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In commercial organizations, the primary reason for creating and maintaining such databases is their impor-
tance in the process of drug discovery, while in research they are used to understand the biological basis of
disease. Thus, a high level of data quality is crucial.

However, since these databases are fed by direct submissions from individual laboratories and by bulk
submissions from large-scale sequencing centers, they suffer from a range of data quality issues ([29]) including
errors, redundancies, ambiguities, incompleteness, and as we will show, discrepancies such as inconsistency
with the literature. Most of these records are linked to research articles in which the sequence was reported,
but the need to manually create the records on such a large scale means that errors creep in and, given the
volume, human curation alone is not sufficient for detection of these errors.

In this work, we seek to investigate and analyse the data quality of sequence databases from the perspec-
tive of a curator, who must detect anomalous and suspicious records. In contrast to previous research, which
has concerned detection of duplicate records ([12, 30]) and erroneous annotations ([7, 26, 43]), we emphasize
detection of low-quality records that we define as being inconsistent with the published literature. Specifi-
cally, we propose that the literature that is linked to records in their “reference” fields be automatically used
as background knowledge to check their quality. We explore a combination of information retrieval (IR) and
machine learning techniques to identify records that are anomalous and thus merit analysis by a curator.

To provide insight into the data quality of the nucleotide records cited by articles available in PubMed
Central> (PMC) from a literature consistency point of view, we analyzed these records as illustrated in
Figure 1. This figure shows the term overlap similarity® between the record definition and different sections
of its associated article(s) (representing the title, abstract, body, and the full text). There are three notable
trends here: first, term overlap increases from title to body and full text since the size grows accordingly;
second, there is a high term overlap of roughly 80% between the record description field and the literature
body section; and third, for a small number of records, in which the overlap similarity is below 0.2, there is
low overlap or no overlap at all between the description field and the full text of their associated articles, thus
statistically suggesting a data quality problem. As an example, the record with accession number KM403369%
doesn’t share any terms with the article PMC4465667° that is supposed to report on that record. Compared
to the median value, which is roughly 80% similarity between a record description field and the body section
of the article (see Figure 1), this association can be considered an outlier from a statistical perspective,
and can be argued to be weak. While this observation is purely statistical, it may be an indicator of a low
confidence in that record. Although this record is not necessary faulty, its characteristics in relation to the
overall statistical distribution clearly suggest that it should be flagged as “suspicious”, and should be sent

to a curator for further investigation.

’http://www.ncbi.nlm.nih.gov/pmc/

3We use the overlap similarity to emphasize the number of terms of a record definition that are in its associated article.
Here, Overlap(X1, X2) = | X1 N Xa| /min(|X1], | X2]).

4http://www.ncbi.nlm.nih.gov/nuccore/KM403369

Shttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465667/
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Figure 1: Overlap similarity between a record definition field and different sections of its associated document.

Usually, a suspicious record is reported manually, by a curator whose the job consists mainly to check the
database records, the record’s original submitter, or a third person who may use the database and notice the
inconsistency of that record. To illustrate the difficulty of the task of identifying failing records, we analysed
the distribution of record ages, for records which have been removed. This analysis showed that removed
records have an average age of about 1 month at their removal time. This leads us to make two hypotheses:
either (i) it takes about one month for a problematic record to be detected, or (ii) curators focus only on
new records, while neglecting older ones. Either way, it is clear that there is a time window of only 1 month
during which curators act. Hence, if a suspicious record is not identified in this time frame, it has a low
probability of being spotted. These observations show the difficulty of the curator’s job, and the need for
the development of automatic methods to assist them.

With the aim of assisting curators, and while focusing on GenBank, we present in this paper a method
for detection of suspicious records based on their associated articles and also on the collection of articles as
a whole. To the best of our knowledge, this work is the first to use the literature for data quality assessment

of bioinformatics sequence databases. The contributions of this paper are as follows:

e We demonstrate that the research literature can be automatically used for assessing the quality of a

record.

e We propose a list of quality indicators that correlate with the quality of a record. The quality indicators

are then used to train a learning anomaly detection algorithm.

e Our experiments on the full PubMed Central collection show that, although less than 0.25% of the
records in our data set are faulty, by automated comparison with literature they can be identified with

a precision of up to 10% and a recall of up to 30%, while greatly outperforming the best baseline.

