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Abstract 

Hi-C is a powerful technology for studying genome-wide chromatin interactions. However, 

current methods for assessing Hi-C data reproducibility ignore spatial features in Hi-C data, such 

as domain structure and distance dependence. We present the stratum-adjusted correlation 

coefficient (SCC), a reproducibility measure that accounts for these features. SCC can assess 

pairwise differences between Hi-C matrices under a wide range of settings and can be used to 

determine optimal sequencing depth. The measure consistently shows higher accuracy than 

existing approaches in distinguishing subtle differences in reproducibility and depicting 

interrelationships of cell lineages. The R package HiCRep implements our approach. 

Keywords: Hi-C, reproducibility, quality control, stratification, chromatin interaction, 3D 

genome organization 
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Background 

The three-dimensional (3D) genome organization across a wide range of length scales is 

important for proper cellular functions [1–3]. At large distances, non-random hierarchical 

territories of chromosomes inside the cell nucleus are tightly linked with gene regulation [4]. At 

a finer resolution, the interactions between distal regulatory elements and their target genes are 

essential for orchestrating correct gene expression across time and space (e.g. different tissues). 

A progression of high-throughput methods based on chromatin conformation capture (3C) [5] 

has emerged, including  4C [6], 5C [7], Hi-C [8], ChIA-PET [9], Capture Hi-C [10], and HiChIP 

[11]. These methods offer an unprecedented opportunity to study higher-order chromatin 

structure at various scales. Among them, the Hi-C technology and its variants are of particular 

interest due to their relatively unbiased genome-wide coverage and ability to measure chromatin 

interaction intensities between any two given genomic loci. 

However, the analysis and interpretation of Hi-C data are still in their early stages. In 

particular, no sound statistical metric to evaluate the quality of Hi-C data has been developed. 

When biological replicates are not available, investigators often rely on either visual inspection 

of the Hi-C interaction heatmap or examination of the ratio of long-range interaction read pairs 

over the total sequenced reads [12–14], but neither of these approaches is supported by robust 

statistics. When two or more biological replicates are available, it is a common practice to use 

either Pearson or Spearman correlation coefficients between the two Hi-C data matrices as a 

metric for data quality [13,15–20]. However, such correlation approaches may lead to incorrect 

conclusions because they do not take into consideration the unique characteristics of Hi-C data, 

such as domain structures and distance dependence, which refers to the pattern that the 

chromatin interaction frequencies between two genomic loci, on average, decrease substantially 
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as their genomic distance increases. As we will demonstrate here, two unrelated biological 

samples can have a high Pearson correlation coefficient, while two visually similar replicates can 

have a low Spearman correlation coefficient. It is also not uncommon to observe higher Pearson 

and Spearman correlations between unrelated samples than those between real biological 

replicates.  

In this work, we develop a novel framework for assessing the reproducibility of Hi-C 

data that takes into account the unique spatial features of the data. Our method first minimizes 

the effect of noise and biases by smoothing the Hi-C matrix, and then it addresses the distance-

dependence effect by stratifying Hi-C data according to their genomic distance. We further 

develop a stratum-adjusted correlation coefficient (SCC) as a measurement of Hi-C data 

reproducibility. The value of SCC, which ranges from -1 to 1, can be used to compare the 

degrees of differences in reproducibility. Our framework can also infer confidence intervals for 

SCC, and further it can estimate the statistical significance of the difference in reproducibility 

measurements for different data sets. We applied this framework to three different groups of 

publicly available Hi-C data sets. The SCC was able to distinguish biological replicates from 

non-replicates, whereas Pearson and Spearman correlations failed to do so consistently. We also 

show that the SCC metric can be used as a distance measure to compare Hi-C data matrices from 

different cell types. When comparing Hi-C data from human embryonic stem cells and lineage-

specific, differentiated cells derived from them, we found that only SCC correctly resolved all 

the interrelationships between different cell lineages, demonstrating the power of the proposed 

framework. Our algorithm was implemented as an R package called HiCRep, which is freely 

available on GitHub.  
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Results 

