,33 across 100 134 

simulation replicates. Fgwas was more powerful than P-value at low false-positive rates (FPR), 135 

presumably because Fgwas incorporates annotation information (Figure 1(a)). However, with high 136 
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false-positive rates, Fgwas underperformed P-value, presumably because Fgwas incorrectly 137 

assumes one variant per locus. In contrast, SFBA (modeling LD and allowing multiple causal 138 

variants per locus) outperformed both Fgwas and P-value for false-positive rates in (0, 0.01). 139 

Importantly, the advantage of SFBA became more pronounced with increasing sample size 140 

(Supplementary Figure 3). Specifically, the power (based on FPR=0.5%) of SFBA increased from 141 

48% to 64% as the sample size increased from 20K to 33K, while the power of Fgwas only 142 

increased from 52% to 56% and the power of P-values only increased from 47% to 52%. In 143 

addition, with sample size 33K and the threshold of regional-PP >0.95, SFBA has power 92.3% to 144 

identify associated loci, versus Fgwas with 88.6% power. The advantage of SFBA with large sample 145 

size suggests that SFBA can better extract the richer information available as sample size 146 

increases.  147 

In a typical GWAS, researchers identify a series of associated loci and then examine 148 

associated variants within each locus independently. We examined the ability of each method to 149 

prioritize the true causal variants in each locus. Since we simulated two causal SNPs per locus 150 

(SNP1 and SNP2), we examine the power for identifying each of these separately (Figure 1(b)). All 151 

methods have the same median rank for causal SNP1 (typically, ranked 3rd rank among 150 SNPs 152 

in the locus by P-value, Fgwas and SFBA), suggesting that the strongest signal in a locus can often 153 

be identified without incorporating functional information. The median rank for the second causal 154 

SNP2 was the 7th by SFBA, 12th by Fgwas, 17th by P-value, and 18th by conditional analysis –– 155 

suggesting that incorporating functional information improves power to identify multiple signals in a 156 

locus. Stratified results based on the LD between two causal variants further demonstrate that 157 

SFBA has the highest power for identifying the weaker signal, especially when both SNPs are in 158 

high LD (Supplementary Figure 4).  159 

Both SFBA and Fgwas correctly identified enrichment in scenario (i) and properly controlled 160 

for the type I error of enrichment in scenario (ii), despite some numerical issues for Fgwas 161 

(Supplement Figure 5). Moreover, SFBA estimated the effect-size variance per annotation. For all 162 

100 simulation replicates under both scenarios, the 95% confidence intervals of the log-ratio of 163 

estimated effect-size variances between coding and noncoding overlapped with 0 (Supplementary 164 
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Figure 6), suggesting effect-size variances were similar between two annotations (matching the 165 

simulated truth). 166 

In summary, our simulation studies show that, in comparisons with competing methods, 167 

SFBA has higher power, especially in loci with multiple associated variants and when the sample 168 

size is large. Further, SFBA produces enrichment parameter estimates that can help with 169 

interpretation of association results.  170 

 171 

GWAS of AMD 172 

Next, we applied our method to a GWAS of age-related macular degeneration (AMD) with 173 

16,144 advanced cases and 17,832 controls, for a total of 33,976 unrelated European individuals. A 174 

total of 439,350 variants were genotyped on a customized Exome-Chip, and then imputed up to 175 

12,023,830 variants in 1000 Genomes Project Phase 139,40. We analyzed 9,866,744 (~10M) low-176 

frequency and common variants (MAF >0.5%) with three types of genomic annotations: gene-based 177 

functional annotations by SeattleSeq, summarized regulatory annotations41, and the chromatin 178 

states profiled in nine human cell types from chromHMM42,43.  179 

 180 

Coding variation and AMD. 181 

 We used SeattleSeq to classify variants according to their impact on coding sequences 182 

(Supplementary Table 1) and then applied our method SFBA and Fgwas. SFBA identified 37 loci 183 

out of 1,063 considered genome-blocks with regional-PP >0.95 (Supplementary Tables 2, 3, and 5), 184 

including 32 among the 34 known AMD loci31 and 5 potentially novel loci. Using the threshold of 185 

Bayesian PP >0.1068 (roughly equivalent to the P-value 5 × 10ି଼ based on permutations of AMD 186 

data; Supplementary Figure 7), we identified 150 associated variants (Supplementary Figure 9(a); 187 

Supplementary Table 3), with 47 distributed among 42,005 non-synonymous variants, 4 among 188 

67,165 synonymous coding variants, 54 among 3,679,235 intronic variants, 18 among 5,512,423 189 

intergenic variants (including non-annotated variants), and 27 among 565,916 “other-genomic” 190 

variants (UTR, non-coding exons, upstream and downstream of genes). Very roughly, this 191 

corresponds to fraction of associated variants of ~1:1,000 among non-synonymous variants, 192 
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1:15,000 among synonymous variants, 1:100,000 among intronic variants, 1:300,000 among 193 

intergenic variants and 1:20,000 among “other-genomic” variants.  194 

Similarly, Fgwas identified 46 loci by regional-PP >0.95, including all 34 known loci and 12 195 

potentially novel loci (Supplementary Tables 2, 4, and 6; Supplementary Figure 9(b)). Since Fgwas 196 

analyzed the whole genome as 4,934 segments (each with 2,000 variants) and, thus, partitioned the 197 

genome somewhat differently than our method. Fgwas identified 178 associated variants with 198 

Fgwas PP >0.1068, including 24 non-synonymous, 13 coding-synonymous, 42 intronic, 40 199 

intergenic, and 59 other-genomic signals. Compared with SFBA, the proportion of loci that contain 200 

at least one non-synonymous variant with PP >0.1068 is significantly smaller (11 out of 46 by 201 

Fgwas vs. 18 of 37 by SFBA; P-value = 0.017). Similarly, the proportion of non-synonymous 202 

variants prioritized by Fgwas is also significantly smaller (24 out of 178 by Fgwas vs. 47 of 150 by 203 

SFBA; P-value =7.7 × 10ିହ), indicating that SFBA places greater weight on coding variants ––– 204 

which, as a group, appears to have both a higher prior probability of association and larger effect 205 

sizes when associated. 206 

Besides replicating the association results within known AMD loci31, SFBA identified five 207 

novel loci (Supplementary Table 5): missense rs7562391/PPIL3, rs61751507/CPN1, 208 

rs2232613/LBP, downstream rs114348558/ZNRD1-AS1, and splice rs6496562/ABHD2. These loci 209 

were also identified by Fgwas (Supplementary Table 6) with different top association variants for 210 

CPN1 (coding-synonymous rs61733667) and ZNRD1-AS1 (downstream rs116112857). 211 

Interestingly, there are several connections between these potentially novel loci and known AMD 212 

loci. For example, the protein encoded by LBP is part of the lipid transfer protein family (which also 213 

includes CETP among the known AMD risk loci) that promotes the exchange of neutral lipids and 214 

phospholipids between plasma lipoproteins46. Similarly, ZNRD1-AS1 has been associated with lipid 215 

metabolisms47 and ABHD2 has been associated with coronary artery disease48, two other traits 216 

where the AMD loci encoding CETP, APOE, and LIPC are also involved. The gene CPN1 has been 217 

associated with age-related disease (specifically, hearing impairment45).   218 

 219 

Multiple signals in a single locus 220 
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We use two examples to illustrate the importance of studying multiple signals in a single 221 

locus. Our first example focuses on a 1Mb region around locus C2/CFB/SKIV2L on chromosome 6 222 

where 1,862 variants have P-values < 5 × 10ି଼. There are an estimated 4 independent signals in 223 

the region by conditional analysis31, 21 variants with Fgwas PP >0.1068, 11 with Bayesian PP 224 

>0.1068 by the standard Bayesian variable selection regression (BVSR) method that models no 225 

functional information, and 12 with Bayesian PP >0.1068 by SFBA. Interestingly, the alternative 226 

methods (P-value, Fgwas, and BVSR) identified intronic SNP rs116503776/SKIV2L/NELFE as the 227 

top candidates (P-value = 2.1	 × 10ିଵଵସ; Fgwas PP = 0.912; BVSR PP = 1.0), while SFBA identified 228 

two missense SNPs rs4151667/C2/CFB (P-value = 1.4 × 10ିସସ ; SFBA PP = 0.917) and 229 

rs115270436/SKIV2L/NELFE (P-value = 2.8 × 10ିଽଽ ; SBA PP = 0.633) as the top functional 230 

candidates (Figure 2; Supplementary Tables 2-4).  231 

A haplotype analysis describing the odds ratios (ORs) for all possible haplotypes for SNPs 232 

rs116503776, rs4151667, and rs115270436, helps clarify the region. Intronic SNP rs116503776 233 

with the smallest P-value appears to be associated with the phenotype by tagging the other two 234 

missense SNPs (Supplementary Table 15). In particular, haplotypes with rs116503776 can either 235 

increase or decrease risk, depending on alleles at the other two SNPs. To further confirm the 236 

importance of the missense SNPs rs4151667 and rs115270436, we compared the 237 

AIC/BIC/loglikelihood between two models: one model with top two independent signals 238 

(rs116503776 and rs114254831) identified by single-variant conditional analysis31, versus the other 239 

model with top two signals (rs4151667 and rs115270436) identified by SFBA. As expected, the 240 

second model has smaller AIC/BIC and larger loglikelihood than the first one (Supplementary Table 241 

16). Thus, we can see that while alternative methods (P-value, Fgwas, and BVSR) focus on the 242 

SNP with the smallest P-value, our SFBA method finds an alternative pairing of missense signals 243 

that better accounts for all data. 244 

Our second example focuses on a 1Mb region around gene C3 on chromosome 19 245 

(Supplementary Figure 10) with 112 genome-wide significant variants with P-value <5 × 10ି଼ . 246 

Fgwas only discovered a single missense signal, rs2230199 with the most significant P-value=1.7 ×247 
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10ି଻଻  (top blue triangle in Supplementary Figure 10(a, c)). However, both BVSR and SFBA 248 

identified 2 missense variants with PPs = 1.0, and 5 intronic variants with 0.11< PPs <0.18. The top 249 

two missense signals rs2230199 and rs147859257 (241 base pairs apart) were confirmed by 250 

conditional analysis31, where the second signal rs147859257 has conditioned P-value=6.0 × 10ିଷଷ 251 

(the purple triangle in Supplementary Figure 10(b, d), overlapping with rs2230199). These two 252 

missense signals match the interpretation of previous studies49-51. Because other 5 intronic variants 253 

(rs11569479, rs11569470, rs201063729, rs10408682, rs11569466) are in high LD with between 254 

variant R2 >0.98, we believe this is the third independent signal whose Bayesian PP was split 255 

among 5 variants in high LD by SFBA. 256 

 257 

Enrichment analysis  258 

SFBA estimated that non-synonymous variants are 10-100 times more likely to be causal 259 

than variants in other categories and that they also have larger effect-sizes (Figure 3(a, b)). To 260 

better compare enrichment among multiple categories, we define two new sets of parameters 261 

(Supplementary Information). The first set of parameters, (ߨ௤/ߨ௔௩௚ ), is defined to contrast the 262 

posterior association probability estimate (ߨ௤) for each category to the genome-wide average (ߨ௔௩௚). 263 

The second set of parameters (ߪ௤ଶ/ߪ௔௩௚ଶ ) is similarly defined to contrast the effect-size variance from 264 

each category to the genome-wide average. Moreover, the square root of the effect-size variance 265 

reflects the effect-size magnitude because of the prior assumption for the effect-size in our model.  266 

Compared to the genome-wide average probability of causality ߨ௔௩௚ = 4.3 × 10ି଴଺ 267 