2. Related Work

There is a substantial body of research related to data quality in bioinformatics databases. Previous

research has focused mainly on duplicate record detection and erroneous annotations, as reviewed below.
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2.1. Duplicate records

Koh et al. [30] use association rule mining to check for duplicate records with per-field exact, edit
distance, or BLAST sequence [1] alignment matching. Drawbacks of this method, and its poor performance,
have been shown by Chen et al. [12]. Similarly, Apiletti et al. [3] proposed extraction of association rules
among attribute values to find causality relationships among them. By analysing the support and confidence
of each rule, the method can show the presence of erroneous data. Other approaches also use approximate
string matching to compute metadata similarity [46, 52, 10]. However, as they focus only on metadata,
the underlying interpretation is that duplicates are assumed to have high metadata similarity, or that their
sequences are identical.

Other approaches consider duplicates at the sequence level; they examine sequence similarity and use a
similarity threshold to identify duplicates. For example, Holm and Sander [23] identified pairs of records with
over 90% mutual sequence identity. Heuristics have been used in some of these methods to skip unnecessary
pairwise comparisons, thus improving the efficiency. Li and Godzik [35] proposed CD-HIT, a fast sequence
clustering method that uses heuristics to estimate the anticipated sequence identity and will skip the sequence
alignment if the pair is expected to have low identity. Recently, Zorita et al. [60] proposed Star Code to detect
duplicate sequences, which uses the edit distance as a threshold and will skip pairs exceeding the threshold.

Such methods are valuable for this task, but do not address the problem of consistency or anomaly.

2.2. Erroneous annotations

Sequence databases exist as a resource for biomedicine, but the utility of the sequence of an organism
depends on the quality of its annotations [10]. The annotations indicate the locations of genes and the
coding regions in a sequence, and indicate what those genes do. That is, annotations serve as a reading
guide to a sequence, which makes the scientific community highly reliant on this information. Although
the research and development of algorithms for identifying coding sequences (CDSs) is still an active area
in bioinformatics research, genome annotation has evolved greatly during past few years [55, 17, 15, 51].
However, the functional annotation of CDSs is particularly difficult to automate [57]. Current state-of-the-
art functional annotation methods integrate multiple types of evidences [11, 4, 37], but unfortunately the
quality of functional annotations remains generally poor [2, 56, 49] and is highly dependent on resource-
intensive manual curation [40, 42].

Previous research work on function annotation identified potential problems with large-scale annotation
efforts [7, 5, 41], and misannotation is a growing concern among the general research community, as mis-
annotations can have a several impacts in diverse biological areas [44, 19, 25]. Even in very small bacterial
genomes, many misannotations may arise [31]. As for high-throughput functional annotations, errors may
occur due to a variety of factors [34, 39], but the most common errors are over-annotations, in which a
gene is given a specific but incorrect function [49, 31, 36]. Once made, functional annotation errors can

be difficult to correct in large scale sequence databases and as functional annotations are often inferred
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from sequence similarity to other annotated sequences, errors may “propagate” to newly sequenced genomes
through “(mis)annotation transfer” [18, 24, 43].

Overall, existing data quality analysis methods for sequence databases focus only on the internal char-
acteristics of records. Our work demonstrate that the literature associated to records is a valuable external

source of information for assessing the quality of sequence database records.

3. Background and Problem Definition

In this section, we first provide an overview of GenBank, the most commonly used sequence database,
and we describe the structure of a sequence record in GenBank. Next, we discuss several kinds of data issues

in bioinformatics sequence databases, and finally, we define in detail the problem we study.

3.1. GenBank overview

In this work, we mainly focus on GenBank as it is the most important and most influential sequence
archive repository for research in almost all biological fields, whose data are accessed and cited by millions of
researchers around the world. GenBank is produced and maintained by the National Center for Biotechnology
Information (NCBI), and is considered to be an archive rather than a database, because multiple versions of
a given record may be maintained for historical purposes. The sequence submission to GenBank can occur
through: (i) direct submissions from scientists using BankIt®, which is a Web-based form, or the stand-alone
submission program, Sequin’, or (ii) bulk submissions most often done by large-scale sequencing centers,
which include Expressed Sequence Tag (EST), Sequence-tagged site (STS), Genome Survey Sequence (GSS),
and High-Throughput Genome Sequence (HTGS). Upon receipt of a sequence submission, an accession
number is assigned to the sequence, and then, it is released to the public database, where the entry is
retrievable using Entrez®.

