
1

A Flow Procedure for the Linearization of
Genome Sequence Graphs.

David Haussler1, Maciej Smuga-Otto1, Benedict Paten1, Adam M Novak1, Sergei Nikitin2, Maria Zueva2,
Dmitrii Miagkov2

1UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
2EPAM Systems, Inc., Newtown, PA, USA

dmitrii.miagkov@epam.com

1 Abstract
Efforts to incorporate human genetic variation into the reference human genome have converged on the
idea of a graph representation of genetic variation within a species, a genome sequence graph. A sequence
graph represents a set of individual haploid reference genomes as paths in a single graph. When that set of
reference genomes is sufficiently diverse, the sequence graph implicitly contains all frequent human
genetic variations, including translocations, inversions, deletions, and insertions.

In representing a set of genomes as a sequence graph one encounters certain challenges. One of the most
important is the problem of graph linearization, essential both for efficiency of storage and access, as well
as for natural graph visualization and compatibility with other tools. The goal of graph linearization is to
order nodes of the graph in such a way that operations such as access, traversal and visualization are as
efficient and effective as possible.

A new algorithm for the linearization of sequence graphs, called the flow procedure, is proposed in this
paper. Comparative experimental evaluation of the flow procedure against other algorithms shows that it
outperforms its rivals in the metrics most relevant to sequence graphs.

1.1 Keywords
sequence graph · linearization · flow procedure · feedback arcs · cut width · backbone · grooming

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

2

2 Motivation
The current human reference genome consists essentially of a single representative of each of the human
chromosomes. In essence, an arbitrary person’s genome is chosen to represent all of humanity. This leads
to loss of information and bias. Efforts to incorporate human genetic variation into the reference human
genome have converged on the idea of a graph representation of genetic variation within a species, a
genome sequence graph [1].

Figure 1. Alignment of CATCGCT, CAGCGAT, CATCGAGAGAGCT DNA strands.

In its mathematically most simple form, each node of a sequence graph contains a single DNA base that
occurs at an orthologous locus in one or more of the haploid genomes represented in the graph. Each arc
represents an adjacency (chemically, a covalent bond) that occurs between consecutive instances of bases
in those genomes. Excluding reversing joins (see below) each arc is directed according to the default
strand direction of the DNA sequence used to build the graph, connecting the 3’ side of the previous base
(the tail of the edge) with the 5’ side of the next base (the head of the edge). At points where the
individual genomes differ to the right (i.e., 3’, downstream) of an orthologous base, the node representing
that base will have two or more outgoing arcs. For example, the graph in Figure 2 was built from the
DNA strands CATCGCT, CATCGT, CAGCGAT and CATCGAGAGAGCT aligned at orthologous bases as
shown in Figure 1.

Figure 2. An example of a sequence graph reflecting SNP (T/G), tandem duplication GA -> GAGAGA, and deletion/SNP (A/C/-).

Representing a genome as a graph requires building a number of tools to work with it efficiently. In
particular, one needs to linearize the graph, that is order the nodes from left to right in a straight line.
Linearization facilitates visual perception of a graph, allows software to index the nodes in a familiar
manner, and imposes natural order of bases useful in storage, search and analysis, for example enabling
traversal from left to right with minimum feedback runs. Figures 3 and 4 show examples of a linearized
graph and individual genomes in it. Here we have also added a new feature to the graphs in the form of
arc weights. An arc weight is used to signify the importance of an arc in typical applications running on
the graph. Normally we set the arc weight to the number of times that the arc is traversed in the reference
genomes used to build the graph, under the assumption that arcs used frequently in the reference genomes

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

3

will also be used frequently in the applications of the sequence graph built from them. Some reference
genomes may be weighted more than others.

Figure 3. An example of a linearized sequence graph with weighted arcs. The arc in red is directed from the right to the left and
is called feedback arc.

Figure 4. Three individual genomes as paths in the linearized graph, shown in green. The first and second genomes are
ATCAGGCA and ATCAGACTCA, respectively. The third one is AAGACTAGACTCA where the arc between T and A is a
feedback arc.

3 Problem Statement
A linearization of a sequence graph aims to make the total weight of all feedback arcs, called the
weighted feedback (see Figure 3), small, along with the “width” (number of arcs) crossing any vertical
line in the layout (called a “cut”, see Figure 5). Unnecessary feedback arcs make many types of genetic
analysis more inefficient, as these typically proceed left-to-right on a conventional reference genome. An
arc crossing a cut is considered to be part of an allele spanning that cut (see [2]), so a graph with smaller
cut width at a cut has fewer alleles at that cut. The mean of the cut width over all cuts in the graph is
called the average cut width.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

4

Figure 5. Examples of cuts and cut widths. Three cuts are shown with green vertical lines. Their widths are, from left to right, 3,
4, and 2 respectively.

