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1 Abstract 
Efforts to incorporate human genetic variation into the reference human genome have converged on the 
idea of a graph representation of genetic variation within a species, a genome sequence graph. A sequence 
graph represents a set of individual haploid reference genomes as paths in a single graph. When that set of 
reference genomes is sufficiently diverse, the sequence graph implicitly contains all frequent human 
genetic variations, including translocations, inversions, deletions, and insertions.  

In representing a set of genomes as a sequence graph one encounters certain challenges. One of the most 
important is the problem of graph linearization, essential both for efficiency of storage and access, as well 
as for natural graph visualization and compatibility with other tools. The goal of graph linearization is to 
order nodes of the graph in such a way that operations such as access, traversal and visualization are as 
efficient and effective as possible.  

A new algorithm for the linearization of sequence graphs, called the flow procedure, is proposed in this 
paper. Comparative experimental evaluation of the flow procedure against other algorithms shows that it 
outperforms its rivals in the metrics most relevant to sequence graphs.  

1.1 Keywords 
sequence graph · linearization · flow procedure · feedback arcs · cut width · backbone · grooming 
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2 Motivation 
The current human reference genome consists essentially of a single representative of each of the human 
chromosomes. In essence, an arbitrary person’s genome is chosen to represent all of humanity. This leads 
to loss of information and bias. Efforts to incorporate human genetic variation into the reference human 
genome have converged on the idea of a graph representation of genetic variation within a species, a 
genome sequence graph [1]. 

 
Figure 1. Alignment of CATCGCT, CAGCGAT, CATCGAGAGAGCT DNA strands. 

In its mathematically most simple form, each node of a sequence graph contains a single DNA base that 
occurs at an orthologous locus in one or more of the haploid genomes represented in the graph. Each arc 
represents an adjacency (chemically, a covalent bond) that occurs between consecutive instances of bases 
in those genomes. Excluding reversing joins (see below) each arc is directed according to the default 
strand direction of the DNA sequence used to build the graph, connecting the 3’ side of the previous base 
(the tail of the edge) with the 5’ side of the next base (the head of the edge). At points where the 
individual genomes differ to the right (i.e., 3’, downstream) of an orthologous base, the node representing 
that base will have two or more outgoing arcs. For example, the graph in Figure 2 was built from the 
DNA strands CATCGCT, CATCGT, CAGCGAT and CATCGAGAGAGCT aligned at orthologous bases as 
shown in Figure 1. 

 
Figure 2. An example of a sequence graph reflecting SNP (T/G), tandem duplication GA -> GAGAGA, and deletion/SNP (A/C/-). 

Representing a genome as a graph requires building a number of tools to work with it efficiently. In 
particular, one needs to linearize the graph, that is order the nodes from left to right in a straight line. 
Linearization facilitates visual perception of a graph, allows software to index the nodes in a familiar 
manner, and imposes natural order of bases useful in storage, search and analysis, for example enabling 
traversal from left to right with minimum feedback runs. Figures 3 and 4 show examples of a linearized 
graph and individual genomes in it. Here we have also added a new feature to the graphs in the form of 
arc weights. An arc weight is used to signify the importance of an arc in typical applications running on 
the graph. Normally we set the arc weight to the number of times that the arc is traversed in the reference 
genomes used to build the graph, under the assumption that arcs used frequently in the reference genomes 
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will also be used frequently in the applications of the sequence graph built from them. Some reference 
genomes may be weighted more than others. 

 
Figure 3. An example of a linearized sequence graph with weighted arcs. The arc in red is directed from the right to the left and 
is called feedback arc. 

 
Figure 4. Three individual genomes as paths in the linearized graph, shown in green. The first and second genomes are 
ATCAGGCA and ATCAGACTCA, respectively. The third one is AAGACTAGACTCA where the arc between T and A is a 
feedback arc. 