Due to the fact that records can be submitted by multiple research actors without any particular data
quality control, errors may occur. Errors can seriously hamper the efficacy of analysis, data mining, and
machine learning algorithms. Hence, a faulty record is usually reported manually, by a database curator,
the record’s original submitter, or a third person who may use the database and notice the inconsistency of
that record. However, updates and revisions of a GenBank sequence can also be made by the submitters at
any time.

In addition to GenBank which can be considered as an unreviewed repository and thus may contain low
quality sequences, NCBI also maintains other curated sequence databases such as the Reference Sequence

(RefSeq). RefSeq provides a comprehensive, integrated, non-redundant, well-annotated set of sequences,

Shttps://www.ncbi.nlm.nih.gov/WebSub/?tool=GenBank
"https://www.ncbi.nlm.nih.gov/Sequin/
8The Entrez Global Query Cross-Database Search System is a federated search engine, or web portal that allows users to

search many discrete health sciences databases at the National Center for Biotechnology Information (NCBI) website.
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including genomic DNA, transcripts, and proteins. RefSeq genomes are copies of selected assembled genomes
available in GenBank, which have been generated by several processes including manual curation, which is

known to be a tedious and painful task.

3.2. GenBank sequence record structure

The format of a sequence record can be regarded as having three parts: the header, which contains the
information that applies to the whole record; the features, which are the annotations on the sequence; and

the sequence itself. The header section is composed of several fields:

e LOCUS field: contains a number of different data elements, including locus name, sequence length,
molecule type, and modification date. The locus name is designed to help group entries with similar
sequences: the first three characters usually designate the organism; the fourth and fifth characters
can be used to show other group designations, such as gene product; for segmented entries the last

character is one of a series of sequential integers;

DEFINITION field: a brief description of sequence or sequence’s function;

ACCESSION field: a unique identifier for the record;

SOURCE field: gives information about the sequence’s organism;

REFERENCE field: lists a set of publications by the authors of the sequence that discuss the data

reported in the record.

It is clear that the header part represents in itself a rich source of information.
Based on the fact that articles discuss the data reported in the records, and that there is high term
overlap between the record definition and its associated articles as reported in Figure 1, we will primarily

focus on the record definitions to assess the quality of the records from a literature consistency point of view.

3.8. Classification of Biological Data Quality Issues

Given a sequence record with its multiple data elements, the complex sequence submission process and
the data integration pipeline defined to exchange data with other sequence databases, data quality issues
may have physical or conceptual sources. Hence, Koh et al. [28, 29] proposed to classify biological data issues
according to their presence in data items at mainly four levels of detail — individual attributes, individual
records, individual databases, and multiple databases, as shown in Figure 2. Below, we briefly discuss these

data quality issues.
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Figure 2: Classification of biological data issues by Koh et al. [28, 29].

3.8.1. Attribute-level data quality issues
Attribute level data issues are field values with uninformative, invalid, erroneous or ambiguous content.
Koh et al. [29] observed four main types of attribute level data quality issues — invalid attribute values,

ambiguous attribute values, dubious sequences, and contaminated sequences.

Invalid values: Header data issues result from the use of non-standard names, free-text entries, and from
the diversity of database schema used in different databases. The header information is usually entered and
provided by the person who submits the original record to the database (such as the description). Hence,
the header information may contain spelling errors or invalid field values. Koh et al. [29] identified 569
possible misspelled words affecting up to 20,505 nucleotide records in Entrez. For example, “immunoglobulin”
is misspelled as “immunoglobin” in the record with accession number AB122023°. Another example is

the organism “brachydanio rerio” (zebrafish) which is misspelled “brachidanio rerio” as in the record with

9http://www.ncbi.nlm.nih.gov/nuccore/AB122023


https://doi.org/10.1101/101246
http://creativecommons.org/licenses/by/4.0/

O©CO~NOOOTA~AWNPE

bioRxiv preprint doi: https://doi.org/10.1101/101246; this version posted January 18, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

accession numbers L2505710.