In light of their importance for genetic analysis, we will evaluate a linearization based on its average cut
width and either the weighted feedback or the number of feedback arcs it contains.

Unfortunately, the problems of minimizing weighted feedback, and of minimizing the average cut width,
are each separately difficult. The simpler problem of minimizing the number of feedback arcs is known in
literature as the feedback arc set problem, or FAS for short [3]. This is an NP-hard problem [4], but there
are a number of various heuristic approaches to approximating a solution to it [5]. The problem of
minimizing the average cut width [6] is also known to be NP-hard. A good heuristic [7] is necessary for
good results. In our case, starting our procedure with the “primary path” taken by the reference genome is
a natural choice. This is the first time to our knowledge that a heuristic algorithm to minimize both
metrics at the same time has been proposed.

4 Algorithm Description
We propose here a simple heuristic divide-and-conquer approach to linearly order the bases of a graph
that tries to achieve either small weighted feedback (or small number of feedback arcs) and small average
cut width. The key algorithmic tool is max-flow/min-cut in a directed graph [8], so we call it the flow
procedure. Prior to applying the flow procedure, the sequence graph is “groomed” as described at the end
of this section.
4.1 First Step. Find the Backbone.
Following grooming, the flow procedure starts with a connected graph with directed arcs and a designated
linear ordering of a subset of the bases called the backbone. Arcs leading from the backbone to nodes not
on the backbone are called out-arcs, and arcs directed into the backbone from nodes not on the backbone
are called in-arcs. Grooming guarantees such the first base of the backbone has no in-arcs and the last
has no out-arcs. Extra dummy bases are added at either end if necessary. Normally the initial backbone is
a biologically determined primary path of the graph, e.g. from a selected haploid reference genome in the
set of genomes used to build the graph, perhaps the existing haploid reference human genome. The flow
procedure creates a backbone using its internal heuristics if none is given a priori. In linearizing the
sequence graph by creating a total ordering of the bases, the relative order of the bases in backbone will
not change. The rest of the bases in the graph will be inserted either between bases of the backbone,
before the backbone, or after the backbone. Thus, any feedback arcs already in the backbone ordering,
called initial feedback arcs, will remain as feedback arcs in the final ordering.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

5

Figure 6. An initial directed graph with weights on the arcs.

Consider the graph depictured in Figure 6. The backbone is CGATC horizontally across the middle
(highlighted by dark blue color). The three out-arcs of the backbone are shown with thick green arrows.
The two in-arcs are shown with thick purple arrows. The weights are assumed to reflect usage, but we
also assume the usage statistics may be partial. Hence the weight coming into a base does not always
match the weight coming out.
4.2 Second Step. Add Source and Sink.
We set up a max flow/min cut network as follows. The nodes and arcs of the network are nodes and arcs
of the graph. The capacity of the arc is its weight. In addition, there is a special source node and a special
sink node. The network arcs for these are defined as follows: we let N be the maximum of the sum of the
weights of the outgoing arcs for any node in the graph and we add an arc of capacity N + 1 from the
source node to each base on the backbone that has an out-arc. Then each in-arc on the backbone is
redirected to the sink node with no change in capacity.
4.3 Third Step. Determine the Minimum Cut and Delete It.

Figure 7. The flow network corresponding to the above weighted graph and its designated backbone.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

6

The maximum flow in our example is easily seen to be 3, and it maximizes the capacity of the two arcs
that are cut by the green bars (Fig. 7). Therefore, these form a minimum cut. Since the capacities of the
arcs connecting the source to the backbone are too high to be achieved by any flow, none of these are in
the cut. Therefore, the cut must split the flow network into an out-component containing the source and
its outgoing arcs, and an in-component containing the sink. In Figure 7 the in-component consists of the
uppermost nodes C, G, C and the sink, and the out-component is the remainder.

We remove the cut arcs from the graph. Essentially, in doing this we decide to give up worrying about
these arcs and try to minimize the weighted feedback and average cut width as if they were not there.
Since capacity equals weight, by choosing a minimum capacity cut, we ignore the arcs that cost us the
least in weight.

Figure 8. Out-growths (green) and in-growth (purple) of the graph.