3 Problem Statement 
A linearization of a sequence graph aims to make the total weight of all feedback arcs, called the 
weighted feedback (see Figure 3), small, along with the “width” (number of arcs) crossing any vertical 
line in the layout (called a “cut”, see Figure 5).  Unnecessary feedback arcs make many types of genetic 
analysis more inefficient, as these typically proceed left-to-right on a conventional reference genome. An 
arc crossing a cut is considered to be part of an allele spanning that cut (see [2]), so a graph with smaller 
cut width at a cut has fewer alleles at that cut. The mean of the cut width over all cuts in the graph is 
called the average cut width.  
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Figure 5. Examples of cuts and cut widths. Three cuts are shown with green vertical lines. Their widths are, from left to right, 3, 
4, and 2 respectively. 

In light of their importance for genetic analysis, we will evaluate a linearization based on its average cut 
width and either the weighted feedback or the number of feedback arcs it contains.  

Unfortunately, the problems of minimizing weighted feedback, and of minimizing the average cut width, 
are each separately difficult. The simpler problem of minimizing the number of feedback arcs is known in 
literature as the feedback arc set problem, or FAS for short [3]. This is an NP-hard problem [4], but there 
are a number of various heuristic approaches to approximating a solution to it [5]. The problem of 
minimizing the average cut width [6] is also known to be NP-hard. A good heuristic [7] is necessary for 
good results. In our case, starting our procedure with the “primary path” taken by the reference genome is 
a natural choice. This is the first time to our knowledge that a heuristic algorithm to minimize both 
metrics at the same time has been proposed.  

4 Algorithm Description 
We propose here a simple heuristic divide-and-conquer approach to linearly order the bases of a graph 
that tries to achieve either small weighted feedback (or small number of feedback arcs) and small average 
cut width.  The key algorithmic tool is max-flow/min-cut in a directed graph [8], so we call it the flow 
procedure. Prior to applying the flow procedure, the sequence graph is “groomed” as described at the end 
of this section.  
4.1 First Step. Find the Backbone. 
Following grooming, the flow procedure starts with a connected graph with directed arcs and a designated 
linear ordering of a subset of the bases called the backbone. Arcs leading from the backbone to nodes not 
on the backbone are called out-arcs, and arcs directed into the backbone from nodes not on the backbone 
are called in-arcs.  Grooming guarantees such the first base of the backbone has no in-arcs and the last 
has no out-arcs. Extra dummy bases are added at either end if necessary. Normally the initial backbone is 
a biologically determined primary path of the graph, e.g. from a selected haploid reference genome in the 
set of genomes used to build the graph, perhaps the existing haploid reference human genome. The flow 
procedure creates a backbone using its internal heuristics if none is given a priori. In linearizing the 
sequence graph by creating a total ordering of the bases, the relative order of the bases in backbone will 
not change. The rest of the bases in the graph will be inserted either between bases of the backbone, 
before the backbone, or after the backbone. Thus, any feedback arcs already in the backbone ordering, 
called initial feedback arcs, will remain as feedback arcs in the final ordering.  
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Figure 6. An initial directed graph with weights on the arcs. 

Consider the graph depictured in Figure 6. The backbone is CGATC horizontally across the middle 
(highlighted by dark blue color). The three out-arcs of the backbone are shown with thick green arrows. 
The two in-arcs are shown with thick purple arrows. The weights are assumed to reflect usage, but we 
also assume the usage statistics may be partial. Hence the weight coming into a base does not always 
match the weight coming out. 
4.2 Second Step. Add Source and Sink. 
We set up a max flow/min cut network as follows. The nodes and arcs of the network are nodes and arcs 
of the graph. The capacity of the arc is its weight. In addition, there is a special source node and a special 
sink node. The network arcs for these are defined as follows: we let N be the maximum of the sum of the 
weights of the outgoing arcs for any node in the graph and we add an arc of capacity N + 1 from the 
source node to each base on the backbone that has an out-arc. Then each in-arc on the backbone is 
redirected to the sink node with no change in capacity.  
4.3 Third Step. Determine the Minimum Cut and Delete It.  