(Supplementary Figure 12(a)), we found that non-synonymous category were 54x more likely to be 268 

causal (P-value= 7.24 × 10ି଼ସ); that coding-synonymous and other variants were 4.3x and 2.2x 269 

more likely (P-values = 0.005, 0.003); and that intergenic 0.7x less likely (P-value=4.9 × 10ି଺); while 270 

the intronic variants matched the genome-wide average (P-value=0.659). In addition, compared to 271 

the genome-wide average effect-size variance (ߪ௔௩௚ଶ = 0.02; Supplementary Figure 12(b)), we found 272 

that the effect size variance of was 1.9x larger for non-synonymous variants (P-value=0.014; i.e., 273 

1.4x larger effect-size); and 0.4x smaller for variants in the intronic category (P-value=4.5 × 10ି଴଺); 274 
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remaining categories were not significantly different (P-values >0.2). The estimated enrichment 275 

parameters by Fgwas show a similar pattern, although the contrast of the estimated enrichment for 276 

non-synonymous versus other annotations is not as pronounced as by SFBA (Supplementary 277 

Figure 11(a)).  278 

 279 

Analysis with regulatory annotations 280 

Second, we analyzed the GWAS data of AMD with the summarized regulatory annotations41: 281 

coding, UTR, promoter (defined as within 2KB of a transcription starting site), DHS in any of 217 cell 282 

types, intronic, intergenic, and “others” (not annotated as any of the previous six categories). Overall 283 

GWAS results were similar as the ones described in previous context (Supplementary Tables 7-10). 284 

Compared to the genome-wide average association probability (ߨ௔௩௚=4.03 × 10ି଺; Supplementary 285 

Figure 12(c)), we found that the association probability of the coding category was 28x higher (P-286 

value <2.2 × 10ିଵ଺); the promoter was 2.6x (P-value=0.028) higher; the intergenic and “others” were 287 

0.5x and 0.9x less (P-values = 5.3 × 10ିସ, 0.033); while the DHS and intronic were not significantly 288 

different (P-values >0.1). In addition, compared to the genome-wide average effect-size variance 289 

௔௩௚ଶߪ) = 0.024), we found that the effect-size variance of the coding category was 1.9x larger (P-290 

value=0.019; i.e., 1.4x larger effect-size); the DHS and intronic were 0.5x less (P-values = 0.011, 291 

0.007); while the promoter, intergenic, and “others” were not significantly different (P-values >0.1; 292 

Supplementary Figure 12(d)). Here, Fgwas identified a slightly different enrichment pattern 293 

(Supplementary Figure 11(b)), where UTR was identified as the second most enriched category. 294 

This is presumably because Fgwas assumes one causal variant per locus and tends to prioritize the 295 

variant with the smallest P-value in each locus, e.g., UTR variants rs1142/KMT2E/SPRK2 and 296 

rs10422209/CNN2 have the highest Fgwas PP and the smallest P-value in their respective locus 297 

(Supplementary Tables 2 and 8). 298 

 299 

Analysis with chromatin states  300 
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Last, we considered the annotations of seven chromatin states obtained with ChromHMM in 301 

nine human cell types43: active promoter (APromoter), poised promoter (PPromoter), strong 302 

enhancer (SEnhancer), weak enhancer (WEnhancer), insulator, transcription elongation (TxnElong), 303 

repetitive/copy number variation (CNV). Nine human cell types include: embryonic stem cells (H1-304 

hESC), erythrocytic leukaemia cells (K562), B-lymphoblastoid cells (GM12878), hepatocellular 305 

carcinoma cells (HepG2), umbilical vein endothelial cells (HUVEC), skeletal muscle myoblasts 306 

(HSMM), normal lung fibroblasts (NHLF), normal epidermal keratinocytes (NHEK) and mammary 307 

epithelial cells (HMEC).  308 

With each set of chromatin states profiled in one cell type, we applied SFBA on the GWAS 309 

data of AMD, and then examined the list of variants that contribute 95% posterior probabilities in the 310 

identified loci with regional-PP >95%. We found that the results by accounting for the chromatin 311 

states profiled in the erythrocytic leukaemia cells (K562) gave the shortest list (average 14 variants 312 

per locus; Supplementary Table 17), and the enrichment analysis results of other cell types were 313 

slightly different (Supplementary Figures 13-15).  314 

Here, we present the results of accounting for the chromatin states profiled in the K562 cell 315 

type (Figure 3(e, f); Supplementary Tables 11-14). Compared to the genome-wide average 316 

association probability (ߨ௔௩௚ = 4.0 × 10ି଺; Supplementary Figure 12(e)), the association probability 317 

was 7.8x higher for the active promoter category (P-value = 7.4 × 10ିଵ଴), 3x higher for the strong 318 

enhancer category (P-value=0.013), 2.6x higher for the weak enhancer category (P-value = 0.002), 319 

1.8x higher for the transcription elongation category (P-value = 0.002), 0.4x less for the CNV 320 

category (P-values = 0.004). In addition, the effect-size variances of associated variants in active 321 

promoter and strong enhancer were found 2x larger than the genome-wide average (ߪ௔௩௚ଶ = 0.022; 322 

P-values = 0.048, 0.073), while the effect-size variances of weak enhancer, transcription elongation, 323 

and CNV categories were not significantly different (P-values >0.1; Supplementary Figure 12(f)).  324 

Note that the Bayesian enrichment estimates of the poised promoter and insulator categories 325 

are the same as their priors (not plotted in Figure 3(e, f)), suggesting that SFBA identified no 326 
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associations in these two categories. Again, Fgwas identified a similar enrichment pattern 327 

(Supplementary Figure 11(c)).  328 

 329 

DISCUSSION 330 

Here, we describe a scalable Bayesian hierarchical method, SFBA, for integrating functional 331 

information in GWASs to help prioritize functional associations and understand underlying genetic 332 

architecture. SFBA models both association probability and effect-size distribution as a function of 333 

annotation categories for improving fine-mapping resolution. Unlike previous methods26,27, SFBA 334 

accounts for LD and allows for the possibility of multiple association signals per locus while 335 

remaining capable of genome-wide inference. Further, SFBA employs an improved MCMC 336 

sampling strategy to greatly improve the mixing of MCMC samples, which ensures the capability of 337 

identifying a list of association candidates.  338 

By simulation studies, we demonstrated that SFBA had higher power than Fgwas and 339 

conditioned P-value for identifying multiple signals in a single locus by accounting for both functional 340 

information and LD. We also showed that SFBA accurately estimated the enrichment patterns under 341 

scenarios with or without enrichment for one annotation in simulations. In the real analysis using the 342 

AMD GWAS data and three different types of annotations, by SFBA, we obtained posterior 343 

association probabilities and effect-size variances for variants of considered annotation categories, 344 

as well as an improved list of fine-mapped association signals. In addition, we replicated the 345 

findings of 32 out of 34 known AMD risk loci, as well as identified 5 potentially novel loci by SFBA. 346 

Further, we gave two fine-mapped AMD loci C2/CFB/SKIV2L and C3 by SFBA as examples with 347 

justifications by haplotype analysis, model comparison, and previous findings. Thus, we believe our 348 

method is useful for understanding the underlying genetic architecture of complex traits and 349 

diseases, for efficiently integrating functional information into GWASs.  350 

Our flexible framework allows for many further extensions. For example, it can be extended 351 

to deal with overlapping or quantitative annotations (Supplementary Information). These extensions 352 

will allow us to investigate the importance of a broader class of annotations (e.g. Combined 353 

Annotation Dependent Depletion (CADD) scores, MAF, and eQTL evidence). Importantly, as the 354 
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development of new genomic assays and computational tools enables new variant annotations, 355 

simultaneous modeling of available annotations will be critical to identify the set of annotations that 356 

are important for a specific trait. Then extending SFBA to select relevant annotations would be 357 

useful. 358 

SFBA makes a key assumption that the variant correlation matrix has a block-wise structure, 359 

which allows us to segment the genome into approximately independent blocks, analyze variants 360 

per block by MCMC, and summarize genome-wide information by an EM algorithm. In parallel to our 361 

study, many recent studies have also explored the benefits of dividing the human genome into 362 

approximately independent LD blocks to facilitate genome-wide analyses26,52. Although the standard 363 

segmentation methods (e.g., based on genomic location52 as we adopted here, or the number of 364 

variants per block26) are often sufficient in practice, we expect that a better segmentation method30 365 

based on LD blocks will likely further increase the association mapping power. 366 

 The biggest limitation of SFBA is probably computational cost, as we perform MCMC using 367 

the complete genotype data. Specifically, SFBA took 5,000 CPU hours (~5 hours with parallel 368 

computations on 1,000 CPUs for the 1,063 genome-blocks) to analyze the AMD GWAS data with 369 

33,976 individuals and 9,857,286 variants. Implementing SFBA with summary statistics is expected 370 

to reduce the computation cost significantly, which is part of our continuing project. In addition, the 371 

variational approximation53,54 and other approximations55,56 of MCMC may provide an efficient 372 

alternative for posterior inference in large GWAS.   373 
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ONLINE METHODS 374 

Bayesian variable selection regression model  375 

Our method is based on the standard Bayesian variable selection regression (BVSR) model 376 ࢟࢔×૚ = ૚×࢖ࢼ࢖×࢔ࢄ + ,௜ܰ൫0ߨ	~	௜ߚ					,	૚×࢔ࣕ ߬ିଵߪ௜ଶ൯ + (1 − ,(௜ߚ)଴ߜ(௜ߨ ߳௜	~	N(0, ߬ିଵ),				 
where	݊ denotes the number of individuals and ݌ denotes the number of genetic variants; ࢟࢔×૚ is 377 

the phenotype vector; ࢖×࢔ࢄ is the genotype matrix; ࢖ࢼ×૚ is a vector of genetic effect-sizes where 378 

each element ߚ௜ follows a spike-and-slab prior (known as the point-normal distribution) ---- that is, ߚ௜ 379 

follows a normal distribution ܰ൫0, ߬ିଵߪ௜ଶ൯ with probability ߨ௜, or ߚ௜ is set as 0 with probability	(1 −  ௜) 380ߨ

and a point mass density function ߜ଴(ߚ௜) at 0 (ߜ଴(ߚ௜) = 1 if ߚ௜ = (௜ߚ)଴ߜ ,0 = 0 otherwise)32,33; and ߳௜ 381 

is the residual error that independently and identically follows a normal distribution N(0, ߬ିଵ). We 382 

assume that both the phenotype vector ࢟࢔×૚  and columns of the genotype matrix ࢖×࢔ࢄ  are 383 

centered, thus dropping the intercept. Although this model is developed for quantitative traits, we 384 

can treat binary phenotypes (e.g., cases and controls) as quantitative following previous 385 

approaches33,35. 386 

Bayesian hierarchical model accounting for functional information 387 

For integrating functional information into the above BVSR model, we classify all variants 388 

into disjoint categories by assuming one annotation per variant. We further assume that variants in 389 

the same functional category have the same spike-and-slab prior for the effect-sizes, i.e., ߨ௜ ,௤ߨ 390= ௜ଶߪ =  ௤ denotes the category specific causal probability 391ߨ ,th category. Consequentlyݍ ௤ଶ for theߪ

and ߪ௤ଶ  denotes the category specific effect-size variance (the square root of ߪ௤ଶ  reflects the 392 

magnitude of effect size). Although we focus on discrete non-overlapping annotations in this paper, 393 

our method can be extended to overlapping and continuous annotations (Supplementary 394 

Information).  395 

We assume a Bayesian hierarchical framework34 of BVSR with the following independent 396 

hyper priors:  397 
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,൫ܽ௤ܽݐ݁ܤ	~		௤ߨ		 ܾ௤൯, ,ଵ݇)ܩܫ	~	௤ଶߪ ݇ଶ), ௤ߨ ⊥  ,௤ଶߪ
where ߨ௤  follows a Beta distribution with positive shape parameters ܽ௤  and ܾ௤ ௤ଶߪ ,  follows an 398 