Spatial patterns in Hi-C data and their influence on reproducibility assessment     

Unlike many other genomic data types, Hi-C data exhibits unique spatial patterns. One 

prominent pattern is the strong decay of interaction frequency with the increase of genomic 

distance between interaction loci, i.e. the so-called distance dependence. This pattern is generally 

thought to result from non-specific interactions, which are more likely to occur between loci at 

closer genomic distance than those at a greater distance [21,22]. This distance dependence is 

found consistently in every Hi-C matrix and is one of the most dominant patterns in the matrix of 

interaction frequencies measured by Hi-C [21]. This dominance of the high interaction 

frequencies at short distances generates strong but spurious association between Hi-C matrices 

even when the samples are unrelated, as revealed by the high Pearson correlation between any 

two Hi-C matrices. As an example, we computed the Pearson correlations of Hi-C contact 

matrices between two biological replicates and between two unrelated cell lines, hESC and 

IMR90 [23]. Strikingly, the Pearson correlation between a hESC sample and an IMR90 sample is 

even higher than the correlation between two biological replicates in hESC (ρ =0.92 vs ρ = 0.91), 

despite the high similarity between the biological replicates (Figure 1A). Further investigation 

confirmed that this is because the Hi-C data in hESC and IMR90 share a highly similar pattern of 

distance-dependent interactions (Figure 1B). Therefore, the Pearson correlation coefficient 

cannot distinguish real biological replicates from unrelated samples.   

Another important pattern of Hi-C data is the domain structure in their contact maps. 

These structures represent contiguous regions in which loci tend to interact more frequently with 

each other than with outside regions. While the interactions within the structures can be highly 

variable between difference cell types, the domain structures, such as topologically associating 

domains (TADs), are stable across cell types [23–25]. Therefore, we expect a higher 
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reproducibility at the domain level than at the individual contact level. This difference should be 

reflected in the reproducibility assessment. However, both Pearson and Spearman correlation 

coefficients only consider point interactions, and do not take domain structures into account. A 

consequence of this is that Spearman correlation can be driven to low values by the stochastic 

variation in the point interactions and overlook the similarity in domain structures. As a result, 

two biological replicates that have highly similar domain structures may have a low Spearman 

correlation coefficient; conversely, a sample may have a higher Spearman correlation with an 

unrelated sample than with its biological replicates when the stochastic variation is high. For 

instance, despite the high similarity between the biological replicates in IMR90 and hESC, their 

Spearman correlations are only 0.47 and 0.37, respectively. However, the Spearman correlation 

between an IMR90 sample and a hESC sample is higher (0.44) than the correlation between the 

two hESC replicates, even though there are many differences in the domain structures of the two 

cell lines. Therefore, we need a more sophisticated evaluation metric to incorporate both 

structural aspects of variation for a better assessment of the reproducibility of Hi-C data.  

Overview of the HiCRep method 

We develop a novel two-stage approach to evaluate the reproducibility of Hi-C data (Figure 2). 

The first stage is smoothing the raw contact matrix in order to reduce local noise in the contact 

map and to make domain structures more visible. The smoothing is accomplished by applying a 

2D mean filter, which replaces the read count of each contact in the contact map with the average 

counts of all contacts in its neighborhood. In the second stage, we apply a stratification approach 

to account for the pronounced distance dependence in the Hi-C data. This stage proceeds in two 

steps. First we stratify the smoothed chromatin interactions according to their genomic distance, 

and then we apply a novel stratum-adjusted correlation coefficient statistic (SCC) to assess the 
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reproducibility of the Hi-C matrices. The SCC statistic is calculated by computing a Pearson 

correlation coefficient for each stratum (Figure 2) and then aggregating the stratum-specific 

correlation coefficients using a weighted average, with the weights derived from the generalized 

Cochran-Mantel-Haenszel (CMH) statistic [26,27].  The value of SCC ranges from -1 to 1 and 

can be interpreted in a way similar to the standard correlation. A great advantage of our approach 

is that we can derive the asymptotic variance of SCC and use it to assess statistical significance 

when comparing reproducibility from different samples. More detailed descriptions of the 

HiCRep method and the SCC statistic are presented in the Methods section. 

Distinguishing pseudo, real and non-replicates 

We first evaluated the performance of our method on samples whose expected levels of 

reproducibility are known: pseudo-replicates (PR), biological replicates (BR) and non-replicates 

(NR). Biological replicates refer to two independent Hi-C experiments performed on the same 

cell types. Non-replicates refer to Hi-C experiments performed on different cell types. Pseudo 

replicates are generated by pooling reads from biological replicates together and randomly 

partitioning them into two equal portions. The difference between two pseudo-replicates only 

reflects sampling variation, without biological or technical variation. Therefore, we expect that 

the reproducibility of pseudo-replicates is the highest, followed by biological replicates and then 

non-replicates.  