 
Figure 7. The flow network corresponding to the above weighted graph and its designated backbone. 
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The maximum flow in our example is easily seen to be 3, and it maximizes the capacity of the two arcs 
that are cut by the green bars (Fig. 7). Therefore, these form a minimum cut. Since the capacities of the 
arcs connecting the source to the backbone are too high to be achieved by any flow, none of these are in 
the cut. Therefore, the cut must split the flow network into an out-component containing the source and 
its outgoing arcs, and an in-component containing the sink. In Figure 7 the in-component consists of the 
uppermost nodes C, G, C and the sink, and the out-component is the remainder. 

We remove the cut arcs from the graph. Essentially, in doing this we decide to give up worrying about 
these arcs and try to minimize the weighted feedback and average cut width as if they were not there. 
Since capacity equals weight, by choosing a minimum capacity cut, we ignore the arcs that cost us the 
least in weight. 

 
Figure 8. Out-growths (green) and in-growth (purple) of the graph. 

Excluding any initial feedback arcs on the backbone itself, we classify all bases not on the backbone into 
a sequence of out-growths and in-growths as follows. Starting at the last base on the backbone that has 
an out-arc, we define its out-growth to be all bases reachable by a forward directed path from that base. 
Then we move backwards along the backbone, defining out-growths consisting of all the bases reachable 
by a forward directed path from the base on the backbone with an out-arc that were not already included 
in previously defined out-growths. We define in-growths in a similar fashion, moving forward from the 
start of the backbone and using backward-directed paths. Figure 8 shows in-growth and out-growths for 
the example under consideration. There are two outgrowths, the first from the node G on the backbone 
(contains nodes G, G, C), and the second from its predecessor, the first node on the backbone (labeled 
“C”, contains nodes C, T, C, A). The dotted green arc is not a proper part of either outgrowth; it is 
discovered when exploring the outgrowth from C, and found to lead into the previous outgrowth found 
from G. The one in-growth enters the node A of backbone and contains nodes C, G, C, A, shown in 
purple.  
4.4 Fourth Step. Repeat Procedure for In- and Out-growths. 
Finally, we apply the entire procedure recursively to each out-growth and in-growth, using a heuristic that 
uses the backbone’s base as the first base for an out-growth or as the last base for an in-growth, 
respectively. When the recursive call completes, the bases from it are inserted into the backbone of the 
calling procedure in the specified order immediately following an out-growth or immediately preceding 
an in-growth, respectively. The final ordering for the example above is shown in Figure 9. 
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Figure 9. The final sorted graph with the bases totally ordered. 

Normally the out-growths and in-growths together comprise the whole graph. However, if not, the entire 
procedure can just be repeated, each time using the linear order established from the previous cycle as a 
new backbone. Grooming a connected graph (see below) assures that these repetitions will eventually 
reach every node in the graph. 

It remains to specify a heuristic for determining the backbone when it is not explicitly given. When the 
first base of the backbone is given, we extend it into a path using a greedy algorithm: in each step, we add 
to the existing path the base with the highest forward directed arc weight, breaking ties arbitrarily, and we 
do so until no more bases can be added. A complementary procedure is run in reverse if we are instead 
given the last base of the backbone.  

4.5 Grooming. 
Finally, we explain the preprocessing step of grooming the graph. The base in each node in a sequence 
graph has two sides (3’ and 5’). The directed arcs we have been using are edges of the sequence graph 
that connect the 3’ side of one node to the 5’ side of another (possibly the same) node. The arcs are 
directed in the 3’ to 5’ side direction. There are also additional edges in a sequence graph that here we 
will refer to as reversing joins, which we have not discussed up until this point (see [1] and [9] for an 
introduction). A reversing join is an undirected edge connecting the 3’ sides of two nodes, or connecting 
the 5’ sides of two nodes. As a preprocessing step to the flow procedure, and all other heuristic algorithms 
we examine for linearization of a directed graph, we first eliminate as many of the reversing joins as 
possible by replacing the graph with an equivalent graph that has fewer reversing joins. Then if there are 
still reversing joins left we just ignore them. This way we are always working with graphs that only 
contain directed arcs. The process we use to minimize the number of reversing joins is called grooming 
(Figure 10). 