Inverse-Gamma distribution with shape parameter ݇ଵ and scale parameter ݇ଶ. In order to adjust for 399 

the unbalanced distribution of functional annotations among all variants and enforce a sparse model 400 

in our analysis, we choose values for ܽ௤ and ܾ௤ such that the Beta distribution has mean 
௔೜௔೜ା௕೜ =401 

10ି଺  with (ܽ௤ + ܾ௤)  equal to the number of variants in category ݍ . We set ݇ଵ = ݇ଶ = 0.1  in our 402 

analysis to induce non-informative prior for ߪ௤ଶ. Note that ߬ is fixed at the phenotype variance value 403 

in our Bayesian inferences (Supplementary Information). 404 

Bayesian references 405 

We introduce a latent indicator vector ࢖ࢽ×૚  to facilitate computation, where each binary 406 

element ߛ௜ indicates whether ߚ௜ = 0 by ߛ௜ = 0, or ߚ௜	~	ܰ(0, ߬ିଵߪ௜ଶ) by ߛ௜ = 1. Equivalently, 407 

,(௜ߨ)௜~Bernoulliߛ ,૙ࢾ	~	ࢽିࢼ ,൫૙|ࢽ|ࡺࢂࡹ~ࢽࢼ ߬ିଵࢽࢂ൯, 
where |ࢽ| denotes the number of 1’s in ࢽିࢼ ;ࢽ  denotes the sub-vector of ࢖ࢼ×૚  corresponding to 408 

variants with ߛ௜ = ௝ߛ)	૚ corresponding to variants with×࢖ࢼ denotes the sub-vector of ࢽࢼ ;0 = 1; ݆ =409 1,… ,  diagonal element is 410	ℎݐ݅ whose ࢖×࢖ࢂ denotes the sub-matrix of the diagonal matrix ࢽࢂ and ;(|ࢽ|

௜ܸ௜ = 	 ௜ߛ ௜ଶ. Consequently, the expectation ofߪ  is an estimate of the posterior inclusion probability 411 

(PP) for the ݅th variant, ܧ[ߛ௜] = ௜ߛ)ܾ݋ݎܲ = 1) = ܲ ௜ܲ. 412 

For the described Bayesian hierarchical model above, the posterior joint distribution is 413 

proportional to  414 

ܲ൫ࢼ, ,ࢽ ࣊, ࣌૛, ߬	ห	࢟, ,ࢄ (࡭ ∝ ,ࢄ|࢟)ܲ ,ࢼ ,ࢽ ߬)ܲ൫ࢼ, ห࡭, ࣊, ࣌૛, ,ࢽ ߬൯ܲ(ࢽ|࣊)ܲ(࣊)ܲ(࣌૛)ܲ(߬), 
where ࣊ = ൫ߨଵ, … , ொ൯், ࣌૛ߨ = ൫ߪଵଶ, … , ݌ is the ࡭ ,ொଶ൯்ߪ × ܳ matrix of binary annotations, and ܳ is the 415 

total number of annotations. The goal is to estimate the category specific parameters (࣊, ࣌૛) and 416 

the variant specific parameters (ࢼ,  from their posterior distributions, conditioning on the data 417 ([ࢽ]ܧ
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(࢟, ,ࢄ (࡭ . Here, the category specific parameters denote the shared characteristics among all 418 

variants with the same annotation, which are also called enrichment parameters.  419 

EM-MCMC algorithm  420 

The basic idea of the EM-MCMC algorithm is to segment the whole genome into 421 

approximately independent blocks each with 5,000 ~ 10,000 variants; run MCMC algorithm per 422 

block with fixed category specific parameter values (࣊, ࣌૛) to obtain posterior estimates of (ࢼ,  423 ([ࢽ]ܧ

(E-step); then summarize the genome-wide posterior estimates of (ࢼ, ,࣊) and update values of 424 ([ࢽ]ܧ ࣌૛) by maximizing their posterior likelihoods (M-step). Repeat such EM-MCMC iterations for a 425 

few times until the estimates of (࣊, ࣌૛)  (maximum a posteriori estimates, i.e., MAPs) converge 426 

(Supplementary Figure 1).  427 

We derive the log-posterior-likelihood functions for (࣊, ࣌૛) and the analytical formulas for 428 

their MAPs. In addition, we construct their confidence intervals using Fisher information, whose 429 

analytical forms are derived for our Bayesian hierarchical model (Supplement Information). In our 430 

practical analyses, we find that, in general, with about 5 EM iterations, the estimates for (࣊, ࣌૛) 431 

would achieve convergence. Our method of conducting GWAS with functional information by using 432 

the above Bayesian hierarchical model and EM-MCMC algorithm is referred as “Scalable Functional 433 

Bayesian Association” (SFBA). 434 

Convergence diagnosis  435 

Here, the MCMC algorithm is essentially a random walk over all possible linear regression 436 

models with combinations of variants, which can start with either a model containing multiple 437 

significant variants by sequential conditional analysis or the most significant variant by P-value. In 438 

each MCMC iteration, a new model is proposed by including an additional variant, or deleting one 439 

variant from the current model, or switching one variant within the current model with one outside; 440 

and then up to acceptation or rejection by the Metropolis-Hastings algorithm (Supplementary 441 

Information). Importantly, we refine the standard proposal strategy for the switching step, by 442 

prioritizing variants in the neighborhood of the switch candidate according to their conditional 443 
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association evidence (e.g., P-values conditioning on variants, except the switch candidate, in the 444 

current model). As a result, this MCMC algorithm encourages our method to explore different 445 

combinations of potentially causal variants in each locus, and significantly improves the mixing 446 

property.  447 

We used the potential scale reduction factor (PSRF)57 to quantitatively diagnose MCMC 448 

mixing property. PSRF is essentially a ratio between the average within-chain variance of the 449 

posterior samples and the overall-chain variance with multiple MCMC chains. From the example 450 

plots of the PSRFs of Bayesian PPs (Supplementary Figure 2), for 58 top marginally significant 451 

SNPs (with P-values <5 × 10ି଼) in the WTCCC GWAS data of Crohn's disease1, we can see that 452 

about half of the PSRF values by the standard MCMC algorithm (used in GEMMA35) exceed 1.2, 453 

suggesting the standard MCMC algorithm has poor mixing property. In contrast, the PSRF values 454 

by our MCMC algorithm are within the range of (0.9, 1.2), suggesting that our MCMC algorithm has 455 

greatly improved mixing property.  456 

Computational technics  457 

We employ two computational technics to save memory in the SFBA software. One is to 458 

save all genotype data as unsigned characters in memory, because unsigned characters are 459 

equivalent to unsigned integers in [0, 256] that can be easily converted to genotype values within 460 

the range of (0.0, 2.0) by multiplying with 0.01. This technic saves up to 90% memory comparing 461 

with saving genotypes in double type. Second, with an option of in-memory compression, SFBA will 462 

further save additional 70% memory. As a result, we can decrease the memory usage from ~120 463 

GB (usage by GEMMA35) to ~3.6GB, for a typical GWAS dataset with ~33K individuals and ~500K 464 

variants.    465 

The SFBA software wraps a C++ executable file for the E-step (MCMC algorithm) and an R 466 

script for the M-step together by a Makefile, which is generated by a Perl script and enables parallel 467 

computation through submitting jobs. Generally, 50K MCMC iterations with ~5K variants and ~33K 468 

individuals take about 300MB memory and 1hr CPU time on a 1.6GHz core, where the computation 469 
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cost is of order ܱ(݊݉ଶ) with the sample size (݊) and number of variants (݉) considered in the linear 470 

models during MCMC iterations (usually ݉ < 10 ). The computation cost for M-step is almost 471 

negligible because of analytical formulas for the MAPs.     472 

Fgwas 473 

In this paper, the Fgwas results were generated by using summary statistics from single 474 

variant likelihood-ratio tests and the same annotation information used by SFBA. Fgwas26 produces 475 

variant-specific posterior association probabilities (PPs), segment-specific PPs, and enrichment 476 

estimates for all annotations. To avoid the issue of failing convergence, we used segment size of 477 

2,000 variants for Fgwas in both simulations and real data analyses. As a result, the final Fgwas PP 478 

is given by the product of the variant-specific PP and the corresponding segment–specific PP, and 479 

the Fgwas regional-PP is given by the highest segment-specific PP in a region or genome block.  480 

Simulation data  481 

We used genotype data on Chromosome 20-22 from the AMD GWAS (33,976 individuals 482 

and 241,500 variants with MAF>0.1) to simulate quantitative phenotypes from the standard linear 483 

regression model ݕ௜ = ௜்ࢄ ࢼ + ߳௜, ݅ = 1,… , 33976 , where ࢄ௜  is the genotype vector of the ݅ݐℎ 484 

individual and ߳௜ is the noise term generated from ܰ(0,  ఢଶ). We segmented the genotype data into 485ߪ

50x2.5Mb blocks each with ~5,000 variants. Within each block, we marked a ~25Kb continuous 486 

region (starting 37.5Kb from the beginning of a block) as the causal locus and randomly selected 487 

two causal SNPs per locus. Two complementary annotations (“coding” vs. “noncoding”) were 488 

simulated, where the coding variants account for ~1% overall variants but ~10% variants within the 489 

causal loci (matching the pattern in the real AMD analysis). We selected positive effect-size vector 490 ࢼ and noise variance ߪఢଶ such that a total of 15% phenotypic variance was equally explained by 491 

causal SNPs. We controlled the enrichment-fold of coding variants by varying the number of coding 492 

variants among these 100 causal SNPs.  493 

We compared SFBA with P-value, conditioned P-value, and Fgwas. In the simulation 494 

studies, P-values were obtained from a series of likelihood-ratio tests based on the standard linear 495 

regression model. P-values conditioning on the top significant variant per locus were used to identify 496 
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the second signal by conditional analysis. Fgwas was implemented with summary statistics from 497 

single variant tests and the segment size of 2,000 variants (selected to avoid convergence issues). 498 

We failed to include PAINTOR in the comparison, because PAINTOR cannot complete the analysis 499 

for one block in >1,000 CPU hours (on a 2.5GHz, 64-bit CPU) and is thus expected to require >1 500 

million CPU hours for a genome-wide analysis.  501 

GWAS data of AMD  502 

In the GWAS data of AMD, the advanced AMD cases – including wet cases with choroidal 503 

neovascularization (CNV, when accompanied by angiogenesis) and dry cases with geographic 504 

atrophy (GA, when angiogenesis is absent) – and control subjects were gathered across 26 studies, 505 

with DNA samples collected and genotyped centrally39. All genotypes were generated by a 506 

customized chip that contains (i) the usual genome-wide variant content, (ii) exome content 507 

comparable to the Exome chip (protein-altering variants across all exons), (iii) variants in known 508 

AMD risk loci (protein-altering variants and previously associated variants), and (iv) previously 509 

observed and predicted variation in TIMP3 and ABCA4 (two genes implicated in monogenic retinal 510 

dystrophies). The genotyped variants (439,350) were then imputed to the 1000 Genomes reference 511 

panel (Phase I)40, resulting a total of 12,023,830 variants.   512 

SFBA used dosage genotype data and standardized phenotypes. Phenotypes were first 513 

coded quantitatively with 1’s for cases and 0’s for controls; second corrected for the first and second 514 

principle components, age, gender, and source of DNA samples; and then standardized to have 515 

mean 0 and standard deviation 1. In order to make the Bayesian inferences scalable to the AMD 516 

GWAS data (33,976 individuals, 9,866,744 variants with MAF >0.5%), we segmented the whole 517 

genome into 1,063 non-overlapped blocks, such that each block has length ~2.5Mb (containing 518 

~10,000 variants) and all previously identified loci along with variants in LD (R2 >0.1) were not split. 519 

Then we applied the EM-MCMC algorithm with 5 EM steps and 50,000 MCMC iterations (including 520 