Ambiguity: As there is a lack of standardized naming conventions and controlled vocabulary use, vastly
different definitions may be used in database records to refer to the same sequence. The naming errors
include use of different names for the same sequence (synonym problem) or the same name for different
sequences (homonym problem) [53]. For example, the scorpion neurotoxin “BmK-X” precursor has many
possibly synonymous permutations. It is also known as “BmKX”, “BmK10”, “BmK-M10”, “Bmk M10”,
“Neurotoxin M10”, “Alpha-neurotoxin TX9”, and “BmKalphaTx9”11.

Another type of error is the use of abbreviations, which may result in ambiguities. For example, the
abbreviation BMK stands for “Big Map Kinase”, “B-cell/myeloid kinase”, “bovine midkine”, as well as for
“Bradykinin-potentiating peptide”. GK is the abbreviation for both “Glycerol Kinase” and “Geko” gene of
Drosophila melanogaster (Fruit fly).

In free-text fields, a wrong piece of information can be entered as field value. For example, the description

of the sequence with the accession number AC254865'2 is “UNVERIFIED: BAC_10, complete sequence”.

Dubious sequences: The sequence is represented as a string of letters denoting the 20 amino acids in the
case of a protein sequence and the 4 nucleotides in the case of nucleotide sequence. Each base or residue is
thus limited to it alphabetical representation and “X” is used to denote an unknown residue, and “N” to
denote an unknown base. A base or residue which doesn’t correspond to its set of special letters is invalid and
can be caused by an erroneous data entry. Fo example, the sequence with the accession number AC000016'3
contains 11% of unknown bases.

A sequence may also contain invalid symbols for nucleotides or amino acids, or it can be shorter than its
logical size. The length of protein sequences usually ranges from 6 to a few thousands residues. However,
Koh et al. [29] found 3,327 undersized protein sequences which are shorter than six residues in the public

databases using Entrez (as of Sep 2004), among which 1,887 contain only one residue.

Contaminated sequences: There are cases where a DNA sequence contains vectors used for cloning;
vector-contaminated sequences may be submitted to the database. Vectors are agents that carry DNA
fragments into a host cell. The vector sequences probe and bind the DNA fragments at the 5’ and 3’ sites.
The DNA fragment is then isolated from its vectors by cutting at the restriction enzyme sites. The existence
of vector-contaminated sequences was first reported in 1992; 0.23% of 20,000 eukaryotic entries were found
to be contaminated [20]. In 1999, [50] reported that up to 0.36% or 3,029 of the sequences in GenBank

contain contamination of the cloning vectors.

Ohttp://www.ncbi.nlm.nih.gov/nuccore/L25057
Uhttp://www.uniprot.org/uniprot/061705
2http://wuw.ncbi.nlm.nih.gov/nuccore/AC254865
Bhttps://www.ncbi.nlm.nih.gov/nuccore/AC0O00016.17fmt_mask=65536
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3.3.2. Record-level data quality issues
Conflicting information exists in the single record among two or more attributes — Koh et al. [28] call
them the record-level data quality issues. Two types of record-level data quality issue are found in sequence

records: sequence structure violations and inconsistent content with related references.

Sequence Structure Violations: It is known that a gene structure has a set of logical constraints, and any
infringement of these constraints constitutes a possible feature issue. Such logical constraints include that
introns and exons must be non-overlapping except in cases of alternative splicing. Koh et al. [29] observed
that 12 out of 42,359 nucleotide sequences had overlapping intron/exon regions. For example, Syn7 gene of
putative polyketide synthase in NCBI TPA record BN000507'4 has overlapping intron 5 and exon 6. The

rpb7+ RNA polymerase II subunit in GenBank record AF055916'° has overlapping exon 1 and exon 2.

Inconsistent with the literature: Usually, each record is associated with a list of publications by the
authors of the sequence that discuss the data reported in the record. However, it is possible that a record
is inconsistent with the information provided in the literature in general, and in the articles related to that
record in particular.

For example, in the study of Dengue virus, Koh et al. [28] observed mis-annotations in Swiss-Prot record
P27915'6 and PIR record GNWVD3 [27]. The NS1/NS2A and NS4A /NS4B junctions given in these Dengue
type 3 complete RNA sequences did not match the regions given in the reference of these records [38]. While
manual checking of such inconsistencies by cross-referencing the database content with their corresponding
literature is tedious, computational detection of discrepancies of the sequence annotations with its references

is also non-trivial and may require complex text-mining solutions.