Excluding any initial feedback arcs on the backbone itself, we classify all bases not on the backbone into
a sequence of out-growths and in-growths as follows. Starting at the last base on the backbone that has
an out-arc, we define its out-growth to be all bases reachable by a forward directed path from that base.
Then we move backwards along the backbone, defining out-growths consisting of all the bases reachable
by a forward directed path from the base on the backbone with an out-arc that were not already included
in previously defined out-growths. We define in-growths in a similar fashion, moving forward from the
start of the backbone and using backward-directed paths. Figure 8 shows in-growth and out-growths for
the example under consideration. There are two outgrowths, the first from the node G on the backbone
(contains nodes G, G, C), and the second from its predecessor, the first node on the backbone (labeled
“C”, contains nodes C, T, C, A). The dotted green arc is not a proper part of either outgrowth; it is
discovered when exploring the outgrowth from C, and found to lead into the previous outgrowth found
from G. The one in-growth enters the node A of backbone and contains nodes C, G, C, A, shown in
purple.
4.4 Fourth Step. Repeat Procedure for In- and Out-growths.
Finally, we apply the entire procedure recursively to each out-growth and in-growth, using a heuristic that
uses the backbone’s base as the first base for an out-growth or as the last base for an in-growth,
respectively. When the recursive call completes, the bases from it are inserted into the backbone of the
calling procedure in the specified order immediately following an out-growth or immediately preceding
an in-growth, respectively. The final ordering for the example above is shown in Figure 9.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

7

Figure 9. The final sorted graph with the bases totally ordered.

Normally the out-growths and in-growths together comprise the whole graph. However, if not, the entire
procedure can just be repeated, each time using the linear order established from the previous cycle as a
new backbone. Grooming a connected graph (see below) assures that these repetitions will eventually
reach every node in the graph.

It remains to specify a heuristic for determining the backbone when it is not explicitly given. When the
first base of the backbone is given, we extend it into a path using a greedy algorithm: in each step, we add
to the existing path the base with the highest forward directed arc weight, breaking ties arbitrarily, and we
do so until no more bases can be added. A complementary procedure is run in reverse if we are instead
given the last base of the backbone.

4.5 Grooming.
Finally, we explain the preprocessing step of grooming the graph. The base in each node in a sequence
graph has two sides (3’ and 5’). The directed arcs we have been using are edges of the sequence graph
that connect the 3’ side of one node to the 5’ side of another (possibly the same) node. The arcs are
directed in the 3’ to 5’ side direction. There are also additional edges in a sequence graph that here we
will refer to as reversing joins, which we have not discussed up until this point (see [1] and [9] for an
introduction). A reversing join is an undirected edge connecting the 3’ sides of two nodes, or connecting
the 5’ sides of two nodes. As a preprocessing step to the flow procedure, and all other heuristic algorithms
we examine for linearization of a directed graph, we first eliminate as many of the reversing joins as
possible by replacing the graph with an equivalent graph that has fewer reversing joins. Then if there are
still reversing joins left we just ignore them. This way we are always working with graphs that only
contain directed arcs. The process we use to minimize the number of reversing joins is called grooming
(Figure 10).

Grooming works as follows. A given connected component (a set of nodes such that one can travel
between any two nodes in it along the standard arcs, in both direction, and reversing joins) may fall apart
if the reversing joins are removed. This indicates that some of reversing joins were unnecessary. Let one
connected component be called the primary component (shown in dark blue in Figure 10), and the
others be called the secondary components (shown in light blue in Figure 10). We obtain an isomorphic
graph that will have fewer components after removal of reversing joins by simply reverse-
complementing the secondary component, i.e., reverse-complementing every base in it and inverting the
direction of the arcs between these secondary bases. The 3’ reversing joins connecting this secondary
component to the main graph are replaced by directed arcs pointing into the secondary component, and
the 5’ reversing joins are replaced by directed arcs back to the primary component. This has the effect of
changing every 3’ side in the secondary component into a 5’ side, and vice versa. On the right side of
Figure 10 nodes and arcs which were changed during grooming are shown in red. By repeating this
procedure on any connected sequence graph we eventually reach an isomorphic graph that has just one
connected component even after removing the reversing joins.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

8

Figure 10. Grooming procedure. Reversing joins are shown in brown on the upper left. Bottom one shows the graph on the upper
right as directed graph.

Since we will not be reducing the number of reversing joins further, and being undirected they cannot be
considered feedback arcs, from here on, we will stop paying attention to the reversing joins and consider
only graphs that are fully directed.

5 Complexity Estimation
The max flow/min cut sorting algorithm described above can be broken into four steps:

1. Find the backbone (if it is not given)

2. Create the flow graph by adding the source and sink and connecting them to the graph

3. Find the maximum flow and minimal cut and delete the minimal cut, using the Ford-Fulkerson
algorithm

4. Find the in-growth and out-growth and repeat steps 1 through 4 for them

Let us consider the complexity of each step separately.