For testing, we first generated PR, BR and NR using Hi-C data in the hESC and IMR90 cell lines 

[23] (details in Methods). We compared the performance of SCC with Pearson correlation and 

Spearman correlation and investigated whether these metrics can distinguish PR, BR and NR 

(Figure 3A and Table S1). For the hESC dataset, SCC correctly ranks the reproducibility of the 

three types of replicate pairs (PR>BR>NR), whereas Pearson and Spearman correlations both 
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incorrectly rank BR lower than one or more of the NRs. For the IMR90 dataset, although all 

three methods infer the correct order of reproducibility, SCC separates BR from NR by a much 

larger margin than the other metrics. For example, the largest difference between BR and NR 

reported by SCC is 0.24, compared to only 0.08 by Pearson and 0.13 by Spearman correlations.  

The sequencing depths differ substantially for the hESC (replicate 1:  60M; replicate 2: 

271M) and IMR90 (replicate 1: 201M; replicate 2: 153M) datasets. To ensure that these 

differences were not confounding our evaluations, we subsampled all the replicates to 60 million 

reads and repeated the same analysis. As shown in Figure 3A (blue dots), even with the same 

number of reads, Pearson and Spearman correlations still fail to distinguish real replicates from 

all non-replicates. On the contrary, our method consistently ordered the reproducibility of 

replicates correctly, indicating that SCC can capture the intrinsic differences between the 

samples, even those that differ in sequencing depth. 

We expanded this analysis to a larger Hi-C dataset recently released by the ENCODE 

consortium. This dataset consists of Hi-C data from eleven cancer cell lines, with two biological 

replicates for each cell type (details are in Methods). For each cell type, we formed twenty non-

replicate pairs with the remaining ten cell types and computed SCC, Pearson and Spearman 

correlations for BR and all NRs. As shown in Figure 3B and Table S2, SCC clearly distinguishes 

BRs from NRs (a p-value = 1.665 × 10-15, one-sided Kolmogorov-Smirnov test), while the other 

two methods fail to do so (Pearson: p-value = 0.084; Spearman: p-value = 0.254, K-S test). 

Because the sequencing depth of the Hi-C data varies across cell types, we also examined the 

separation between BRs and NRs for each cell type. As shown in Figure 3C, SCC separates the 

BRs and NRs for all the cell types by a margin of at least 0.1, whereas the other two methods fail 

to separate them in more than half of the cell types (additional file 1: Figure S1). Furthermore, 
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SCC illustrates a desirable correspondence to the sequencing depth. When the average 

sequencing depth between the biological replicates is relatively low (<30M), SCC monotonically 

increases with the sequencing depth; this behavior likely reflects insufficient coverage at the 

lower sequencing depths. In contrast, the value for SCC remains high and stable for greater 

sequencing depths (Figure 3C), reflecting saturation of reproducibility and likely reflecting 

sufficient coverage. We investigate this property further in a later section. 

Evaluating biological relevance by constructing cell lineages 

Next we used our method as a similarity measure to infer the interrelationship between cell types 

on a cell lineage. Because this assessment requires the reproducibility measure to quantify the 

subtle differences between closely related cells, it serves as a biologically relevant approach to 

evaluating the accuracy of the reproducibility measure. More importantly, it also evaluates the 

potential of our method as a measure for quantifying the similarities or differences of Hi-C 

matrices in different cell or tissue types.  

For this analysis, we used the Hi-C data in human embryonic stem (ES) cells and in four 

cell lineages derived from them [13], namely, mesendoderm (ME), mesenchymal stem cells 

(MS), neural progenitor cells (NP), and trophoblast-like cells (TB), with two biological replicates 

for each cell type. Using the A/B compartments in Hi-C data, Dixon et al. [13] inferred the 

distance to the parental ES cell from the nearest to the farthest as ME, NP, TB and MS (Figure 

4A).  Importantly, the same relationships were also supported by previous analysis of gene 

expression data (additional file 1: Figure S2) in the same cell types [28].  