50,000 extra burn-ins).  521 

For comparison, P-values were obtained by a series of likelihood-ratio tests, using the same 522 

“quantitative” phenotype vector as used by SFBA; Fgwas was implemented with the summary 523 

statistics from single variant tests and the segment size of 2,000 variants (resulting 4,934 524 
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segments); and a standard Bayesian variable selection regression (BVSR) method that models no 525 

functional information was also applied. 526 

Three types of genomic annotations were considered for analyzing the AMD data: gene-527 

based functional annotations of SNPs and small indels from SeattleSeq 528 

(http://snp.gs.washington.edu/SeattleSeqAnnotation138/index.jsp), summarized regulatory 529 

annotations41, and the chromatin states profiled respectively in nine human cell types from 530 

chromHMM19,42,43. For variants annotated with multiple functions, we used the most severe function 531 

in the analysis: non-synonymous > coding-synonymous > other-genomic > intronic > intergenic for 532 

the gene-based annotations; coding > UTR > promoter > DHS > intronic > intergenic > “others” for 533 

the summarized regulatory annotations; active promoter > poised promoter > strong enhancer > 534 

weak enhancer > insulator > transcription elongation > CNV for the chromatin states. 535 

Software 536 

Our software SFBA is freely available on Github (https://github.com/yjingj/SFBA). 537 
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(a) (b) 

Figure 1: (a) Average ROC curves of Bayesian PP by SFBA, Fgwas PP, and P-value, and (b) boxplot of the ranks 544 
of the true causal SNP1 (with smaller P-value) and SNP2 by SFBA, Fgwas, P-value, and conditional analysis (CA), 545 
with 100 simulation replicates and the complete sample size 33,976. 546 

  547 
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 548 

(a) P-value (b) BVSR 

 
(c) Fgwas (d) SFBA 

Figure 2: ZoomLocus plots with P-values by single variant tests (a), Bayesian PPs by BVSR (b), Fgwas PPs (c), 549 
and Bayesian PPs by SFBA (d); the top cyan squares in panels (a, b, c) denote the intronic variant rs116503776; 550 
the purple triangle in (d) denotes the non-synonymous variant rs4151667; shapes denote different annotations 551 
(triangle point up Δ for non-syn, circle ο for coding-syn, square � for intronic, diamond ◊ for intergenic, and 552 
triangle point down ∇ for other-genomic). 553 
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(a) (b) 

(c) (d) 

       (e)         (f) 

Figure 3: Category specific (enrichment) parameter estimates with 95% error bars by SFBA, panels (a, c, e) for 555 
causal probabilities and panels (b, d, f) for effect-size variances, with 3 sets of annotations. The estimates that are 556 
the same as their priors are not ploted: estimates of UTR in (c, d), estimates of the active/poised promoter in (e, f). 557 
Note that the estimate of the effect-size variance for the “Others” category in (d) is also close to the prior because 558 
of low region-association evidence, hence it has a wide 95% error bar.   559 
 560 
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Supplementary Table 1: Classification of gene-based functional annotations. 

Native gene-based functional annotations 
Annotation categories 

considered in the analysis 

frameshift, frameshift-near-splice 

Non-synonymous 

splice-acceptor, splice-donor, 

stop-gained, stop-gained-near-splice, stop-lost 

missense, missense-near-splice 

synonymous-near-splice, non-coding-exon-near-splice, 

coding-near-splice, coding-unknown-near-splice, intron-near-splice 

coding, coding-unknown, synonymous, nc-transcript-variant Coding-synonymous 

intronic Intronic 

intergenic, NAs Intergenic 

3-prime-UTR, 5-prime-UTR, 
Other-genomic 

downstream-gene, upstream-gene, non-coding-exon 
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Supplementary Table 2: Compare results by P-value (single variant test), Fgwas, and SFBA in the known 34 AMD loci, accounting for 
gene-based functional annotations.  

Known 34 Loci  
 Top significant variant by P-value  Bayesian 

Regional-PP
Fgwas 

Regional-PP
Locus name Chr Start End dbSNPID Chr:Position MAF P-value Anno   
CFH 1 195,679,832 197,768,053 rs10922109 1:196,704,632 0.329 <9 ×10ିଷଶଵ intronic 1.000 1.000 

 
COL4A3 2 227,573,015 228,592,110 rs11884770 2:228,086,920 0.731 5.6 × 10ିଽ intronic 0.984 0.986 

ADAMTS9-AS 3 64,199,445 65,230,121 rs62247658 3:64,715,155 0.551 1.4 × 10ିଵହ intronic 0.978 1.000 

COL8A1 3 98,551,114 100,381,567 rs140647181 3:99,180,668 0.019 5.4 × 10ିଵଷ intergenic 1.000 0.999 

CFI 4 110,126,506 111,185,820 rs10033900 4:110,659,067 0.506 7.1 × 10ିଵଽ downstream 1.000 1.000 

C9 5 38,699,134 39,831,894 rs62358361 5:39,327,888 0.012 3.1 × 10ିଵ଺ intronic 1.000 1.000 

PRLR/SPEF2 5 34,769,332 36,493,378 rs114092250 5:35,494,448 0.018 2.5 × 10ିଽ intergenic 0.961 0.987 

C2/CFB/SKIV2L 6 30,505,490 33,238,589 rs116503776 6:31,930,462 0.120 2.1× 10ିଵଵସ intronic 1.000 1.000 

VEGFA 6 43,305,296 44,329,629 rs943080 6:43,826,627 0.518 2.0 × 10ିଵ଺ intergenic 1.000 1.000 

KMT2E/SRPK2 7 104,081,402 105,563,372 rs1142 7:104,756,326 0.357 1.5 × 10ିଵ଴ downstream 0.999 0.999 

PILRB/PILRA 7 99,394,940 100,611,776 rs7803454 7:99,991,548 0.199 3.6 × 10ିଵ଴ intronic 0.999 0.999 

TNFRSF10B 8 22,582,971 23,588,984 rs79037040 8:23,080,971 0.534 2.9 × 10ିଵଶ nc-transcript 1.000 0.999 

MIR6130/RORB 9 75,935,160 77,189,752 rs10781180 9:76,615,662 0.683 3.0 × 10ିଵ଴ intergenic 0.997 0.999 

TRPM3 9 72,938,605 73,946,180 rs7150714 9:73,438,605 0.584 3.2 × 10ିଽ intronic 0.929 0.999 

TGFBR1 9 101,358,102 102,431,769 rs1626340 9:101,923,372 0.199 2.3 × 10ିଵଵ intergenic 1.000 0.999 

ABCA1 9 107,139,414 108,167,147 rs2740488 9:107,661,742 0.265 1.7 × 10ିଽ intronic 0.963 0.985 

ARHGAP21 10 24,360,361 25,556,538 rs12357257 10:24,999,593 0.232 4.3 × 10ିଽ intronic 0.962 0.986 
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Known 34 Loci  
 Top significant variant by P-value  Bayesian 

Regional-PP
Fgwas 

Regional-PP

Locus name Chr Start End dbSNPID Chr:Position MAF P-value Anno   
ARMS2/HTRA1 10 123,702,126 124,735,355 rs3750846 10:124,215,565 0.316 <9 ×10ିଷଶଵ intronic 1.000 1.000 

RDH5/CD63 12 55,615,585 56,713,297 rs3138141 12:56,115,778 0.214 4.7 × 10ିଵ଴ intronic 0.034 0.999 

ACAD10 12 110,919,995 113,502,935 rs73205633 12:112,357,085 0.019 1.2 × 10ିଵ଴ intergenic 0.997 0.999 

B3GALTL 13 31,242,232 32,339,274 rs9564692 13:31,821,240 0.288 3.2 × 10ିଵଵ splice 1.000 0.999 

RAD51B 14 68,227,506 69,550,783 rs1956526 14:68,799,787 0.650 1. .0× 10ିଵଵ intronic 1.000 0.999 

LIPC 15 58,171,721 59,242,418 rs2414577 15:58,680,638 0.365 4.8 × 10ିଵ଻ nc-transcript 1.000 1.000 

CETP 16 56,485,514 57,506,829 rs5817082 16:56,997,349 0.248 1.7 × 10ିଶଵ intronic 1.000 1.000 

CTRB2/CTRB1 16 74,732,528 76,017,115 rs72802342 16:75,234,872 0.073 2.8 × 10ିଵଷ downstream 1.000 1.000 

TMEM97/VTN 17 26,092,946 27,240,139 rs11080055 17:26,649,724 0.524 1.5 × 10ିଽ intronic 0.996 0.998 

NPLOC4/TSPAN10 17 79,015,509 80,186,552 rs6565597 17:79,526,821 0.390 1.0 × 10ିଵଶ intronic 1.000 0.999 

C3 19 5,311,717 7,224,340 rs2230199 19:6,718,387 0.764 1.7 × 10ି଻଻ missense 1.000 1.000 

CNN2 19 523,867 1,533,360 rs10422209 19:1,026,318 0.132 5.5 × 10ିଽ upstream 0.970 0.993 

APOE 19 44,892,254 46,313,830 rs429358 19:45,411,941 0.118 3.3 × 10ିସ଺ missense 1.000 1.000 

MMP9 20 44,114,991 45,160,699 rs142450006 20:44,614,991 0.132 1.4 × 10ିଵଵ intergenic 1.000 0.999 

C20orf85 20 56,084,276 57,174,034 rs117739907 20:56,652,781 0.062 7.8 × 10ିଵ଼ intergenic 1.000 1.000 

SYN3/TIMP3 22 32,546,536 33,613,375 rs5754227 22:33,105,817 0.123 2.0 × 10ିଶ଻ intronic 1.000 1.000 

SLC16A8 22 37,795,271 39,003,972 rs8135665 22:38,476,276 0.205 2.9 × 10ିଵଶ intronic 1.000 0.999 
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Supplementary Table 3: AMD risk variants by SFBA in the known 34 loci, accounting for gene-based functional annotations. Variants with 

Bayesian PPs >0.5 or the highest Bayesian PPs in the loci are listed. Shown are reside/nearby genes, dbSNPIDs, positions, functional annotations, 

MAFs (unfolded, corresponding to the direction of effect-sizes), P-values, and Bayesian PPs/effect-sizes.  