In the preparation step, we perform a greedy depth-first search to find the backbone if it is not given (in
practice we only find the backbone on recursive calls, as the whole graph’s backbone is given). We do not
visit any arc more than once, so the time complexity is O(|A|), where A is the number of arcs.

In creating the flow, we add 2 nodes to the graph (the source and sink) and draw several arcs from the
source to those nodes in the backbone that have an outgoing arc, and also reroute the arcs going into the
backbone to the sink. We do not examine any arc more than once, so the time complexity is O(|A|).

The Ford-Fulkerson algorithm works in O(|A|*|max-flow|) [10]. In the worst case, |max-flow| ~ O(|A|), in
which case the time complexity becomes O(|A|2).

Every recursive call decreases the number of nodes in the graph, so the number of recursive calls is
O(|V|).

These estimations are shown in the table below.
Table 1. Complexity estimation of the flow procedure algorithm.

Step Complexity

1. Find the backbone O(|A|)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

9

2. Add source and sink, draw the arcs with required weights |V|+|out- and in-arcs| = O(|A|)
assuming at least one arc per node

3. Determine the maximum flow and remove the arcs from
the minimum cut

O(|A|*|max flow|)

4. Repeat steps 1 through 4 recursion depth ≤ |V|

The final complexity estimate is thus O(|A|*|max-flow|) * |recursion depth|.

The best-case complexity (if the max flow is constant and there are a constant number of recursive calls)
is O(|A|), again, assuming at least one arc per node. In the worst case, it is O((|A|2) * |V|) as the max flow
may be proportional to |A| and the recursion depth proportional to |V|.

The Ford-Fulkerson algorithm and the recursion contribute the most to the final algorithm’s complexity.
Depth of recursion is not a problem in practice. However, the maximum flow will often be approximately
O(|A|) due to how the flow is constructed: each variation increases it by creating a new path from the
source to the sink. Because the flow becomes so large, the Ford-Fulkerson algorithm will work in
quadratic time (O(|A|2)). Improvements to the algorithm that reduce the typical max flow so that it is
polylogarithmic in |A| would improve its speed.

6 Experimental Evaluation
6.1 Data Modeling
The flow procedure was tested on data that was artificially generated by taking a 37 kilobase piece of the
GRCh38 assembly and adding artificial structural variations to it using the RSVSim [11] from
Bioconductor. This package lets one simulate any given set of structural variations to a reference,
producing a modified FASTA file. The positions of the variations were distributed uniformly, while their
lengths were fixed. After fixing a specified set of variations, a series of FASTA files were created and
passed on to a vg [12] tool, which generated the graph using a multiple sequence graph alignment
algorithm.

Four types of structural variation were simulated: insertions, deletions, duplications, and inversions.
Tandem duplications were limited to one copy.

Two different test data sets, each consisting of a series of graphs, were generated in this way. The first
was created to investigate the effect of the overall amount of variation on the number of feedback arcs and
the cut width achievable by each algorithm. This data set consisted of graphs each having equal numbers
of all four kinds of variations (i.e., there were as many insertions as there were deletions, inversions and
duplications), with only the total number of variations changing between graphs. The variations’ sizes are
given in Table 2.

The second set of graphs was created to investigate the relationship between the relative frequencies of
each type of variation and the number of feedback arcs and the cut width achievable by each algorithm
(Appendix B, tables 1-4).

The third data set was created in order to test algorithm’s time performance. The graphs in this data set
were created from scratch and have structure similar to those graphs above with doubling of the number
of nodes from one to another.
Table 2. The lengths of the variations in the testing data.

 Deletion Insertion Inversion Duplication

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

10

6.2 Results and Discussion.
In order to comparatively analyze the quality and speed of our algorithm, we took Kahn’s well-known
topological sorting algorithm [13], as well as Eades’ [14] modified version thereof that guarantees a low
number of feedback arcs while still working in linear time. We were not able to find competitor for cut
width minimization problem to measure against, because all the algorithms we have found are focused on
exact solution of the problem, thus having high complexity (cubic and higher) and thus working only with
graphs of 200 nodes or less. Note that neither Kahn’s nor Eades’ algorithm uses the backbone as a
heuristic. All three algorithms were tested on the same data (see Appendix B and Section 5.1 for details
on the modeling). Their outputs were compared on two metrics – the number of feedback arcs and the
average cut width. Kahn’s algorithm, Eades’ algorithm, and flow procedure are all implemented in the vg
tool [12].