We first calculated the pairwise similarities between the ten samples (two replicates in 

each cell type) using SCC, Pearson and Spearman correlations (Table S3). As shown in Figure 
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S3 (additional file 1), SCC again provided the best separation between real replicates and non-

replicates among all three methods of comparison.  

Next, we reconstructed the relationships among the cell lineages by performing 

hierarchical clustering based on the pairwise similarity scores. As shown in Figure 4B, the 

dendrogram constructed based on SCC precisely depicts the interrelationships: all the biological 

replicates are grouped together as terminal clusters, and the relationships between cell lines 

exactly follow the tree structure in Dixon et al. [13] and Xie et al. [28] (Figure 4A).  In contrast, 

the dendrograms constructed based on Pearson (Figure 4C) and Spearman correlation 

coefficients (Figure 4D) group several non-replicates together and infer different relationships 

between some cell lines. For example, when using Pearson correlation, two ME replicates are not 

clustered together and NP is unexpectedly placed as the least related cell type to ES cells. When 

using Spearman correlation, an ES replicate is clustered with an ME replicate and again NP is 

unexpectedly predicted as the least related cell type to ES cells. 

 We further expanded this analysis using the recently published Hi-C data in fourteen 

human primary tissues and two cell lines [29] (Table S4). Because biological replicates are not 

available for all the samples, our analysis focused on quantifying the relationships between 

tissues or cells.  Again, the lineage constructed based on SCC reasonably depicted the tissue and 

germ layer origins of the samples (Figure 5A): hippocampus and cortex were grouped together; 

right ventricle and left ventricle were grouped together; endodermal tissues such as pancreas, 

lung, and small bowel were placed in the same lineage. Neither Pearson nor Spearman 

correlation performed as well as SCC. For example, right and left ventricles were not grouped 

together by Spearman correlation (Figure 5C).  These results confirm the potential of our method 

as a measure for quantifying the difference in Hi-C data between cell or tissue types. 
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SCC is robust to different choices of resolution 

Depending on the sequencing depth, Hi-C data analysis may be performed at different 

resolutions. A good reproducibility measure should perform well despite the choice of resolution. 

To evaluate the robustness of our method, we repeated the clustering analysis for the human ES 

and ES-derived cell lineages using data processed at several different resolutions (i.e., 10Kb, 

25Kb, 40Kb, 100Kb, 500Kb, 1Mb). Again, as shown in Figure 6 and Table S5, we observed that 

SCC inferred the expected relationships at all resolutions considered, whereas Pearson and 

Spearman correlations inferred the expected relationships only at 500Kb and 1Mb. Furthermore, 

unlike Pearson and Spearman correlations, whose values drastically change at different 

resolutions, the values of SCC remain in a consistent range across all resolutions. These results 

confirm the robustness of our method to the choice of resolution. 

Detecting differences in reproducibility due to sequencing depth 

Sequencing depth is known to affect the signal-to-noise ratio and the reproducibility of Hi-C data 

[21]. Insufficient coverage can reduce the reproducibility of a Hi-C experiment. As a quality 

control tool, a reproducibility measure is expected to be able to detect the differences in 

reproducibility due to sequencing depth. To evaluate the sensitivity of our method to sequencing 

depth, we subsampled all the samples in the H1 ES cell lineage [13] to create a series of 

subsamples with different sequencing depths (25%, 50% and 75% of the original sequencing 

depth). We then computed SCC for all samples. As shown in Figure 7A and Table S6, SCC 

monotonically decreases with sequencing depth in all data sets. This confirms that our method 

can reflect the change of reproducibility due to sequencing depth. 

Using SCC to guide the selection of the optimal sequencing depth  
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Having established that SCC can reflect the change of reproducibility due to the change of 

sequencing depth, we propose to use the saturation of SCC as a criterion to determine the most 

cost-effective sequencing depth that achieves a reasonable reproducibility. To illustrate how to 

use our method to determine the optimal sequencing depth, we created subsamples at a series of 

reduced sequencing depths from the Hi-C data in the H1 ES cell in [13] (original depth=500M) 

by down-sampling. As shown in Figure 7B and Table S7, SCC initially increases with the 

increase of sequencing depth when the number of total reads is less than 200 million. SCC 

increases little after this point (less than 0.01) and eventually reaches a plateau (Figure 7B). To 

determine the lowest sequencing level that achieves similar reproducibility as the original data, 

we compared the 90% confidence intervals of SCC at all the reduced sequencing depths with that 

of the original depth. Starting at 300M (60% of the original depth), the confidence intervals 

overlap with that of the original depth.  This indicates that the reduced samples can achieve a 

similar level of reproducibility as the original one by using about 60% of the original depth for 

this dataset. Further increase of sequencing depth beyond this point does not significantly 

improve reproducibility.  