Signal  
number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF Bayesian 

PP 
Effect-
size P-value 

1.1 CFH rs800292 1:196,642,233 missense 0.183 0.997 -0.312 2.4 × 10ିଷଵଽ 
1.2 CFH rs10922094 1:196,661,505 intronic 0.530 1.000 -0.214 < 9.0 × 10ିଷଶଵ
1.3 CFHR1 rs605082 1:196,801,917 downstream 0.353 0.518 -0.092 7.5 × 10ିଶହ଻ 
1.4 CFHR4 rs58175074 1:196,820,080 intronic 0.158 0.792 -0.314 < 9.0 × 10ିଷଶଵ
1.5 CFHR4 rs149032610 1:196,857,150 5’-UTR 0.015 1.000  0.195 6.6 × 10ିଷ଼ 
1.6 CFHR4 rs10494745 1:196,887,457 missense 0.134 0.526  0.092 7.4 × 10ିଵଷ଻ 
1.7 CFHR2 rs138579109 1:196,923,955 intronic 0.043 0.893  0.167 8.4 × 10ି଼ହ 
1.8 CFHR5 rs35662416 1:196,967,354 missense 0.022 0.889 -0.122 5.8 × 10ି଺ 
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.269  0.052 5.6 × 10ିଽ 
3 ADAMTS9-AS2 rs7428936 3:64,710,850 intronic 0.448 0.167 -0.061 1.5 × 10ିଵହ 
4 COL8A1 rs140647181 3:99,180,668 intergenic 0.019 0.687  0.224 54 × 10ିଵଷ 
5 CFI rs10033900 4:110,659,067 downstream 0.506 0.999 -0.067 7.2 × 10ିଵଽ 
6 C9 rs34882957 5:39,331,894 missense 0.012 0.998  0.278 4.0 × 10ିଵ଺ 
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.403 -0.174 2.5 × 10ିଽ 
8.1 C2/CFB rs4151667 6:31,914,024 missense 0.036 0.917 -0.279 1.4 × 10ିସସ 
8.2 SKIV2L/NELFE rs115270436 6:31,928,306 missense 0.071 0.633 -0.321 2.8 × 10ିଽଽ 
8.3 HLA-DQB1 rs3891176 6:32,634,318 missense 0.159 0.726  0.153 1.2 × 10ିଵଵ 
9 VEGFA rs943080 6:43,826,627 intergenic 0.518 0.435  0.063 2.0 × 10ିଵ଺ 
10 KMT2E/SRPK2 rs1142 7:104,756,326 downstream 0.357 0.125 0.052 1.5 × 10ିଵ଴ 
11 PILRB rs35986051 7:99,956,439 missense 0.139 0.193  0.075 4.0 × 10ିଵ଴ 
12 TNFRSF10A rs79037040 8:23,082,971 nc-transcript 0.534 0.996  0.053 2.9 × 10ିଵଶ 
13 MIR6130/RORB rs10781182 9:76,617,720 intergenic 0.684 0.070 -0.052 3.0 × 10ିଵ଴ 
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.822 -0.046 3.2 × 10ିଽ 
15 TGFBR1 rs10819635 9:101,864,510 upstream 0.186 0.137 -0.066 2.4 × 10ିଵଵ 
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.756 -0.053 1.7 × 10ିଽ 
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.318  0.053 4.3 × 10ିଽ 
18 ARMS2 rs10490924 10:124,214,448 missense 0.316 0.996  0.474 < 9.0 × 10ିଷଶଵ
19 RDH5/CD63 rs3138142 12:56,115,585 coding-syn 0.213 0.706  0.074 6.1 × 10ିଵ଴ 
20 MAPKAPK5 rs61941287 12:112,330,305 intronic 0.019 0.309 0.191 1.2 × 10ିଵ଴ 
21 B3GLCT rs9564692 13:31,821,240 splice 0.288 0.942 -0.056 3.2 × 10ିଵଵ 
22 RAD51B rs2842339 14:68,986,999 intronic 0.899 0.243 -0.082 3.1 × 10ି଻ 
23 ALDH1A2 rs2414577 15:58,680,638 intronic 0.366 0.501 -0.067 4.8 × 10ିଵ଻ 
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Signal  
number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF Bayesian 

PP 
Effect-
size P-value 

24 CETP rs1532625 16:57,005,301 splice 0.448 0.358  0.044 7.9 × 10ିଵଽ 
25 CTRB2 rs72802342 16:75,234,872 downstream 0.360 0.297 -0.114 2.8 × 10ିଵଷ 
26 CTB-96E2.2/VTN rs704 17:26,694,861 missense 0.483 0.325  0.042 3.3 × 10ି଼ 
27 NPLOC4/TSPAN10 rs6420484 17:79,612,397 missense 0.622 0.402 -0.055 4.0 × 10ିଵଶ 
28.1 FUT6/NRTN rs17855739 19:5,831,840 missense 0.044 0.681 -0.159 1.5 × 10ିଵ଺ 
28.2 C3/CTD-3128G10.7 rs147859257 19:6,718,146 missense 0.008 1.000  0.501 4.3 × 10ିଷଵ 
28.3 C3/CTD-3128G10.7 rs2230199 19:6,718,387 missense 0.764 1.000 -0.172 1.7 × 10ି଻଻ 
29.1 ABCA7 rs3752237 19:1,047,161 coding-syn 0.644 0.544 -0.065 6.7 × 10ିଷ 
29.2 ABCA7 rs12151021 19:1,050,874 intronic 0.708 1.000  0.091 1.9 × 10ିହ 
30 APOE/TOMM40/ 

CTB-129P6.7 rs429358 19:45,411,941 missense 0.118 1.000 -0.173 3.3 × 10ିସ଺ 
31 MMP9/RP11-465L10.10 rs2274755 20:44,639,692 splice 0.138 0.435 -0.073 5.4 × 10ିଵଵ 
32 C20orf85 rs201459901 20:56,653,724 intergenic 0.063 0.078 -0.135 7.9 × 10ିଵ଼ 
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.764 -0.128 2.0 × 10ିଶ଻ 
34.1 SLC16A8/BAIAP2L2 rs4289289 22:38,477,342 missense 0.485 0.824  0.056 1.1 × 10ି଴ଽ 
34.2 SLC16A8/BAIAP2L2 rs77968014 22:38,478,666 splice 0.009 0.973  0.212 3.1 × 10ି଺ 
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Supplementary Table 4: AMD risk variants by Fgwas in the known 34 loci, accounting for gene-based functional annotations. Variants with 

Fgwas PPs >0.5 or the highest Fgwas PPs in the loci are listed in this table. Shown are reside/nearby genes, dbSNPIDs, positions, functional 

annotations, MAFs (unfolded), Fgwas PPs, and P-values.  

Signal number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF Fgwas PP P-value 
1.1 CFH rs77498516 1:196,115,300 intergenic 0.048 0.522 8.2 × 10ିଶ଻ 
1.2 CFH rs10922109 1:196,704,632 intronic 0.329 0.802 < 9.0× 10ିଷଶଵ 
1.3 RP4-608O15.3 rs521631 1:196,813,352 intronic 0.506 0.999 < 9.0× 10ିଷଶଵ 
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.181 5.7 × 10ିଽ 
3 ADAMTS9-AS2 rs62247658 3:64,715,155 intronic 0.551 0.167 1.5 × 10ିଵହ 
4 COL8A1 rs140647181 3:99,180,668 intergenic 0.019 0.999 5.4 × 10ିଵଷ 
5 CFI rs10033900 4:110,659,067 downstream 0.506 0.996 7.2 × 10ିଵଽ 
6.1 C9 rs34882957 5:39,331,894 missense 0.012 0.900 4.0 × 10ିଵ଺ 
6.2 FYB rs62358735 5:39,199,134 intronic 0.009 0.999 5.1 × 10ିଵଷ 
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.626 2.5 × 10ିଽ 
8.1 HCG20/LINC00243 rs114126524 6:30,763,893 downstream 0.171 0.696 6.5 × 10ିଵଶ 
8.2 HCG22 rs140895602 6:31,024,244 nc-transcript 0.021 0.925 1.2 × 10ିଵଶ 
8.3 HLA-B rs709055 6:31,324,151 missense 0.440 0.999 1.9 × 10ିଵ଺ 
8.4 HCP5 rs116319118 6:31,440,641 nc-transcript 0.017 0.522 5.3 × 10ିଵସ 
8.5 HSPA1L/HSPA1A rs62395827 6:31,786,730 upstream 0.073 0.999 1.6 × 10ିସ଺ 
8.6 NELFE/SKIV2L rs116503776 6:31,930,462 intronic 0.120 0.912 2.1 × 10ିଵଵସ
8.7 MTCO3P1 rs114264172 6:32,672,214 downstream 0.051 0.997 2.1 × 10ିଵସ 
8.8 BRD2 rs200978040 6:32,945,701 missense 0.036 0.638 7.9 × 10ି଼ 
8.9 COL11A2 rs114393147 6:33,125,742 downstream 0.041 0.887 2.1 × 10ିଵ଴ 
9 VEGFA rs943080 6:43,826,627 intergenic 0.518 0.437 2.0 × 10ିଵ଺ 
10 KMT2E/SRPK2 rs1142 7:104,756,326 downstream 0.357 0.182 1.5 × 10ିଵ଴ 
11 ZKSCAN1 rs72615157 7:99,635,967 3’-UTR 0.178 0.486 4.7 × 10ି଼ 
12 TNFRSF10A rs79037040 8:23,082,971 nc-transcript 0.534 0.996 2.9 × 10ିଵଶ 
13 MIR6130/RORB rs10781180 9:76,615,662 intergenic 0.683 0.068 3.0 × 10ିଵ଴ 
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.860 3.2 × 10ିଽ 
15 TGFBR1 rs10819635 9:101,864,510 upstream 0.186 0.188 2.4 × 10ିଵଵ 
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.760 1.7 × 10ିଽ 
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.280 4.3 × 10ିଽ 
18 ARMS2/HTRA1 rs3793917 10:124,219,275 upstream 0.316 1.000 < 9.0× 10ିଷଶଵ 
19 RDH5/CD63 rs3138142 12:56,115,585 coding-syn 0.213 0.847 6.1 × 10ିଵ଴ 
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20 MAPKAPK5 rs61941287 12:112,330,305 intronic 0.019 0.503 1.2 × 10ିଵ଴ 
21 B3GALTL rs9564692 13:31,821,240 splice 0.288 0.889 3.2 × 10ିଵଵ 
22 RAD51B rs1956526 14:68,799,787 intronic 0.650 0.039 1.0 × 10ିଵଵ 
23 ALDH1A2 rs2414577 15:58,680,638 intronic 0.366 0.495 4.8 × 10ିଵ଻ 
24 CETP rs5817082 16:56,997,349 intronic 0.248 0.193 1.7 × 10ିଶଵ 
25 BCAR1 rs72802395 16:75,286,484 intronic 0.068 0.605 2.1 × 10ିଵଵ 
26 POLDIP2/TNFAIP1 rs13469 17:26,676,135 coding-syn 0.523 0.168 5.1 × 10ିଽ 
27 NPLOC4/TSPAN10 rs6420484 17:79,612,397 missense 0.622 0.351 4.0 × 10ିଵଶ 
28.1 FUT6 rs17855739 19:5,831,840 missense 0.044 0.568 1.5 × 10ିଵ଺ 
28.2 C3 rs2230199 19:6,718,387 missense 0.764 0.999 1.7 × 10ି଻଻ 
29 CNN2 rs10422209 19:1,026,318 upstream 0.132 0.229 5.2 × 10ିଽ 
30 APOE/TOMM40 rs429358 19:45,411,941 missense 0.118 1.000 3.3 × 10ିସ଺ 
31 MMP9 rs2274755 20:44,639,692 splice 0.138 0.194 5.4 × 10ିଵଵ 
32 C20orf85 rs117739907 20:56,652,781 intergenic 0.063 0.079 7.8 × 10ିଵ଼ 
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.781 2.0 × 10ିଶ଻ 
34 SLC16A8/PICK1 rs8135665 22:38,476,276 intronic 0.205 0.596 2.9 × 10ିଵଶ 
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Supplementary Table 5: Novel AMD loci (with Bayesian regional-PP >0.95) identified by SFBA, accounting for gene-based functional 
annotations. Variants with the highest Bayesian single variant PP in the novel loci are listed in this table. Shown are reside genes, dbSNPIDs, 

positions, functional annotations, MAFs, P-values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes.  

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP Bayesian PP Effect-size
1 PPIL3 rs7562391 2:201,736,166 missense 0.127 4.8 × 10ି଻ 0.989 0.666 -0.061 
2 ZNRD1-AS1 rs114318558 6:29,966,787 downstream 0.175 2.3 × 10ି଻ 0.993 0.135  0.058 
3 CPN1 rs61751507 10:101,829,514 missense 0.043 6.7 × 10ି଼ 0.994 0.598 -0.106 
4 ABHD2 rs6496562 15:89,736,558 splice 0.417 8.4 × 10ି଼ 0.974 0.517  0.042 
5 LBP rs2232613 20:36,997,655 missense 0.073 4.3 × 10ି଻ 0.955 0.881 -0.079 

 
 
Supplementary Table 6: Novel AMD loci (with Fgwas regional-PP >0.95) identified by Fgwas (Supplementary Table 4), accounting for gene-
based functional annotations. Variants with the highest Fgwas single variant PP in the novel loci are listed in this table. Shown are reside genes, 

dbSNPIDs, positions, functional annotations, MAFs, P-values, Fgwas regional-PPs, Fgwas PPs, and Bayesian effect-sizes.  