Figure 11. The relationship between the number of feedback arcs and variations

0	

200	

400	

600	

800	

1000	

1200	

1400	

5	 6	 7	 8	 9	 10	 11	

N
um

be
r	o

f	f
ee
db

ac
k	
ar
cs
	

Number	of	varia:ons	of	one	type	

Number	of	feedback	arcs	vs	number	of	varia:ons	

Kahn	 Eades	 flow	procedure	

Length 20 20 200 500

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

11

Figure 12. The relationship between the ACW and number of variations.

Figures 11 and 12 depict the main quantitative outputs of the three algorithms, Kahn, Eades, and the flow
procedure (FP), for the first set of testing data. The same results for the second set are given in Appendix
B. From Figure 11 it is fairly obvious that in terms of the number of feedback arcs, the FP algorithm
vastly outperforms Kahn’s, doing only slightly worse than Eades’ algorithm. The difference between FP
and Eades is much smaller than between FP and Kahn. It is clear from Figure 12 that FP’s average cut
width is an order of magnitude lower than that of Eades [14] or Kahn [13].

To use the FP algorithm in practice, one must estimate the time it takes the algorithm to run on large
amounts of data. In order to use the algorithm on large graphs in practice, we would split the graph into
pieces using a graph decomposition scheme as described in [2]. In practice the time complexity of the FP
is O(|A|2). On the other hand, both Kahn’s and Eades’ algorithms have complexity O(|A|+|V|), since they
do not pass any node more than twice. The relationship between the number of nodes in the graph and the
algorithms’ runtimes on our test data is shown in Figure 13.

0	

10	

20	

30	

40	

50	

60	

70	

5	 6	 7	 8	 9	 10	 11	

Av
er
ag
e	
cu
t	w

id
th
	

Number	of	varia:ons	of	one	type	

Average	cut	width	vs	number	of	varia:ons	

Kahn	 Eades	 flow	procedure	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

12

Figure 13. The relationship between the runtime and the number of arcs in the graph.

The relationship matches the one predicted theoretically. It shows that despite quadratic complexity
estimation, it is clearly seen from Figure 13 the algorithm can be used on big graphs.

In addition to these tests on synthetic data, the algorithms were tested on a graph created from MHC
region of chromosome 6 with 251297 nodes. Flow procedure running time was about 40 minutes.

7 Conclusion
We have proposed a new sequence graph linearization algorithm that outperforms standard methods on
the criteria that are important for storing, traversing, analyzing and visualizing genome sequence graphs.
The quantitative results thus obtained suggest that this algorithm will prove useful in genome exploration.
Earlier work on sequence graph linearization [15] focused on minimizing feedback arcs, here we
additionally introduce cut-width as an important measure of a linearization that effectively measures
contiguity between elements that are connected. Future effort to lower the computational complexity of
the algorithm using graph decomposition (see [2]) will allow us to apply a modified form of the presented
algorithm to complete human scale sequence graphs of hundreds of millions of nodes.

Acknowledgements. We’d like to thank Erik Garrison and Glenn Hickey for helpful conversations. This
work was supported by the National Human Genome Research Institute of the National Institutes of
Health under Award Number 5U54HG007990 and grants from the W.M. Keck foundation and the
Simons Foundation. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

17386	 34784	 69545	 139041	 278315	
flow	procedure	 0.52	 1.506	 3.77	 13.168	 51.58	

Eades	 0.326	 0.733	 1.683	 4.909	 19.096	

Kahn	 0.26	 0.505	 1.273	 2.727	 5.875	

0	

10	

20	

30	

40	

50	

60	
Ru

n:
m
e,
	se

co
nd

s	

Number	of	arcs	

Run:me	vs	number	of	arcs	

flow	procedure	 Eades	 Kahn	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

13

8 Appendix A
8.1 Some Details of the FP Algorithm
We pointed out in the algorithm description above that sometimes not all of the graph’s nodes end up in
the final list, and so we need to rerun the procedure with the graph’s sorted part as the backbone. Fig. 1
demonstrates an example of such a situation.

Figure 14. An example of a graph that requires a rerun.

Here ABCDE is the backbone (shown in dark blue), arcs AF and GE are in the min cut and hence deleted
in the first run. CG is the in-growth and FC is the out-growth. Node H is in neither the in-growth nor the
out-growth and so does not end up in the list on the first run of the procedure. On the rerun, however, the
backbone will be ABFCGDE and so H will fall into F’s outgrowth.

Also noteworthy is the order in which we find the in- and outgrowths. First, we traverse the backbone
from end to start, finding the outgrowth for each node, then we traverse it from start to end, finding the
ingrowth. We include in the in- and outgrowths only those nodes that did not end up in any of the
previous out- or ingrowths (see Fig. 2).