As a comparison, we performed a similar analysis using a dataset with relatively low 

sequencing depth (30M Hi-C reads from the A549 cell line). We observe that all the reduced 

samples with less than 90% of the original sequencing depth (27M) have a significantly lower 

reproducibility than the original sample at the 90% significance level (Figure 7B and Table S7). 

From 90% to the original depth, there is still an increase of SCC of 0.01, compared with less than 

0.001 for the hESC dataset, suggesting that this dataset may not reach saturation in 

reproducibility at its original sequencing depth. For this dataset, further increase of sequencing 

depth may improve reproducibility. 
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Discussion 

Although there has been a dramatic increase in the scope and complexity of Hi-C experiments, 

analytical tools for data quality control have been lacking. Current approaches for assessing Hi-C 

data reproducibility may lead to incorrect conclusions because they fail to take into consideration 

the unique spatial characteristics of Hi-C data. In this work, we developed a new method for 

assessing the reproducibility of Hi-C contact frequency maps. By effectively taking account of 

the spatial features of Hi-C data, our reproducibility measure overcomes the limitations of 

Pearson and Spearman correlations and can differentiate the reproducibility of samples at a fine 

level.  The empirical evaluation showed that SCC distinguished subtle differences between 

closely related cell lines, biological replicates and pseudo replicates, and it produced robust 

results at different resolutions.  

Our statistic has several properties that make it well-suited as a reproducibility measure 

for providing standardized, interpretable, automatable and scalable quality control. First, this 

statistic has a fixed scale of [-1, 1], which makes it easy to standardize the quality control process 

and compare reproducibility across samples. Second, our statistic is intuitive and easy to 

interpret. It can be interpreted as a weighted average correlation coefficient over different 

interaction distances. This straightforward interpretation makes it accessible to experimentalists. 

Third, our statistic is fast to compute and is directly applicable to the raw contact matrix. It is 

easily scalable for monitoring data quality for a large number of experiments.  Furthermore, we 

also provide an estimator for the variance of this statistics, such that the statistical significance of 

the difference in reproducibility can be inferred. Using this estimator, we establish a procedure to 

determine the sufficiency of sequencing depth.   
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In summary, we develop a novel method to accurately evaluate the reproducibility of Hi-

C experiments. The presented method is a first step toward ensuring high reproducibility of Hi-C 

data. We also show that this method can be used as a similarity measure for quantifying the 

differences in Hi-C data between different cell and tissue types. Thus, HiCRep is a valuable tool 

for the study of 3D genome organization. It is freely available as an R package at 

https://github.com/MonkeyLB/hicrep. 

 

Methods 

Data Preprocessing 

We generated the Hi-C contact matrix using the pipeline from [13]. Briefly, the paired-end reads 

were first aligned to the hg19 reference genome assembly using BWA [30]. The unmapped reads 

were filtered, and potential PCR duplicates were removed using Picardtools 

(https://broadinstitute.github.io/picard/). For most analysis, we used 40kb bins. To obtain contact 

maps at this resolution, we divided the genome into 40kb bins as in [13] and obtained the 

interaction frequency by counting the number of reads falling into each pair of bins. Here we 

chose to apply our method directly to raw data without bias correction, so that the reproducibility 

assessment is free of assumptions made in the bias correction procedures [15,16,31], and 

faithfully reflects the nature of the raw data. Only the intra-chromosomal interactions were used 

for our analysis.  Given that the interactions over 5Mb in distance are rare, only the contacts 

within the range of 0~5Mb were used in the reproducibility assessment. All the datasets were 

preprocessed using the same preprocessing procedure.  

2D mean filter smoothing 
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Because the space of interactions surveyed by Hi-C experiments is very large, achieving 

sufficient coverage is still challenging. When samples are not sufficiently sequenced, the local 

variation introduced by under-sampling can make it difficult to capture large domain structures.   