Grooming works as follows. A given connected component (a set of nodes such that one can travel 
between any two nodes in it along the standard arcs, in both direction, and reversing joins) may fall apart 
if the reversing joins are removed. This indicates that some of reversing joins were unnecessary. Let one 
connected component be called the primary component (shown in dark blue in Figure 10), and the 
others be called the secondary components (shown in light blue in Figure 10). We obtain an isomorphic 
graph that will have fewer components after removal of reversing joins by simply reverse-
complementing the secondary component, i.e., reverse-complementing every base in it and inverting the 
direction of the arcs between these secondary bases. The 3’ reversing joins connecting this secondary 
component to the main graph are replaced by directed arcs pointing into the secondary component, and 
the 5’ reversing joins are replaced by directed arcs back to the primary component. This has the effect of 
changing every 3’ side in the secondary component into a 5’ side, and vice versa. On the right side of 
Figure 10 nodes and arcs which were changed during grooming are shown in red. By repeating this 
procedure on any connected sequence graph we eventually reach an isomorphic graph that has just one 
connected component even after removing the reversing joins. 
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Figure 10. Grooming procedure. Reversing joins are shown in brown on the upper left. Bottom one shows the graph on the upper 
right as directed graph. 

Since we will not be reducing the number of reversing joins further, and being undirected they cannot be 
considered feedback arcs, from here on, we will stop paying attention to the reversing joins and consider 
only graphs that are fully directed. 

5 Complexity Estimation 
The max flow/min cut sorting algorithm described above can be broken into four steps: 

1. Find the backbone (if it is not given) 

2. Create the flow graph by adding the source and sink and connecting them to the graph 

3. Find the maximum flow and minimal cut and delete the minimal cut, using the Ford-Fulkerson 
algorithm 

4. Find the in-growth and out-growth and repeat steps 1 through 4 for them 

Let us consider the complexity of each step separately. 

In the preparation step, we perform a greedy depth-first search to find the backbone if it is not given (in 
practice we only find the backbone on recursive calls, as the whole graph’s backbone is given). We do not 
visit any arc more than once, so the time complexity is O(|A|), where A is the number of arcs.  

In creating the flow, we add 2 nodes to the graph (the source and sink) and draw several arcs from the 
source to those nodes in the backbone that have an outgoing arc, and also reroute the arcs going into the 
backbone to the sink. We do not examine any arc more than once, so the time complexity is O(|A|). 

The Ford-Fulkerson algorithm works in O(|A|*|max-flow|) [10]. In the worst case, |max-flow| ~ O(|A|), in 
which case the time complexity becomes O(|A|2).  

Every recursive call decreases the number of nodes in the graph, so the number of recursive calls is 
O(|V|).  

These estimations are shown in the table below. 
Table 1. Complexity estimation of the flow procedure algorithm. 

Step Complexity 

1. Find the backbone O(|A|) 
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2. Add source and sink, draw the arcs with required weights |V|+|out- and in-arcs|  = O(|A|) 
assuming at least one arc per node 

3. Determine the maximum flow and remove the arcs from 
the minimum cut 

O(|A|*|max flow|)  

4. Repeat steps 1 through 4 recursion depth ≤ |V| 

 

The final complexity estimate is thus O(|A|*|max-flow|) * |recursion depth|.  

The best-case complexity (if the max flow is constant and there are a constant number of recursive calls) 
is O(|A|), again, assuming at least one arc per node. In the worst case, it is O((|A|2) * |V|) as the max flow 
may be proportional to |A| and the recursion depth proportional to |V|.  