3.8.8. Single Database level data quality issues

Annotation errors: The features of a sequence are often directly submitted by the author of the sequence.
The features can be derived experimentally or inferred. Computationally inferred features are usually based
on sequence homologues and are derived using annotation tools. Hence, multiple database records of the
same nucleotide or protein sequences may contain inconsistent or conflicting feature annotations. Koh et al.
[29] refer to such data issues as cross-annotation errors. They identify possible causes of cross-annotation
errors as: (i) different expert interpretations, (ii) mis-annotation of sequence function, and (iii) inference of
features or annotation transfer based on best matches of low sequence similarity.

Annotation errors commonly result from mis-annotation or from data entry errors. In GenBank entries
that contain splice site features in Arabidopsis thaliana, some 15% were found to have incorrect annotations

[32]. Another study [24] found that 24% of the Chlamydia trachomatis sequences contained erroneous

Mpttps://www.ncbi.nlm.nih.gov/nuccore/BNO00507
Shttps://www.ncbi.nlm.nih.gov/nuccore/AF055916
6http: //www.uniprot.org/uniprot/P27915
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functional assignments. Another form of annotation error is caused by inaccurate inference of features from

homologues.

Sequence duplication: Sequence duplication is also observed in sequence databases [12]. There are three
types of redundancy: (1) the same sequence and annotations can be found in multiple records, (2) the same
sequence but different annotations are found in multiple records, and (3) partially overlapping annotations
of the same sequence exist in multiple databases which have different data views. For example, the records

AAG39642'7 and AAG39643'® contain identical sequences with exactly the same annotations.

3.3.4. Multiple Database level data quality issues

Due to the existence of heterogeneous database schema, massive data transformation is carried out in the
databases during large-scale uploads or during data exchange. The transformation of data records from one
schema to another may cause data integration problems, where data may be mapped to the wrong fields.

Finally, in this work we are interested in the detection of records that contain errors and inconsistencies
through the analysis of the header section, and through a cross validation with the published literature.
Thus, the model we built will not be able to detect errors related to the features or the sequence itself such
as contaminations, undersized sequences, cross annotation errors, etc. Rather, it detects inconsistencies with

the published literature.

3.4. Research problem statement

We propose to follow an IR approach, where a database record is regarded as a query, and its associated
articles as the relevant documents. We use the term “query” to refer to a record, and the term “relevant
documents” to refer to the set of its associated articles in its reference field.

We define the problem we study in this paper as follows. Given:

e a collection of documents D =< dy,do, ..., d, >
e a set of annotated queries Q =< (q1,91), (¢2,%2), - - -, (@m, Ym) >, where y,,, € {confident, suspicious}
e the set of relevant documents Dr =< Dg,, Dr,,..., Dr,, >

we aim to retrieve and identify queries that are not consistent with their relevant documents or with the
collection as whole, indicating that their description in the database record is incompatible with the infor-
mation given in the corresponding publication, and which can therefore be flagged as “suspicious”. The
resulting tool is expected to be used at curation time, and should send such “suspicious” records to curators

for review.

https://www.ncbi.nlm.nih.gov/protein/AAG39642
8https://www.ncbi.nlm.nih.gov/protein/AAG39643

10
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4. Quality Factors

In this section, we introduce the features that we will consider as record quality indicators. We describe
two kinds of features: record-based features, which mainly focus on the characteristics of the records; and
IR-based features, which mainly focus on query quality predictors. Our approach here is to define a wide

variety of features and then identify which of them are most valuable in classification.

4.1. Record-based features (9 features)

The characteristics of a record are strong indicators of its quality. We define several features that
consider a record as a whole. Hence, we mainly rely on basic and intuitive quality factors, such as the record
popularity, as well as building on recommendations given by the International Nucleotide Sequence Database

Collaboration (INSDC) for the record structure.

Organism popularity (1 feature): Based on the intuition that organisms that have rarely been sequenced
and deposited in a sequence database are more likely to have suspicious records, we consider the popularity
of the main organism of a record as a quality feature. We define the popularity of an organism as the number

of records that relate to that organism divided by the total number of records.