Figure 15. An example of the in-growths and out-growths for a graph.

8.2 Step-by-step Algorithm Run
Let's start from the moment when we have already found and removed the minimum cut. We go from the
beginning to the end over the backbone (CGATC) and find the in-growth CCGA (upper 3 nodes and A
from the backbone). For this in-growth we run the entire flow procedure recursively. Looking for the

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

14

backbone, we start from A and search for incoming max weight arcs. We get CCA, then run the min cut
search and remove the CG arc. Then we recursively go to the CCA backbone from the beginning to the
end; we are looking for the in-growth. We find GC. For it we run the procedure, which arranges these two
nodes in the obvious way. We insert the result into the backbone CCA with the G before the second C
(the one that had the in-arc). Thus, we get CGCA. All nodes of this part are sorted, so the recursion is
finished and we insert the resulting in-growth into the backbone of the source graph. Inserting to the
backbone we get CGCGCATC. There are no other in-growths, so we turn to search for out-growths. We
go from the end to the beginning. We find the GGC out-growth. It includes 3 consecutive nodes, so the
recursive procedure for it throws out a natural GGC order. We insert to the backbone and get
CGGCCGCATC. Then we look for the next out-growth. We find the CTCA starting from the first node
of the backbone. For it, we run the procedure recursively. It finds the backbone CTA, then removes the
min cut, finds the in-growth CA and inserts its C before the A: CTCA. There are no other in- or out-
growths, so this part of the algorithm is finished and we insert nodes to the original backbone, finally
getting CTCAGGCCGCATC.

8.3 Test Data Set Modelling
In order to simulate the test data, we used the RSVSim package (version 1.14.0) from the Bioconductor
software (Release 3.4). As a reference genome, we took BSgenome.Hsapiens.UCSC.hg38 (version 1.4.1),
alternative branch chr13_KI270842v1_alt, which is 37287 nucleotides long. Using the simulateSV
command of the RSVSim package, we modeled genome fragments of 10 individuals with a given set of
variations. Resulting FASTA files were submitted to the entry of the msga command of the vg utility
(https://github.com/vgteam/vg). As a result, we got a sequence graph (*.gfa format). This graph is an
input to the commands vg sort-f (Eades) and vg sort (Flow procedure) of the vg utility
(https://github.com/vgteam/vg). Finally, we got text files with graph nodes ordered by linearization using
the Kahn, Eades, and flow procedure algorithms respectively. To analyze the algorithm, we created the
original software to get the number of feedback arcs and the cut width in abovementioned sorts. To
reduce the impact of accidents, we repeated the procedure 20 times for each set of variations and average
the results.
We created variation sets as follows. In the modelled genome fragments, we added 5 variation types:
insertions, deletions, duplications, inversions, and translocations. The positions of all variations were
uniformly distributed over the simulation section of the genome. Twenty percent of the insertions were
duplicating sections of the DNA. Translocations were modelled using the shoulder exchange mechanism.
The lengths of insertions and deletions were 20 nucleotides; the length of inversion was 200 nucleotides;
the length of duplications was 500. The number of variations of each type was equal to 5 in the first set, 6
in the second, 7 in the third, and so on up to 11 in the latest set of variations. The appendix provides a
dependence of the number of feedback arcs and cut widths of number of variations of the same type. For
this study, the number of variations of all types, except the examined, were fixed at level 7, and the
number of investigated variations were changing according to the following list: 7, 9, 11, 13, 15, 17, 19,
21, 23, 25, 27, 29, and 31.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

15

9 Appendix B
9.1 The Results for MHC Graph
Table 3. Number of feedback arcs and average cut width by all three algorithms for MHC graph.

Kahn	 Eades	 Flow	procedure	
Number	 of	
feedback	arcs	

Average	 cut	
width	

Number	 of	
feedback	arcs	

Average	 cut	
width	

Number	 of	
feedback	arcs	

Average	 cut	
width	

1275	 66.767	 108	 48.942	 47	 21.574	

9.2 The Results of Additional Experiments
Table 4. The relationship between the number of feedback arcs and ACW, and the number of deletions.