The Ford-Fulkerson algorithm and the recursion contribute the most to the final algorithm’s complexity. 
Depth of recursion is not a problem in practice. However, the maximum flow will often be approximately 
O(|A|) due to how the flow is constructed: each variation increases it by creating a new path from the 
source to the sink. Because the flow becomes so large, the Ford-Fulkerson algorithm will work in 
quadratic time (O(|A|2)). Improvements to the algorithm that reduce the typical max flow so that it is 
polylogarithmic in |A| would improve its speed.  

6 Experimental Evaluation 
6.1 Data Modeling 
The flow procedure was tested on data that was artificially generated by taking a 37 kilobase piece of the 
GRCh38 assembly and adding artificial structural variations to it using the RSVSim [11] from 
Bioconductor. This package lets one simulate any given set of structural variations to a reference, 
producing a modified FASTA file. The positions of the variations were distributed uniformly, while their 
lengths were fixed. After fixing a specified set of variations, a series of FASTA files were created and 
passed on to a vg [12] tool, which generated the graph using a multiple sequence graph alignment 
algorithm. 

Four types of structural variation were simulated: insertions, deletions, duplications, and inversions. 
Tandem duplications were limited to one copy. 

Two different test data sets, each consisting of a series of graphs, were generated in this way. The first 
was created to investigate the effect of the overall amount of variation on the number of feedback arcs and 
the cut width achievable by each algorithm. This data set consisted of graphs each having equal numbers 
of all four kinds of variations (i.e., there were as many insertions as there were deletions, inversions and 
duplications), with only the total number of variations changing between graphs. The variations’ sizes are 
given in Table 2. 

The second set of graphs was created to investigate the relationship between the relative frequencies of 
each type of variation and the number of feedback arcs and the cut width achievable by each algorithm 
(Appendix B, tables 1-4). 

The third data set was created in order to test algorithm’s time performance. The graphs in this data set 
were created from scratch and have structure similar to those graphs above with doubling of the number 
of nodes from one to another. 
Table 2. The lengths of the variations in the testing data. 

 Deletion Insertion Inversion Duplication 
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6.2 Results and Discussion.  
In order to comparatively analyze the quality and speed of our algorithm, we took Kahn’s well-known 
topological sorting algorithm [13], as well as Eades’ [14] modified version thereof that guarantees a low 
number of feedback arcs while still working in linear time. We were not able to find competitor for cut 
width minimization problem to measure against, because all the algorithms we have found are focused on 
exact solution of the problem, thus having high complexity (cubic and higher) and thus working only with 
graphs of 200 nodes or less. Note that neither Kahn’s nor Eades’ algorithm uses the backbone as a 
heuristic. All three algorithms were tested on the same data (see Appendix B and Section 5.1 for details 
on the modeling). Their outputs were compared on two metrics – the number of feedback arcs and the 
average cut width. Kahn’s algorithm, Eades’ algorithm, and flow procedure are all implemented in the vg 
tool [12]. 

 
Figure 11. The relationship between the number of feedback arcs and variations 

 

0	

200	

400	

600	

800	

1000	

1200	

1400	

5	 6	 7	 8	 9	 10	 11	

N
um

be
r	o

f	f
ee
db

ac
k	
ar
cs
	

Number	of	varia:ons	of	one	type	

Number	of	feedback	arcs	vs	number	of	varia:ons	

Kahn	 Eades	 flow	procedure	

Length  20 20 200 500 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint 

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/


11 
 

 
Figure 12. The relationship between the ACW and number of variations. 

Figures 11 and 12 depict the main quantitative outputs of the three algorithms, Kahn, Eades, and the flow 
procedure (FP), for the first set of testing data. The same results for the second set are given in Appendix 
B. From Figure 11 it is fairly obvious that in terms of the number of feedback arcs, the FP algorithm 
vastly outperforms Kahn’s, doing only slightly worse than Eades’ algorithm. The difference between FP 
and Eades is much smaller than between FP and Kahn. It is clear from Figure 12 that FP’s average cut 
width is an order of magnitude lower than that of Eades [14] or Kahn [13]. 