To handle this issue, we first smooth the contact map before assessing reproducibility. Although 

smoothing will reduce the individual spatial resolution, it can improve the contiguity of the 

regions with elevated interaction, consequently enhancing the domain structures. It has been 

found effective in commonly-used Hi-C normalization methods [15,32].  

We use a 2D mean filter to smooth the contact map. The filter replaces the read count of each 

contact in the contact map with the mean counts of all contacts in its genomic neighborhood. 

This filter is fast to compute and is effective for smoothing rectangular shapes [33] like domain 

structures in Hi-C data.  Specifically, let nnC ×  denote a nn ×  contact map and cij denote the 

counts of the interaction between loci i and j. Given a span size h>0, the smoothed contact map 

after passing a hth 2D mean filter is defined as follows: 
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A visualization of the smoothing effect with different window sizes is shown in Figure S4 

(additional file 1).  

Selection of smoothing parameter  

The span size h is a tuning parameter controlling the smoothing level. A very small h might not 

reduce enough local variation to enhance the boundaries of domain structures, while a large h 

will make the boundaries of domain structures blurry and limit the spatial resolution. Therefore, 

the optimal h should be adaptively chosen from the data.  
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To select h objectively, we developed a heuristic procedure to search for the optimal choice.  Our 

procedure is designed based on the observation that the correlation between contact maps of 

replicate samples first increases with the level of smoothness and then plateaus when sufficient 

smoothness is reached. To proceed, we used a pair of reasonably deeply sequenced interaction 

maps as the training data. We randomly sampled 10% of the data ten times. For each subsample, 

we computed the stratum-adjusted correlation coefficient (SCC, described in a later section) at a 

series of h’s in the ascending order and recorded the smallest h at which the increment of SCC 

was less than 0.01. The mode of h among the ten subsamples was selected as the final span size. 

The detailed steps are shown in Algorithm 1 in additional file 1.  

Because the level of local variation in a contact map depends on the resolution used to process 

the data, the span size required to achieve sufficient smoothness varies according to resolution. 

Hence, a proper h for each resolution needs to be trained separately. However, at a given 

resolution, it is desirable to use the same h for all datasets, so that the downstream reproducibility 

assessment can be compared on the same basis. To reduce the chance of over-smoothing due to 

sparseness caused by insufficient coverage when training h, we used a deeply sequenced data set 

as training data. 

Here we obtained h in our analysis from the Human H1 ESC dataset [13]. This dataset was 

deeply sequenced (330M and 740M reads for its two replicates) and had a reasonable quality 

[13], making it suitable as training data. We processed the data using a series of resolutions 

(10Kb, 25Kb, 40Kb, 100Kb, 500Kb and 1Mb), and then selected h for each resolution using the 

procedure described above.  We obtained h=20, 11, 5, 3, 1, and 0 for the resolution of 10Kb, 

25Kb, 40Kb, 100Kb, 500Kb and 1Mb, respectively.  These values were used throughout our 
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study for all datasets at the corresponding resolutions.  The robustness of our procedure was 

assessed using the Human H1 ESC dataset and four derived cell lines (details are in the Results 

section). 

Stratification by distance 

To take proper account of the distance effect in reproducibility assessment, we stratify the 

contacts by the genomic distance between their interaction loci. Specifically, let Xn×n be an n×n 

smoothed contact map at a resolution of bin size b. We compute the interaction distance for each 

contact xij as dij = |j - i|×b and then stratify the contacts by dij into K strata, Xk = {xij: (k-1)b < dij ≤ 

kb}, k = 1, … K.  Here we consider the interaction distance of 0 ~ 5Mb. This leads to K = 125 for 

the bin size b = 40kb. If xij is 0 in both samples, then it is excluded from the reproducibility 

assessment. 