Locus Reside gene dbSNPID Chr:Position   Anno MAF      P-value Regional-PP Fgwas PP Effect-size
1 PPIL3 rs7562391 2:201,736,166 missense 0.127 4.8 × 10ି଻ 0.981 0.322 -0.061 
2 SERPINE2 rs114750941 2:224,875,718 intronic 0.025 3.2 × 10ିହ 0.960 0.001 0.125 
3 Intergenic rs4674883 2:225,184,903 intergenic 0.573 1.2 × 10ି଻ 0.960 0.141 0.043 
4 ABI3BP rs182405490 3:100,545,967 nc-transcript 0.007 3.3 × 10ିହ 0.999 0.001 0.247 
5 RPL34-AS1 rs185276593 4:109,513,080 nc-transcript 0.116 1.6 × 10ିସ 0.989 0.001 -0.056 
6 ZNRD1-AS1 rs116112857 6:29,951,011 downstream 0.027 1.2 × 10ି଼ 0.999 0.753 -0.141 
7 PACSIN1 rs41312309 6:34,498,328 missense 0.085 2.4 × 10ିହ 0.997 0.017 -0.057 
8 CPN1 rs61733667 10:101,802,262 coding-syn 0.036 1.0 × 10ି଻ 0.996 0.253 -0.118 
9 Intergenic rs7922823 10:125,058,372 intergenic 0.991 9.4 × 10ି଺ 0.969 0.001 -0.210 
10 ABHD2 rs6496562 15:89,736,558 splice 0.417 8.4 × 10ି଼ 0.978 0.252 0.042 
11 SEMA4B rs908044 15:90,768,959 missense 0.417 1.0 × 10ିସ 0.978 0.001 0.032 
12 LBP rs2232613 20:36,997,655 missense 0.073 4.3 × 10ି଻ 0.959 0.647 -0.079 
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Supplementary Table 7: AMD risk variants by SFBA in the known 34 loci, accounting for summarized regulatory annotations. Variants with 

Bayesian PPs >0.5 or the highest Bayesian PPs in the loci are listed (horizontal lines separate loci). Shown are reside/nearby genes, dbSNPIDs, 

positions, functional annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), Bayesian PPs/effect-sizes, and P-values.  

Signal  
number Reside/nearby gene dbSNPID Chr:Position Anno MAF Bayesian 

PP 
Effect-
size P-value 

1.1 KCNT2 rs144520124 1:196,371,908 DHS 0.005 1.000 -0.383 1.9 × 10ିଶଷ 
1.2 CFH rs74979069 1:196,588,463 intergenic 0.049 1.000 0.181 8.1 × 10ିଽଶ 
1.3 CFH rs1089033 1:196,666,793 intronic 0.412 1.000 -0.117 < 9.0× 10ିଷଶଵ 
1.4 CFH rs2133143 1:196,718,099 intergenic 0.165 0.736 -0.358 5.7 × 10ିଶସ଺
1.5 CFH esv2672010 1:196,733,401 others 0.157 1.000 -0.283 3.3 × 10ିଷଵସ
1.6 CFHR3 rs188826801 1:196,762,123 intronic 0.014 0.993  0.176 1.2 × 10ିଷଽ 
1.7 CFH rs79251424 1:196,782,416 intergenic 0.030 0.998 0.144 2.1 × 10ି଺ 
1.8 RP4-608O15.3 rs146093852 1:196,811,860 intergenic 0.277 0.994 -0.143 5.7 × 10ିଶହସ
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.213  0.050 5.6 × 10ିଽ 
3 ADAMTS9-AS2 rs11914351 3:64,723,441 intronic 0.240 0.950 -0.064 8.7 × 10ି଻ 
4 COL8A1 rs140647181 3:99,180,668 intergenic 0.019 0.575  0.221 5.4 × 10ିଵଷ 
5 CFI rs10033900 4:110,659,067 intergenic 0.506 0.994 -0.067 7.2 × 10ିଵଽ 
6 C9 rs34882957 5:39,331,894 coding 0.012 0.982  0.278 4.0 × 10ିଽ 
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.346 -0.172 2.5 × 10ିଽ 
8.1 C2/CFB rs4151667 6:31,914,024 coding 0.035 0.579 -0.284 1.3 × 10ିସସ 
8.2 SKIV2/NELFE rs115270436 6:31,928,306 coding 0.071 0.566 -0.321 2.8 × 10ିଽଽ 
9 VEGFA rs943080 6:43,826,627 DHS 0.518 0.678  0.063 2.0 × 10ିଵ଺ 
10 LINC01004/KMT2E-AS1 rs6950894 7:104,652,671 promoter 0.511 0.063 -0.047 9.8 × 10ିଵ଴ 
11 PILRB rs7783159 7:100,017,454 coding 0.203 0.115 0.059 5.1 × 10ିଵ଴ 
12 TNFRSF10A rs79037040 8:23,082,971 DHS 0.534 0.995  0.053 2.9 × 10ିଵଶ 
13 MIR6130/RORB rs10781180 9:76,615,662 intergenic 0.684 0.070 -0.052 3.0 × 10ିଵ଴ 
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.763 -0.046 3.2 × 10ିଽ 
15 TGFBR1 rs401186 9:101,925,077 promoter 0.200 0.109 -0.063 2.5 × 10ିଵଵ 
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.727 -0.053 1.7 × 10ିଽ 
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.297  0.053 4.3 × 10ିଽ 
18.1 ARMS2 rs7068411 10:124,202,878 intergenic 0.621 1.000 0.252 2.4 × 10ିଶଵଶ
18.2 ARMS2 rs7898343 10:124,212,887 promoter 0.083 0.868 -0.311 2.0 × 10ିହଵ 
18.3 ARMS2 rs10490923 10:124,214,251 coding 0.109 0.962 -0.272 1.7 × 10ିହଷ 
18.4 ARMS2 rs2736911 10:124,214,355 coding 0.137 0.781 -0.350 1.8 × 10ିହଷ 
18.5 HTRA1 rs2672601 10:124,220,023 promoter 0.136 0.524 -0.321 4.8 × 10ିହଷ 
18.6 HTRA1 rs74895474 10:124,230,397 intronic 0.094 1.000 -0.199 1.3 × 10ିସଶ 
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Signal  
number Reside/nearby gene dbSNPID Chr:Position Anno MAF Bayesian 

PP 
Effect-
size P-value 

18.7 HTRA1 rs12252027 10:124,234,988 intronic 0.099 1.000 -0.189 1.4 × 10ିହଵ 
18.8 HTRA1 rs2672589 10:124,234988 DHS 0.653 1.000 0.220 8.9 × 10ିଵ଼଴
19 RDH5/CD63 rs143673140 12:56,514,414 coding 0.009 0.001 -0.096 1.3 × 10ିଶ 
20 MAPKAPK5 rs61941287 12:112,330,305 intronic 0.019 0.318  0.199 1.2 × 10ିଵ଴ 
21 B3GALTL rs9564692 13:31,821,240 DHS 0.288 0.429 -0.056 3.2 × 10ିଵଵ 
22 RAD51B rs2842344 14:68,976,971 DHS 0.899 0.215 -0.082 3.7 × 10ି଻ 
23 ALDH1A2 rs2414577 15:58,680,638 DHS 0.366 0.508 -0.067 1.5 × 10ିଽ 
24 CETP rs5883 16:57,007,353 promoter 0.060 0.415 0.085 1.4 × 10ିଶ଴ 
25 CTRB2 rs55993634 16:75,236,763 promoter 0.082 0.321 -0.104 4.6 × 10ିହ 
26 POLDIP2/TNFAIP1 rs13469 17:26,676,135 coding 0.524 0.280  0.044 5.2 × 10ିଽ 
27 NPLOC4/TSPAN10 rs9894429 17:79,596,811 coding 0.441 0.261 -0.045 4.0 × 10ିଵଶ 
28.1 FUT6/NRTN rs17855739 19:5,831,840 coding 0.044 0.549 -0.159 1.5 × 10ିଵ଺ 
28.2 C3/CTD-3128G10.7 rs147859257 19:6,718,146 coding 0.008 1.000  0.501 4.3 × 10ିଷଵ 
28.3 C3/CTD-3128G10.7 rs2230199 19:6,718,387 coding 0.764 0.999 -0.173 1.7 × 10ି଻଻ 
29 ABCA7 rs3752241 19:1,053,524 coding 0.160 0.268 0.055 3.2 × 10ି଻ 
30 APOE(EXOC3L2/MARK4) rs429358 19:45,411,941 coding 0.118 1.000 -0.173 3.3 × 10ିସ଺ 
31 MMP9/RP11-465L10.10 rs17577 20:44,643,111 coding 0.138 0.377 -0.072 6.8 × 10ିଵଵ 
32 RP13-379L11.1 rs7266392 20:56,651,542 DHS 0.063 0.115 -0.134 9.2 × 10ିଵ଼ 
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.524 -0.129 2.0 × 10ିଶ଻ 
34 SLC16A8/BAIAP2L2 rs77968014 22:38,478,666 coding 0.009 0.842  0.207 3.1 × 10ି଺ 
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Supplementary Table 8: AMD risk variants by Fgwas method in the known 34 loci, accounting for summarized regulatory annotations. 
Variants with Fgwas PPs >0.5 or the highest Fgwas PPs in the loci or are listed (horizontal lines separate loci). Shown are reside/nearby genes, 

dbSNPIDs, positions, annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), Fgwas PPs, and P-values.  