To use the FP algorithm in practice, one must estimate the time it takes the algorithm to run on large 
amounts of data. In order to use the algorithm on large graphs in practice, we would split the graph into 
pieces using a graph decomposition scheme as described in [2]. In practice the time complexity of the FP 
is O(|A|2). On the other hand, both Kahn’s and Eades’ algorithms have complexity O(|A|+|V|), since they 
do not pass any node more than twice. The relationship between the number of nodes in the graph and the 
algorithms’ runtimes on our test data is shown in Figure 13. 
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Figure 13. The relationship between the runtime and the number of arcs in the graph. 

The relationship matches the one predicted theoretically. It shows that despite quadratic complexity 
estimation, it is clearly seen from Figure 13 the algorithm can be used on big graphs.  

In addition to these tests on synthetic data, the algorithms were tested on a graph created from MHC 
region of chromosome 6 with 251297 nodes. Flow procedure running time was about 40 minutes.  

7 Conclusion 
We have proposed a new sequence graph linearization algorithm that outperforms standard methods on 
the criteria that are important for storing, traversing, analyzing and visualizing genome sequence graphs. 
The quantitative results thus obtained suggest that this algorithm will prove useful in genome exploration. 
Earlier work on sequence graph linearization [15] focused on minimizing feedback arcs, here we 
additionally introduce cut-width as an important measure of a linearization that effectively measures 
contiguity between elements that are connected. Future effort to lower the computational complexity of 
the algorithm using graph decomposition (see [2]) will allow us to apply a modified form of the presented 
algorithm to complete human scale sequence graphs of hundreds of millions of nodes.  
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8 Appendix A  
8.1 Some Details of the FP Algorithm 
We pointed out in the algorithm description above that sometimes not all of the graph’s nodes end up in 
the final list, and so we need to rerun the procedure with the graph’s sorted part as the backbone. Fig. 1 
demonstrates an example of such a situation. 

 
Figure 14. An example of a graph that requires a rerun. 

Here ABCDE is the backbone (shown in dark blue), arcs AF and GE are in the min cut and hence deleted 
in the first run. CG is the in-growth and FC is the out-growth. Node H is in neither the in-growth nor the 
out-growth and so does not end up in the list on the first run of the procedure. On the rerun, however, the 
backbone will be ABFCGDE and so H will fall into F’s outgrowth. 

Also noteworthy is the order in which we find the in- and outgrowths. First, we traverse the backbone 
from end to start, finding the outgrowth for each node, then we traverse it from start to end, finding the 
ingrowth. We include in the in- and outgrowths only those nodes that did not end up in any of the 
previous out- or ingrowths (see Fig. 2). 

 
Figure 15. An example of the in-growths and out-growths for a graph. 

 
8.2 Step-by-step Algorithm Run 
Let's start from the moment when we have already found and removed the minimum cut. We go from the 
beginning to the end over the backbone (CGATC) and find the in-growth CCGA (upper 3 nodes and A 
from the backbone). For this in-growth we run the entire flow procedure recursively. Looking for the 
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backbone, we start from A and search for incoming max weight arcs. We get CCA, then run the min cut 
search and remove the CG arc. Then we recursively go to the CCA backbone from the beginning to the 
end; we are looking for the in-growth. We find GC. For it we run the procedure, which arranges these two 
nodes in the obvious way. We insert the result into the backbone CCA with the G before the second C 
(the one that had the in-arc). Thus, we get CGCA. All nodes of this part are sorted, so the recursion is 
finished and we insert the resulting in-growth into the backbone of the source graph. Inserting to the 
backbone we get CGCGCATC. There are no other in-growths, so we turn to search for out-growths. We 
go from the end to the beginning. We find the GGC out-growth. It includes 3 consecutive nodes, so the 
recursive procedure for it throws out a natural GGC order. We insert to the backbone and get 
CGGCCGCATC. Then we look for the next out-growth. We find the CTCA starting from the first node 
of the backbone. For it, we run the procedure recursively. It finds the backbone CTA, then removes the 
min cut, finds the in-growth CA and inserts its C before the A: CTCA. There are no other in- or out-
growths, so this part of the algorithm is finished and we insert nodes to the original backbone, finally 
getting CTCAGGCCGCATC.  
 