Number
of
Deletions

Kahn Eades Flow procedure

Number of
feedback arcs

Average
cut width

Number of
feedback arcs

Average
cut width

Number of
feedback arcs

Average
cut width

7 602 40.245	 197 58.168	 236 4.869	

9 572 37.886	 192 57.853	 235 4.955	

11 687 40.494	 204 65.725	 266 5.303	

13 598 42.668	 199 58.555	 236 4.91	

15 602 39.285	 196 56.794	 235 4.939	

17 666 42.609	 204 62.68	 259 5.021	

19 648 42.628	 197 60.079	 243 5.239	

21 642 43.129	 199 61.346	 246 5.085	

23 609 37.592	 196 61.243	 235 5.122	

25 682 39.222	 202 64.486	 249 4.745	

27 676 37.396	 204 66.757	 268 5.167	

29 652 39.633	 197 64.819	 265 5.22	

31 760 41.44	 205 67.13	 249 5.305	

Table 5. The relationship between the number of feedback arcs and ACW, and the number of duplications.

Number of Kahn Eades Flow procedure

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

16

Duplications Number of
feedback arcs

Average
cut width

Number of
feedback arcs

Average
cut width

Number of
feedback arcs

Average
cut width

7 592 39.392	 191 52.631	 237 4.848	

9 701 38.977	 228 63.121	 267 5.307	

11 936 38.551	 252 73.24	 306 5.813	

13 913 39.167	 280 76.01	 314 6.213	

15 1157 39.224	 309 74.247	 344 6.633	

17 1273 46.042	 341 81.009	 371 7.286	

19 1395 41.642	 354 80.756	 371 7.365	

21 1760 47.581	 396 97.255	 405 8.088	

23 2019 44.938	 415 106.833	 431 8.173	

25 1857 46.156	 435 96.822	 433 8.738	

27 2421 52.409	 455 112.936	 443 9.544	

29 2622 48.912	 482 108.725	 491 9.036	

31 3046 55.375	 503 120.981	 484 9.871	

Table 6. The relationship between the number of feedback arcs and ACW, and the number of inversions.

Number
of
Insertions

Kahn Eades Flow procedure

Number of
feedback arcs

Average
cut width

Number of
feedback arcs

Average
cut width

Number of
feedback arcs

Average
cut width

7 656 39.084	 204 63.148	 234 4.699	

8 690 41.387	 196 60.224	 235 5.113	

11 702 42.901	 201 64.116	 254 4.757	

13 629 40.335	 202 61.833	 239 4.824	

15 637 40.603	 200 59.54	 252 4.858	

17 645 39.292	 197 62.266	 256 4.858	

19 674 40.31	 202 65.503	 258 5.342	

21 718 38.793	 203 63.688	 257 5.107	

23 680 43.724	 203 61.591	 254 5.105	

25 762 39.496	 200 63.727	 271 5.153	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

17

27 668 41.089	 199 59.935	 264 5.05	

29 649 41.091	 210 65.3	 254 5.19	

31 701 45.925	 202 57.727	 259 5.396	

Table 7. The relationship between the number of feedback arcs and ACW, and the number of insertions.

Number	
of	
Inversions	

Kahn	 Eades	 Flow	procedure	

Number	 of	
feedback	arcs	

Average	
cut	width	

Number	 of	
feedback	arcs	

Average	
cut	width	

Number	 of	
feedback	arcs	

Average	
cut	width	

9	 804	 46.938	 217	 72.532	 267	 5.352	

11	 1006	 52.943	 251	 83.811	 321	 5.654	

13	 1174	 64.487	 275	 98.653	 374	 5.88	

14	 1300	 71.296	 284	 103.571	 406	 6.189	

17	 1830	 78.467	 329	 125.099	 459	 6.461	

19	 1836	 78.408	 356	 139.293	 515	 6.873	

21	 1815	 86.534	 363	 144.815	 521	 6.935	

23	 1876	 86.29	 385	 156.763	 601	 7.406	

25	 2211	 93.899	 408	 173.52	 619	 7.581	

27	 2657	 102.554	 436	 177.482	 698	 7.672	

29	 2449	 101.576	 449	 173.951	 690	 7.787	

31	 2629	 111.228	 459	 189.837	 728	 8.071	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

18

Figure 16. The relationship between the number of feedback arcs and the number of deletions.

Figure 17. The relationship between the ACW and the number of deletions.

0	

100	

200	

300	

400	

500	

600	

700	

800	

7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	

nu
m
be

r	o
f	f
ee
db

ac
k	
ar
cs
	

number	of	dele:ons	

Number	of	feedback	arcs	vs	number	of	dele:ons	

Kahn	 Eades	 flow	procedure	

0	

10	

20	

30	

40	

50	

60	

70	

80	

7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	

av
er
ag
e	
cu
t	w

id
th
	

number	of	dele:ons	

Average	cut	width	vs	number	of	dele:ons	

Kahn	 Eades	 flow	procedure	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

19

Figure 18. The relationship between the number of feedback arcs and the number of duplications.