Signal number Reside/nearby gene dbSNPID Chr:Position Anno MAF Fgwas PP P-value 
1 Intergenic rs77498516 1:196,115,300 intergenic 0.048 0.522 8.2 × 10ିଶ଻ 
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.146 5.7 × 10ିଽ 
3 Intergenic rs61092465 3:65,149,489 intergenic 0.021 0.001 1.6 × 10ିଷ 
4 Intergenic rs140647181 3:99,180,668 intergenic 0.019 0.999 5.4 × 10ିଵଷ 
5 CFI rs10033900 4:110,659,067 intergenic 0.506 0.996 7.2 × 10ିଵଽ 
6.1 C9 rs34882957 5:39,331,894 coding 0.012 0.757 4.0 × 10ିଵ଺ 
6.2 FYB rs62358735 5:39,199,134 intronic 0.009 0.999 5.1 × 10ିଵଷ 
7 Intergenic rs114092250 5:35,494,448 intergenic 0.019 0.617 2.5 × 10ିଽ 
8.1 HCG20/LINC00243 rs114126524 6:30,763,893 DHS 0.171 0.785 6.5.× 10ିଵଶ 
8.2 HCG22 rs140895602 6:31,024,244 intergenic 0.021 0.553 1.2 × 10ିଵଶ 
8.3 HSPA1A rs62395827 6:31,786,730 DHS 0.073 1.000 1.6 × 10ିସ଺ 
8.4 NELFE/SKIV2L rs116503776 6:31,930,462 intronic 0.120 0.789 2.1 × 10ିଵଵସ
8.5 MTCO3P1 rs114264172 6:32,672,214 intergenic 0.051 0.997 2.1 × 10ିଵସ 
8.6 BRD2 rs200978040 6:32,945,701 coding 0.035 0.522 7.9 × 10ି଼ 
8.7 COL11A2 rs114393147 6:33,125,742 intergenic 0.041 0.782 2.1 × 10ିଵ଴ 
9 Intergenic rs943080 6:43,826,627 DHS 0.518 0.557 2.0 × 10ିଵ଺ 
10 KMT2E/SRPK2 rs1142 7:104,756,326 UTR 0.357 0.215 1.5 × 10ିଵ଴ 
11 ZKSCAN1 rs72615157 7:99,635,967 UTR 0.177 0.561 4.7 × 10ି଼ 
12 TNFRSF10A rs79037040 8:23,082,971 DHS 0.534 0.995 2.9 × 10ିଵଶ 
13 Intergenic rs10781180 9:76,615,662 intergenic 0.683 0.067 3.0 × 10ିଵ଴ 
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.837 3.2 × 10ିଽ 
15 TGFBR1 rs10760667 9:101,864,607 DHS 0.105 0.186 2.5 × 10ିଵଵ 
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.667 1.7 × 10ିଽ 
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.227 4.3 × 10ିଽ 
18 PSTK rs140627984 10:124,723,092 intergenic 0.121 0.003 1.4 × 10ି଺ 
19 OR6C4 rs7313899 12:55,945,119 coding 0.985 0.001 3.0 × 10ିଵ଴ 
20 Intergenic rs73205633 12:112,357,085 intergenic 0.019 0.495 1.2 × 10ିଵ଴ 
21 B3GALTL rs9564692 13:31,821,240 DHS 0.288 0.543 3.2 × 10ିଵଵ 
22 RAD51B rs11158728 14:68,762,205 DHS 0.641 0.040 1.2 × 10ିଵଵ 
23 ALDH1A2 rs2414577 15:58,680,638 DHS 0.366 0.500 4.8 × 10ିଵ଻ 
24 CETP rs5817082 16:56,997,349 intronic 0.248 0.179 1.7 × 10ିଶଵ 
25 BCAR1 rs72802395 16:75,286,484 intronic 0.068 0.623 2.1 × 10ିଵଵ 
26 POLDIP2/NFAIP1 rs13469 17:26,676,135 coding 0.523 0.134 5.1 × 10ିଵଶ 
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27 NPLOC4 rs8070929 17:79,530,993 intronic 0.378 0.176 1.1 × 10ିଵଶ 
28 C3 rs2230199 19:6,718,387 coding 0.764 0.999 1.7 × 10ି଻଻ 
29 CNN2/ABCA7 rs58369307 19:1,038,290 UTR 0.109 0.207 8.5 × 10ିଽ 
30 APOE/TOMM40 rs429358 19:45,411,941 coding 0.118 1.000 3.3 × 10ିସ଺ 
31 MMP9 rs17577 20:44,643,111 coding 0.138 0.131 6.8 × 10ିଵଵ 
32 RP13-379L11.1 rs141945849 20:56,650,604 DHS 0.063 0.092 9.3 × 10ିଵ଼ 
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.681 2.0 × 10ିଶ଻ 
34 SLC16A8/PICK1 rs8135665 22:38,476,276 intronic 0.205 0.607 2.9 × 10ିଵଶ 

 
 
 
Supplementary Table 9: Novel AMD loci (with Bayesian regional-PP >0.95) identified by SFBA, accounting for summarized regulatory 
annotations. Variants with the highest Bayesian PP in the novel loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional 
annotations, MAFs, P-values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes. 
 

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP Bayesian PP Effect-size
1 PPIL3 rs7562391 2:201,736,166 coding 0.127 4.8 × 10ି଻ 0.967 0.475 -0.061 
2 ZNRD1-AS1 rs114357644 6:29,924,728 intergenic 0.669 2.3 × 10ି଻ 0.999 0.609  0.051 
3 CPN1 rs61733667 10:101,829,514 coding 0.036 1.0 × 10ି଻ 0.994 0.463 -0.118 

 
 
Supplementary Table 10: Novel AMD loci (with Bayesian regional-PP >0.95) identified by Fgwas, accounting for summarized regulatory 
annotations. Variants with the highest Fgwas PP in the novel loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional 

annotations, MAFs, P-values, Fgwas regional-PPs, Fgwas PPs, and Bayesian effect-sizes.  

Locus Reside gene dbSNPID Chr:Position   Anno MAF      P-value Regional-PP Fgwas PP Effect-size
1 PPIL3 rs7562391 2:201,736,166 coding 0.127 4.8 × 10ି଻ 0.976 0.322 -0.061 
2 SERPINE2 rs7588220 2:224,873,604 DHS 0.025 3.2 × 10ିହ 0.966 0.001 0.129 
3 Intergenic rs4674883 2:225,184,903 intergenic 0.573 1.2 × 10ି଻ 0.966 0.141 0.043 
4 ABI3BP rs182405490 3:100,545,967 others 0.007 3.3 × 10ିହ 0.999 0.001 0.247 
5 RPL34-AS1 rs151204018 4:108,847,538 others 0.007 4.8 × 10ିସ 0.988 0.001 0.254 
6 ZNRD1-AS1 rs75140056 6:29,608,184 intergenic 0.601 9.6 × 10ିଽ 0.999 0.261 0.045 
7 PACSIN1 rs41312309 6:34,498,328 coding 0.085 2.4 × 10ିହ 0.995 0.017 -0.057 
8 CPN1 rs61733667 10:101,802,262 coding 0.036 1.0 × 10ି଻ 0.994 0.253 -0.118 
9 Intergenic rs7922823 10:125,058,372 others 0.991 9.4 × 10ି଺ 0.961 0.001 -0.210 
10 ABHD2 rs8042649 15:89,740,469 UTR 0.417 1.2 × 10ି଻ 0.973 0.093 0.049 
11 SEMA4B rs11547962 15:90,772,005 UTR 0.399 4.3 × 10ିହ 0.973 0.001 0.032 
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Supplementary Table 11: AMD risk variants by SFBA in the known 34 loci, accounting for chromatin states profiled in the K562 cell type. 
Variants with Bayesian PPs >0.5 or the highest Bayesian PPs in the loci are listed in this table. Shown are reside/nearby genes, dbSNPIDs, 

positions, annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), P-values, and Bayesian PPs/effect-sizes.  

Signal  
number Reside/nearby gene dbSNPID Chr:Position Anno MAF Bayesian 

PP 
Effect-
size P-value 

1.1 KCNT2 rs72732259 1:196,464,113 APromoter 0.266 0.915 -0.064 4.2 × 10ିଵଽ଺
1.2 Intergenic rs74979069 1:196,588,463 CNV 0.049 1.000 0.160 8.1 × 10ିଽଶ 
1.3 CFH rs72734340 1:196,681,376 CNV 0.037 1.000 -0.189 1.1 × 10ିଵ  
1.4 Intergenic rs200467660 1:196,721,770 CNV 0.161 1.000 -0.405 1.1 × 10ିଶସଽ
1.5 Intergenic rs79654026 1:196,725,939 CNV 0.148 0.935 -0.207 2.2 × 10ିଷଵ଴
1.6 ZNF675 rs146093952 1:196,811,860 CNV 0.277 1.000 -0.207 2.2 × 10ିଷଵ଴
1.7 CFHR4 rs71631868 1:196,815,711 CNV 0.149 1.000 -0.172 1.3 × 10ିଶଽହ
1.8 CFHR5 rs139017763 1:196,965,193 CNV 0.005 1.000 -0.388 2.8 × 10ିଶହ 
2 COL4A3 rs11884770 2:228,086,920 CNV 0.731 0.161  0.051 5.6 × 10ିଽ 
3 ADAMTS9-AS2 rs11914351 3:64,723,441 CNV 0.240 0.783 -0.064 8.7 × 10ି଻ 
4 Intergenic rs140647181 3:99,180,668 CNV 0.019 0.679  0.222 5.3 × 10ିଵଷ 
5 CFI rs10033900 4:110,659,067 WEnhancer 0.506 0.982 -0.067 7.2 × 10ିଵଽ 
6 C9 rs62358361 5:39,327,888 CNV 0.012 0.376  0.271 3.1 × 10ିଵ଺ 
7 Intergenic rs114092250 5:35,494,448 WEnhancer 0.019 0.659 -0.171 2.5 × 10ିଽ 
8.1 C6orf48 rs200497397 6:31,810822 WEnhancer 0.028 0.990 0.160 9.8 × 10ିଵହ 
8.2 PBX2/AGER/GPSM3 rs114254831 6:32,155,581 SEnhancer 0.271 0.999 0.080 8.1 × 10ିଵଷ 
9 Intergenic rs943080 6:43,826,627 CNV 0.518 0.397  0.063 2.0 × 10ିଵ଺ 
10 KMT2E/SRPK2 rs1144 7:104,756,355 Txn_Elongation 0.362 0.100 0.057 1.6 × 10ିଵ଴ 
11 TSC22D4 rs11559117 7:100,076,614 APromoter 0.202 0.034 0.059 7.8 × 10ିଵ଴ 
12 TNFRSF10A rs79037040 8:23,082,971 APromoter 0.534 0.993  0.053 2.9 × 10ିଵଶ 
13 Intergenic rs1078176 9:76,592,874 APromoter 0.684 0.229 -0.052 3.0 × 10ିଵ଴ 
14 TRPM3 rs71507014 9:73,438,605 CNV 0.585 0.734 -0.046 3.2 × 10ିଽ 
15 TGFBR1 rs10819635 9:10,819,635 WEnhancer 0.186 0.117 -0.066 2.5 × 10ିଵଵ 
16 ABCA1 rs2740488 9:107,661,742 CNV 0.266 0.736 -0.053 1.7 × 10ିଽ 
17 ARHGAP21 rs12357257 10:24,999,593 Txn_Elongation 0.232 0.274  0.053 4.3 × 10ିଽ 
18.1 Intergenic rs7068411 10:124,202,878 CNV 0.621 1.000 0.198 2.4 × 10ିଶଵଶ
18.2 HTRA1 rs2672595 10:124,227,288 CNV 0.213 0.844 -0.466 8.7 × 10ିଵଵଵ
18.3 HTRA1 rs4752699 10:124,234,320 CNV 0.128 1.000 -0.292 2.1 × 10ିହଵ 
18.4 HTRA1 rs2672589 10:124,234,988 CNV 0.653 1.000 0.274 8.9 × 10ିଵ଼଴
19 SARNP rs77232256 12:56,170,342 Txn_Elongation 0.024 0.001 0.132 2.5 × 10ିସ 
20 NAA25 rs56143183 12:112,545,374 APromoter 0.048 0.541 0.155 4.8 × 10ିଽ 
21 B3GALTL rs9564692 13:31,821,240 CNV 0.288 0.379 -0.056 3.2 × 10ିଵଵ 
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Signal  
number Reside/nearby gene dbSNPID Chr:Position Anno MAF Bayesian 

PP 
Effect-
size P-value 

22 RAD51B rs2842339 14:68,986,999 CNV 0.899 0.243 -0.082 3.1 × 10ି଻ 
23 ALDH1A2 rs2414577 15:58,680,638 Txn_Elongation 0.366 0.483 -0.067 4.8 × 10ିଵ଻ 
24 CETP rs17231569 16:56,999,778 WEnhancer 0.172 0.255 -0.072 9.4 × 10ିଶଵ 
25 CTRB2 rs72802342 16:75,234,872 CNV 0.074 0.317 -0.114 2.8 × 10ିଵଷ 
26 SARM1/SLC46A1 rs4795434 17:26,716,917 WEnhancer 0.524 0.112 0.045 1.8 × 10ିଽ 
27 NPLOC4 rs8070929 17:79,530,993 Txn_Elongation 0.378 0.188 0.058 1.1 × 10ିଵଶ 
28.1 C3 rs147859257 19:6,718,146 SEnhancer 0.008 1.000  0.504 4.3 × 10ିଷଵ 
28.2 C3 rs2230199 19:6,718,387 SEnhancer 0.764 0.999 -0.172 1.7 × 10ି଻଻ 
29 CNN2/ABCA7 rs3087680 19:1,038,289 SEnhancer 0.109 0.360  0.072 8.6 × 10ିଽ 
30.1 APOE/TOMM40 rs429358 19:45,411,941 Txn_Elongation 0.118 1.000 -0.186 3.3 × 10ିସ଺ 
31 MMP9 rs17577 20:44,643,111 APromoter 0.138 0.181 -0.072 6.8 × 10ିଵଵ 
32 Intergenic rs140611615 20:56,653,111 CNV 0.062 0.080 -0.135 8.2 × 10ିଵ଼ 
33 SYN3 rs5754227 22:33,105,817 CNV 0.124 0.774 -0.128 2.0 × 10ିଶ଻ 
34 SLC16A8/PICK1/ 

BAIAP2L2 rs8135665 22:38,476,276 CNV 0.206 0.652 0.066 2.9 × 10ିଵଶ 
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Supplementary Table 12: AMD risk variants by Fgwas method in the known 34 loci, accounting for chromatin states profiled in the K562 
cell type. Variants with either the highest Fgwas PP per locus or Fgwas PP > 0.5 are listed (horizontal lines separate loci). Shown are reside/nearby 

genes, dbSNPIDs, positions, functional annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), Fgwas PPs, and P-values.  