8.3 Test Data Set Modelling 
In order to simulate the test data, we used the RSVSim package (version 1.14.0) from the Bioconductor 
software (Release 3.4). As a reference genome, we took BSgenome.Hsapiens.UCSC.hg38 (version 1.4.1), 
alternative branch chr13_KI270842v1_alt, which is 37287 nucleotides long. Using the simulateSV 
command of the RSVSim package, we modeled genome fragments of 10 individuals with a given set of 
variations. Resulting FASTA files were submitted to the entry of the msga command of the vg utility 
(https://github.com/vgteam/vg). As a result, we got a sequence graph (*.gfa format). This graph is an 
input to the commands vg sort-f (Eades) and vg sort (Flow procedure) of the vg utility 
(https://github.com/vgteam/vg). Finally, we got text files with graph nodes ordered by linearization using 
the Kahn, Eades, and flow procedure algorithms respectively. To analyze the algorithm, we created the 
original software to get the number of feedback arcs and the cut width in abovementioned sorts. To 
reduce the impact of accidents, we repeated the procedure 20 times for each set of variations and average 
the results. 
We created variation sets as follows. In the modelled genome fragments, we added 5 variation types: 
insertions, deletions, duplications, inversions, and translocations. The positions of all variations were 
uniformly distributed over the simulation section of the genome. Twenty percent of the insertions were 
duplicating sections of the DNA. Translocations were modelled using the shoulder exchange mechanism. 
The lengths of insertions and deletions were 20 nucleotides; the length of inversion was 200 nucleotides; 
the length of duplications was 500. The number of variations of each type was equal to 5 in the first set, 6 
in the second, 7 in the third, and so on up to 11 in the latest set of variations. The appendix provides a 
dependence of the number of feedback arcs and cut widths of number of variations of the same type. For 
this study, the number of variations of all types, except the examined, were fixed at level 7, and the 
number of investigated variations were changing according to the following list: 7, 9, 11, 13, 15, 17, 19, 
21, 23, 25, 27, 29, and 31. 
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9 Appendix B 
9.1 The Results for MHC Graph 
Table 3. Number of feedback arcs and average cut width by all three algorithms for MHC graph. 

Kahn	 Eades	 Flow	procedure	
Number	 of	
feedback	arcs	

Average	 cut	
width	

Number	 of	
feedback	arcs	

Average	 cut	
width	

Number	 of	
feedback	arcs	

Average	 cut	
width	

1275	 66.767	 108	 48.942	 47	 21.574	
 
9.2 The Results of Additional Experiments 
Table 4. The relationship between the number of feedback arcs and ACW, and the number of deletions. 

Number 
of 
Deletions 

Kahn Eades Flow procedure 

Number of 
feedback arcs 

Average 
cut width 

Number of 
feedback arcs 

Average 
cut width 

Number of 
feedback arcs 

Average 
cut width 

7 602 40.245	 197 58.168	 236 4.869	

9 572 37.886	 192 57.853	 235 4.955	

11 687 40.494	 204 65.725	 266 5.303	

13 598 42.668	 199 58.555	 236 4.91	

15 602 39.285	 196 56.794	 235 4.939	

17 666 42.609	 204 62.68	 259 5.021	

19 648 42.628	 197 60.079	 243 5.239	

21 642 43.129	 199 61.346	 246 5.085	

23 609 37.592	 196 61.243	 235 5.122	

25 682 39.222	 202 64.486	 249 4.745	

27 676 37.396	 204 66.757	 268 5.167	

29 652 39.633	 197 64.819	 265 5.22	

31 760 41.44	 205 67.13	 249 5.305	

 
Table 5. The relationship between the number of feedback arcs and ACW, and the number of duplications. 