Stratum-adjusted correlation coefficient (SCC)   

Our reproducibility statistic is motivated from the generalized Cochran-Mantel-Haenszel (CMH) 

statistic M2. The CMH statistic is a stratum-adjusted summary statistic for testing if two variables 

are associated while being stratified by the third variable [27], for example, the association 

between treatment and response stratified by age. Though originally developed for categorical 

data, it is also applicable to continuous data [26] and can detect consistent linear association 

across strata. However, the magnitude of M2 depends on the sample size; therefore, it cannot be 

used directly as a measure of the strength of the association. When there is no stratification, the 

CMH statistic is related to the Pearson correlation coefficient ρ as M2 = ρ2(N-1), where N is the 

number of observations [27]. This relationship allows the strength of association summarized by 

M2 to be represented using a measure that has a fixed scale and is comparable across different 
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samples. However, ρ does not involve stratification. This motivates us to derive a stratum-

adjusted correlation coefficient (SCC) to summarize the strength of association from the CMH 

statistic when there is stratification.  

Derivation of stratum-adjusted correlation coefficient (SCC) 

Let (X, Y) denote a pair of samples with N observations. The observations are stratified into K 

strata, and each stratum has Nk observations such that NN
K

k k =∑ =1
. Denote the observations in 

stratum k as ),( 11 kk
yx , …, ),(

kk NN yx  and the corresponding random variables as (Xk, Yk), 

respectively. In our context, ),(
kk ii yx  are the smoothed counts of the ith contact on the kth stratum 

in the two contact maps X and Y. Let ∑ =
= k

kk

N

i iik yxT
1
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To derive the stratum-adjusted correlation coefficient from the CMH statistic, write the Pearson 

correlation coefficient kρ for the kth stratum as
k

k
k r

r

2

1=ρ , where  
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From (8), it can be seen that 
2

sρ  reflects the strength of association in M2. This strength relates 

to M2 in a similar way as the Pearson correlation to M2 in the case without stratification.  As 
shown in (7), sρ is a weighted average of the stratum-specific correlation coefficients, with 
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weights 
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=  assigned according to the variance and sample size of a stratum. We 

call sρ  the stratum-adjusted correlation coefficient (SCC). Similar to standard correlation 

coefficients, it satisfies 11 ≤≤− sρ . A value of 1=sρ corresponds to a perfect positive 

correlation, a value of 1=sρ corresponds to a perfect negative correlation, and a value of 0=sρ  

corresponds to no correlation.  

The variance of sρ can be computed as  
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ρ is the asymptotic standard error for the Pearson 

correlation coefficient in a single stratum [34]. 

The idea of obtaining an average correlation coefficient based on the CMH statistic has been 

explored in [35] in the context of contingency tables with ordered categories. However, its 

derivation has several errors, which lead to a different statistic that ignores the sample size 

differences in different strata.    

Variance stabilized weights  

The downside for Equation (7) is that it is based on the implicit assumption in the CMH statistic 

that the dynamic ranges of X and Y are constant across strata. However, in Hi-C data, the read 

counts for contacts with short interaction distances have a much larger dynamic range than those 

with long interaction distances. As a result, the weights for the strata with large dynamic ranges 

will dominate (7), due to the large values of their ���.To normalize the dynamic range, we rank 

the contact counts in each stratum separately and then normalize the ranks by the total number of 

observations ��  in each stratum, such that all strata share a similar dynamic range. We then 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101386doi: bioRxiv preprint 

https://doi.org/10.1101/101386
http://creativecommons.org/licenses/by-nc-nd/4.0/


compute ��� in the weights in (7) and (9) using the normalized ranks, instead of the actual 

counts, i.e.  
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The stratum-specific correlation kρ  is still computed using actual values rather than ranks, as 

actual values have better sensitivity than ranks when there are a large number of low counts.  

Implementation of our pipeline 

We have implemented our method as an R package. It is publicly available as the HiCRep 

package on GitHub https://github.com/MonkeyLB/hicrep.  
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We obtained the Hi-C data of human embryonic stem cells (hESCs) and human IMR90 

fibroblasts from Dixon, et al. (2012) [23] (GEO accession number: GSE35156). Each cell type 

has two biological replicates. 

We obtained the Hi-C data of human embryonic stem (ES) cells and four human ES-cell-derived 

lineages, mesendoderm (ME), mesenchymal stem (MS) cells, neural progenitor (NP) cells and 

trophoblast-like (TB) cells from Dixon, et al. (2015) [13] (GEO accession number: GSE52457). 

Each cell type has two biological replicates. 

We obtained the Hi-C data of eleven human cancer cell lines from the ENCODE consortium 

(https://www.encodeproject.org). This dataset includes cell lines of G401, A549, CAKi2, 

PANC1, RPMI7951, T47D, NCIH460, SKMEL5, LNCaP, SKNMC and SKNDZ. Each cell line 

has two biological replicates. The sequencing depths of the datasets can be found in Table S8. 