Signal number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF Fgwas 
PP P-value 

1 CFH rs77498516 1:196,115,300 CNV 0.048 0.522 8.2 × 10ିଶ଻ 
2 COL4A3 rs11884770 2:228,086,920 CNV 0.731 0.183 5.7 × 10ିଽ 
3 ADAMTS9-AS2 rs61092465 3:65,149,489 CNV 0.021 0.001 1.6 × 10ିଷ 
4 COL8A1 rs140647181 3:99,180,668 CNV 0.019 0.999 5.4 × 10ିଵଷ 
5 CFI rs10033900 4:110,659,067 WEnhancer 0.506 0.996 7.2 × 10ିଵଽ 
6.1 C9 rs62358361 5:39,327,888 CNV 0.012 0.559 3.1 × 10ିଵ଺ 
6.2 FYB rs62358735 5:39,199,134 APromoter 0.009 0.999 5.1 × 10ିଵଷ 
7 PRLR/SPEF2 rs114092250 5:35,494,448 WEnhancer 0.019 0.673 2.5 × 10ିଽ 
8.1 HCG20/LINC00243 rs114126524 6:30,763,893 SEnhancer 0.171 0.810 6.5 × 10ିଵଶ 
8.2 HCG22 rs140895602 6:31,024,244 CNV 0.021 0.535 1.2 × 10ିଵଶ 
8.3 HCP5 rs116319118 6:31,440,641 CNV 0.017 0.521 5.3 × 10ିଵସ 
8.4 HSPA1L/HSPA1A rs62395827 6:31,786,730 SEnhancer 0.073 0.999 1.6 × 10ିସ଺ 
8.5 NELFE/SKIV2L rs116503776 6:31,930,462 TxnElongation 0.120 0.939 2.1 × 10ିଵଵସ 
8.6 MTCO3P1 rs114264172 6:32,672,214 CNV 0.051 0.997 2.1 × 10ିଵସ 
8.7 COL11A2 rs114393147 6:33,125,742 CNV 0.041 0.784 2.1 × 10ିଵ଴ 
9 VEGFA rs943080 6:43,826,627 CNV 0.518 0.428 2.0 × 10ିଵ଺ 
10 KMT2E/SRPK2 rs1142 7:104,756,326 TxnElongation 0.357 0.124 1.5 × 10ିଵ଴ 
11 ZKSCAN1 rs1122598 7:99,699,436 APromoter 0.177 0.351 8.9 × 10ି଼ 
12 TNFRSF10A rs79037040 8:23,082,971 APromoter 0.534 0.992 2.9 × 10ିଵଶ 
13 Intergenic rs10781176 9:76,592,874 APromoter 0.684 0.109 3.0 × 10ିଵ଴ 
14 TRPM3 rs71507014 9:73,438,605 CNV 0.584 0.858 3.2 × 10ିଽ 
15 TGFBR1 rs10760667 9:101,864,607 SEnhancer 0.186 0.132 2.5 × 10ିଵଵ 
16 ABCA1 rs2740488 9:107,661,742 CNV 0.266 0.761 1.7 × 10ିଽ 
17 ARHGAP21 rs12357257 10:24,999,593 TxnElongation 0.232 0.308 4.3 × 10ିଽ 
18 PSTK rs140627984 10:124,723,092 TxnElongation 0.121 0.011 1.4 × 10ି଺ 
19 OR6C7P rs7487174 12:55,738,093 APromoter 0.824 0.001 1.6 × 10ିଷ 
20 MAPKAPK5 rs61941287 12:112,330,305 TxnElongation 0.019 0.542 1.2 × 10ିଵ଴ 
21 B3GALTL rs9564692 13:31,821,240 CNV 0.288 0.388 3.2 × 10ିଵଵ 
22 RAD51B rs11158728 14:68,762,205 SEnhancer 0.640 0.082 1.0 × 10ିଵଵ 
23 ALDH1A2 rs2414577 15:58,680,638 TxnElongation 0.366 0.495 4.8 × 10ିଵ଻ 
24 CETP rs5817082 16:56,997,349 CNV 0.248 0.236 1.7 × 10ିଶଵ 
25 BCAR1 rs72802395 16:75,286,484 TxnElongation 0.068 0.653 2.1 × 10ିଵଵ 
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26 TMEM97/KRT18P55 rs11080055 17:26,649,724 TxnElongation 0.525 0.103 5.1 × 10ିଽ 
27 NPLOC4 rs8070929 17:79,530,993 TxnElongation 0.378 0.186 1.1 × 10ିଵଶ 
28.1 FUT6 rs12019136 19:5,835,677 CNV 0.042 0.614 3.7 × 10ିଵ଻ 
28.2 C3 rs2230199 19:6,718,387 APromoter 0.764 0.997 1.7 × 10ି଻଻ 
29 CNN2/ABCA7 rs58369307 19:1,038,290 SEnhancer 0.109 0.151 8.5 × 10ିଽ 
30.1 APOE/TOMM40 rs429358 19:45,411,941 TxnElongation 0.118 1.000 3.3 × 10ିସ଺ 
30.2 MARK4/AC006126.4 rs73036519 19:45,748,362 SEnhancer 0.293 0.507 3.6 × 10ି଼ 
31 MMP9 rs142450006 20:44,614,991 CNV 0.133 0.132 1.4 × 10ିଵଵ 
32 C20orf85 rs117739907 20:56,652,781 CNV 0.062 0.079 7.8 × 10ିଵ଼ 
33 SYN3 rs5754227 22:33,105,817 CNV 0.124 0.781 2.0 × 10ିଶ଻ 
34 SLC16A8/PICK1 rs8135665 22:38,476,276 CNV 0.205 0.649 2.9 × 10ିଵଶ 

 
 
Supplementary Table 13: Novel AMD loci (with Bayesian regional-PP>0.95) identified by SFBA, accounting for chromatin states profiled in the 
K562 cell type. Variants with the highest Bayesian PPs in the novel loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional 
annotations, MAFs, P-values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes. 
 

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP Bayesian PP Effect-size
2 ZNRD1-AS1 rs114357644 6:29,924,728 TxnElongation 0.669 2.3 × 10ି଻ 0.999 0.669  0.051 
3 CPN1 rs111563092 10:101,808,993 CNV 0.045 7.2 × 10ି଼ 0.970 0.081 -0.106 

 
Supplementary Table 14: Novel AMD loci (with Bayesian regional-PP>0.95) identified by Fgwas, accounting for chromatin states profiled in 
the K562 cell type. Variants with the highest Fgwas PPs in the novel loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, 

functional annotations, MAFs, P-values, Fgwas regional-PPs, Fgwas PPs, and Bayesian effect-sizes.  

Locus Reside gene dbSNPID Chr:Position   Anno MAF      P-value Regional-PP Fgwas PP Effect-size
1 PPIL3 rs3851973 2:201,732,878 SEnhancer 0.127 1.1 × 10ି଻ 0.963 0.094 -0.059  
2 SERPINE2 rs7588220 2:224,873,604 WEnhancer 0.025 3.2 × 10ିହ 0.966 0.001  0.129  
3 Intergenic rs4674883 2:225,184,903 CNV 0.573 1.2 × 10ି଻ 0.965 0.141  0.043  
4 ABI3BP rs182405490 3:100,545,967 CNV 0.007 3.3 × 10ିହ 0.999 0.001  0.247  
5 RPL34-AS1 rs151204018 4:108,847,538 CNV 0.007 4.8 × 10ିସ 0.988 0.001  0.254  
6 ZNRD1-AS1 rs75140056 6:29,608,184 TxnElongation 0.601 9.6 × 10ିଽ 0.999 0.261  0.045  
7 PACSIN1 rs6922076 6:33,807,565 SEnhancer 0.446 9.9 × 10ି଺ 0.995 0.004 -0.035  
8 CPN1 rs111563092 10:101,808,993 CNV 0.045 7.2 × 10ି଼ 0.993 0.088 -0.106  
9 ABHD2 rs2070780 15:89,760,997 CNV 0.485 1.6 × 10ି଻ 0.968 0.075  0.043  
10 SEMA4B rs11547962 15:90,772,005 TxnElongation 0.399 4.3 × 10ିହ 0.973 0.001  0.032  
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Supplementary Table 15: Haplotype analysis in locus C2/CFB/SKIV2L, consisting with the top significant intronic variant found by 

single variant test P-values  (rs116503776 with p-value=૛. ૚ × ૚૙ି૚૚૝), the top two significant missense variants (in the ±20KB region 
around rs116503776) found by SFBA (rs4151667 with Bayesian PP=0.903, rs115270436 with Bayesian PP=	0.638). 
 

Region Haplotype   Haplotype 
Frequency (%) 

 P-value OR (95% CI) 

 
SKIV2L intronic 
(rs116503776) 

CFB missense
(rs4151667) 

CFB missense 
(rs115270436) 

Cases Controls   

C2/CFB/SKIV2L 1 1 1 1.5 × 10ିଷ 4.2 × 10ିଷ 8.9 × 10ିଵଵ 0.364 (0.265,  0.501) 
1 0 1 0.046 0.085 1.5 × 10ି଼଺ 0.522 (0.490,  0.557) 

 1 1 0 0.023 0.041 5.0 × 10ିଷ଺ 0.561 (0.513,  0.613) 
 0 0 1 8.9 × 10ିସ 1.5 × 10ିଷ 0.024 0.586 (0.375,  0.917) 
 1 0 0 0.018 0.017 0.092 1.102 (0.983,  1.236) 
 0 0 0 0.909 0.850 1.0 × 10ିଶଶ 1.752 (1.670,  1.838) 
 0 1 0 6.1 × 10ିହ 2.8 × 10ିହ 0.306 1.840 (0.243, 13.938) 

 
 
Supplementary Table 16: Linear regression analysis with a model with the top two independent significant variants (rs116503776, 
rs114254831) found by conditional analysis, versus a model with the top two significant variants (rs4151667, rs115270436) found by 
SFBA accounting for functional annotations. 

Region (C2/CFB/SKIV2L) SKIV2L intronic (rs116503776) &
PBX2 intronic (rs114254831) 

CFB missense (rs4151667)  & 
SKIV2L missense (rs115270436) Differences (col2-col3) 

 
Akaike information criterion 

(AIC) 
95857.36 95752.63 104.73 

 
Bayesian information 

criterion (BIC) 
 

95891.1 95786.36 104.74 

Log Likelihood 
 -47924.68 -47872.31 -52.37 
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Supplementary Table 17: Number of loci (regional-PP>0.95) identified by accounting for chromatin states profiled in 9 human cell 
types, with the number of variants that contribute 95% posterior probabilities. 
 

Cell types 
Number of 

identified loci 
Total number of 

variants 
Average number of 
variants per locus 

H1-hESC 32 481 15.0 

K562 31 454 14.6 

GM12878 31 481 15.5 

HepG2 35 609 18.4 

HUVEC 32 595 18.5 

HSMM 33 608 18.4 

NHLF 33 542 16.4 

NHEK 31 524 16.9 

HMEC 34 529 15.5 
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