Figure 19. The relationship between the ACW and the number of duplications.

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	

nu
m
be

r	o
f	f
ee
db

ac
k	
ar
cs
	

number	of	duplica:ons	

Number	of	feedback	arcs	vs	number	of	duplica:ons	

Kahn	 Eades	 flow	procedure	

0	

20	

40	

60	

80	

100	

120	

140	

7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	

av
er
ag
e	
cu
t	w

id
th
	

number	of	duplica:ons	

Average	cut	width	vs	number	of	duplica:ons	

Kahn	 Eades	 flow	procedure	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

20

Figure 20. The relationship between the number of feedback arcs and the number of insertions.

Figure 21. The relationship between the ACW and the number of insertions.

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

7	 8	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	

nu
m
be

r	o
f	f
ee
db

ac
k	
ar
cs
	

number	of	inser:ons	

Number	of	feedback	arcs	vs	number	of	inser:ons	

Kahn	 Eades	 flow	procedure	

0	

10	

20	

30	

40	

50	

60	

70	

7	 8	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	

av
er
ag
e	
cu
t	w

id
th
	

number	of	inser:ons	

Average	cut	width	vs	number	of	inser:ons	

Kahn	 Eades	 flow	procedure	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

21

Figure 22. The relationship between the number of feedback arcs and the number of inversions.

Figure 23. The relationship between the ACW and the number of inversions.

0	

500	

1000	

1500	

2000	

2500	

3000	

9	 11	 13	 14	 17	 19	 21	 23	 25	 27	 29	 31	

nu
m
be

r	o
f	f
ee
db

ac
k	
ar
cs
	

number	of	inversions	

Number	of	feedback	arcs	vs	number	of	inversions	

Kahn	 Eades	 flow	procedure	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

9	 11	 13	 14	 17	 19	 21	 23	 25	 27	 29	 31	

av
er
ag
e	
cu
t	w

id
th
	

number	of	inversions	

Average	cut	width	vs	number	of	inversions	

Kahn	 Eades	 flow	procedure	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

22

10 References
1. Benedict Paten, Adam Novak, David Haussler, Mapping to a Reference Genome Structure, eprint

arXiv:1404.5010.

2. Benedict Paten, Adam M Novak, Erik Garrison, Glenn Hickey.: Superbubbles, Ultrabubbles and
Cacti. Proceedings of RECOMB 2017.

3. Ali Baharev, Herman Schichl, Arnold Neumaer, Tobias Achterberg.: An exact method for the
minimum feedback arc set problem.

4. Richard M. Karp.: Reducibility among combinatorial problems. In R. E. Miller, J. W. Thatcher,
and J. D. Bohlinger, editors, Complexity of Computer Computations, The IBM Research
Symposia Series, pages 85–103. Springer US, 1972.

5. Brandenburg, F.Hanauer, K.: Sorting Heuristics for the Feedback Arc Set Problem. Technical
Report. Number MIP-1104, (2011).

6. Gavril, F.: Some NP-complete problems on graphs. In Proceedings of the 11th conference on
information Sciences and Systems. pp. 91-95 (1977).

7. Martí, R., Pantrigo, J., Duarte, A., Pardo, E.: Branch and bound for the cutwidth minimization
problem. Computers & Operations Research. 40, 137-149 (2013). doi: 10.1016/j.cor.2012.05.016

8. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms. Mit Press, Cambridge
(Inglaterra) (2009).

9. Medvedev, P.Brudno, M.: Maximum Likelihood Genome Assembly. Journal of Computational
Biology. 16, 1101-1116 (2009). doi: 10.1089/cmb.2009.0047

10. Flows in networks. Princeton University Press. (1962)

11. https://www.bioconductor.org/packages/release/bioc/html/RSVSim.html

12. https://github.com/vgteam/vg

13. Kahn, A.: Topological sorting of large networks. Communications of the ACM. 5, 558-562
(1962). doi: 10.1145/368996.369025

14. Eades, P., Lin, X., Smyth, W.: A fast and effective heuristic for the feedback arc set problem.
Information Processing Letters. 47, 319-323 (1993). doi: 10.1016/0020-0190(93)90079-O

15. Nguyen, N., Hickey, G., Zerbino, D., Raney, B., Earl, D., Armstrong, J., Kent, W., Haussler, D.,
Paten, B.: Building a Pan-Genome Reference for a Population. Journal of Computational Biology.
22, 387-401 (2015). doi: 10.1089/cmb.2014.0146

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101501doi: bioRxiv preprint

https://doi.org/10.1101/101501
http://creativecommons.org/licenses/by/4.0/