We obtained the Hi-C data of fourteen human primary tissues from Schmitt, et al. (2016) [29] 

and Leung, et al. (2015) [36]. The tissues include adrenal gland (GSM2322539), bladder 

(GSM2322540, GSM2322541), dorsolateral prefrontal cortex (GSM2322542), hippocampus 

(GSM2322543), lung (GSM2322544), ovary (GSM2322546), pancreas (GSM2322547), psoas 

muscle (GSM2322551), right ventricle (GSM2322554), small bowel (GSM2322555), spleen 

(GSM2322556), liver (GSM1419084), left ventricle (GSM1419085), and aorta (GSM1419086). 

The tissues were collected from four donors, each of which provides a subset of tissues. To 

minimize variation due to individual difference, we used the samples from the two donors with 

the largest number of tissues. If one tissue sample consists of multiple replicates from a single 

donor, the replicates were merged into a single dataset. We obtained the GM12878 cell data from 

Selvaraj et al. (2013) (GSM1181867, GSM1181867) [37] and the IMR90 cell data from Dixon, 

et al. (2012) (GSM862724, GSM892307) [23].  
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Figure 1. An illustration example. (A) Hi-C contact maps of the biological replicates of hESC 

and IMR90. (B) Relationship between genomic distance and the average contact frequency for a 

hESC sample and an IMR90 sample. Data is from chromosome 22: 32000000 – 40000000. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101386doi: bioRxiv preprint 

https://doi.org/10.1101/101386
http://creativecommons.org/licenses/by-nc-nd/4.0/


.  

Figure 2. A schematic representation of our method.  

 

Figure 3. Discrimination of pseudo replicates (PR), biological replicates (BR) and non-replicates 

(NR). (A) Reproducibility scores for the illustration example (hESC and IMR90 cell lines) in 

Figure 1. Red dots are the results in the original samples, and blue dots are the results after 

equalizing the sequencing depth in all samples. (B-C) Reproducibility scores for the BR and NR 

in the ENCODE 11 cancer cell lines. The triangle represents the score for a BR and the boxplot 

represents the distribution of the scores for NRs.  (B) Reproducibility scores for BRs and NRs in 

all cell types.  (C) SCC for BRs and the corresponding NRs in each cell type. From left to right, 

the cell lines are ordered according to the average sequencing depths of the biological replicates.  

Figure 4. Estimating interrelationship between the ten samples in the human H1 ESC lineage. 

(A) The lineage relationship between the ES cell and its five derived cells based on previous 

analysis from gene expression data and A/B compartments in Hi-C data in [17, 18]. (B-D) 

Estimated interrelationship based on the pairwise similarity score calculated using (B) SCC (C) 

Pearson correlation and (D) Spearman correlation. Heatmaps show the similarity scores. 

Dendrograms are resulted from a hierarchical clustering analysis based on the similarity scores. 

For easy visualization, the cell lines in the heatmaps are ordered according to their known 

distances to ES cells in (A). A decreasing trend of scores is expected from left to right (from 

bottom to top, respectively) if the estimated interrelationship agrees with the known lineage.   

Figure 5. Estimated interrelationship for fourteen human primary tissues and two cell lines in 

[29]. The dendrograms are resulted from a hierarchical clustering analysis based on the pairwise 

similarity calculated using (A) SCC, (B) Pearson correlation and (C) Spearman correlation.  
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Figure 6. Estimated similarity between the human H1 ES cell and its derived cells at different 

resolutions. (A) SCC, (B) Pearson correlation coefficient, and (C) Spearman correlation 

coefficient. 

Figure 7. Detecting the change of reproducibility due to sequencing depth using SCC. (A) SCC 

of downsampled biological replicates (25%, 50%, 75%, 100% of the original sequencing depth) 

for the five cell lines on the H1 ES cell lineage. (B) Saturation curves of SCC for datasets with 

different coverages. Plotted is the SCC at different subsamples (10%-90%) of the original 

samples with 90% confidence intervals. The blue dots represent H1 human ESC data (original 

sequencing depth=500M).  The red dots represent the A549 data (original sequencing 

depth=30M).   
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