Number of Kahn Eades Flow procedure 
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Duplications Number of 
feedback arcs 

Average 
cut width 

Number of 
feedback arcs 

Average 
cut width 

Number of 
feedback arcs 

Average 
cut width 

7 592 39.392	 191 52.631	 237 4.848	

9 701 38.977	 228 63.121	 267 5.307	

11 936 38.551	 252 73.24	 306 5.813	

13 913 39.167	 280 76.01	 314 6.213	

15 1157 39.224	 309 74.247	 344 6.633	

17 1273 46.042	 341 81.009	 371 7.286	

19 1395 41.642	 354 80.756	 371 7.365	

21 1760 47.581	 396 97.255	 405 8.088	

23 2019 44.938	 415 106.833	 431 8.173	

25 1857 46.156	 435 96.822	 433 8.738	

27 2421 52.409	 455 112.936	 443 9.544	

29 2622 48.912	 482 108.725	 491 9.036	

31 3046 55.375	 503 120.981	 484 9.871	

 

Table 6. The relationship between the number of feedback arcs and ACW, and the number of inversions. 

Number 
of 
Insertions 

Kahn Eades Flow procedure 

Number of 
feedback arcs 

Average 
cut width 

Number of 
feedback arcs 

Average 
cut width 

Number of 
feedback arcs 

Average 
cut width 

7 656 39.084	 204 63.148	 234 4.699	

8 690 41.387	 196 60.224	 235 5.113	

11 702 42.901	 201 64.116	 254 4.757	

13 629 40.335	 202 61.833	 239 4.824	

15 637 40.603	 200 59.54	 252 4.858	

17 645 39.292	 197 62.266	 256 4.858	

19 674 40.31	 202 65.503	 258 5.342	

21 718 38.793	 203 63.688	 257 5.107	

23 680 43.724	 203 61.591	 254 5.105	

25 762 39.496	 200 63.727	 271 5.153	
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27 668 41.089	 199 59.935	 264 5.05	

29 649 41.091	 210 65.3	 254 5.19	

31 701 45.925	 202 57.727	 259 5.396	

 
Table 7. The relationship between the number of feedback arcs and ACW, and the number of insertions. 

Number	
of	
Inversions	

Kahn	 Eades	 Flow	procedure	

Number	 of	
feedback	arcs	

Average	
cut	width	

Number	 of	
feedback	arcs	

Average	
cut	width	

Number	 of	
feedback	arcs	

Average	
cut	width	

9	 804	 46.938	 217	 72.532	 267	 5.352	

11	 1006	 52.943	 251	 83.811	 321	 5.654	

13	 1174	 64.487	 275	 98.653	 374	 5.88	

14	 1300	 71.296	 284	 103.571	 406	 6.189	

17	 1830	 78.467	 329	 125.099	 459	 6.461	

19	 1836	 78.408	 356	 139.293	 515	 6.873	

21	 1815	 86.534	 363	 144.815	 521	 6.935	

23	 1876	 86.29	 385	 156.763	 601	 7.406	

25	 2211	 93.899	 408	 173.52	 619	 7.581	

27	 2657	 102.554	 436	 177.482	 698	 7.672	

29	 2449	 101.576	 449	 173.951	 690	 7.787	

31	 2629	 111.228	 459	 189.837	 728	 8.071	
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Figure 16. The relationship between the number of feedback arcs and the number of deletions. 

 
Figure 17. The relationship between the ACW and the number of deletions. 
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Figure 18. The relationship between the number of feedback arcs and the number of duplications. 

 
Figure 19. The relationship between the ACW and the number of duplications. 
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Figure 20. The relationship between the number of feedback arcs and the number of insertions. 

 
Figure 21. The relationship between the ACW and the number of insertions. 
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Figure 22. The relationship between the number of feedback arcs and the number of inversions. 

 
Figure 23. The relationship between the ACW and the number of inversions. 
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