Record definition structure (3 features): The INSDC suggests that the record definition should have
the following specific format:'® (i) it should start with the common name of the source organism; (ii) it gives
the criteria by which this sequence is distinguished from the remainder of the source genome, such as the
gene name and what it codes for, or the protein name and mRNA, or some description of the sequence’s
function (if the sequence is non-coding); (iii) if the sequence has a coding region, the description may be
followed by a completeness qualifier, such as ‘cds’ (complete coding sequence). We define boolean attributes

to indicate whether each of these rules is respected in a record or not.

Record popularity (1 feature): a popular sequence record is more expected to have been checked by
other users, and hence be a confident record. Thus, we include the popularity as a quality feature and define

it simply as the number of citations the record has.

Coding sequence (3 features): For a sequence with a coding region, the coding sequence (CDS) field in
the features section of the records is one of the most important fields. Based on the feature table format
designed jointly by GenBank, the EMBL Nucleotide Sequence Data Library, and the DNA Data Bank of
Japan,? the CDS field should specify: (i) the region of nucleotides that corresponds with the sequence
of amino acids in a protein (location including start and stop codons), (ii) the gene name, and (iii) the
product/protein name. For each CDS field of a record, we check its validity (i) by ensuring that the CDS

region is within the sequence range, (ii) by ensuring that the gene name is valid and is given into the

19ftp://ftp.ncbi.nih.gov/GenBank/gbrel.txt
2Onttp://www.insdc.org/documents/feature-table
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annotations of Gene Ontology (GO) ([54]), and (iii) by ensuring that the protein exists. Hence, we define
three quality attributes for (i), (ii), and (iii) based on an aggregation of all CDS fields of each record.

Definition length (1 feature): the length of the definition may indicate the degree of precision given to
describe a record. Hence, we include the length as a quality factor, and we define it as the total number of

terms.

4.2. IR-based features (203 features)

To find indicators or features to represent the quality of each query (record), we draw on the large body
of previous work on query quality prediction ([16, 22, 33]). While some of these features such as Overlap
Similarity are stand-alone, other features such as Average TF are derived from term level statistics ([33]).
These include predicting the quality of queries using either pre-retrieval indicators like Query Scope, that
is, they are calculated for a query as a whole, or post-retrieval indicators like Query Clarity, that is, they
involve performing an initial retrieval and hence are more expensive to compute. We describe the set of
query quality predictors we used. As stated previously, to compute these IR-based features, we consider the

record definition field as the query.

Query clarity (QC) (18 features): Developed by [16], this post-retrieval factor is the Kullback-Leibler

divergence of the query model from the collection model. QC is computed as:

P(w|q)
PC (w)

QC = P(wlg) x log, (1)

weq
where P(w|q) is the probability of the occurrence of the word w in the query model, and Px(w) is the
probability of the occurrence of w in the collection. The query model is estimated from the top-k ranked
documents retrieved after an initial run of the original query. We computed different QC scores based on

different configuration options k € {1, 5,10, 20, 50, 100} x w € {title, abstract, body}.

Simplified clarity score (SCS) (3 features): To avoid the expensive computation of query clarity, [21]

proposed simplified clarity score as a comparable pre-retrieval performance factor. It is calculated as:

SCS = Y- Putule) x og, T2 2)

weq
where P,,;(w|q) is the probability of the occurrence of the word w in the query. We also computed SCS

based on different configuration options of word € {title, abstract, body}.

Relevant-documents clarity score (RDCS) (3 features): We also propose to compute the clarity score
based on a query model estimated from the relevant documents themselves, while considering separately three

different fields of the relevant documents {title, abstract, body}.

IDF-based features (24 features): We calculate the IDF of each query term w as:

12
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N

where N, is the document frequency of w while considering separately three different fields {title, abstract, body},
and N is the number of documents in the collection. For each query we calculate the sum, standard devi-
ation, minimum, maximum, arithmetic mean, geometric mean, harmonic mean, and coefficient of variation

of the IDF's of constituent terms.

TF-based features (24 features): We calculate the TF of each query term w in a relevant document d

as:

TF, =1log(1+ fu.q) (4)

where fy, 4 is the number of time w occurs in d while considering separately three different fields {title, abstract, body}.

For each T'F value of each term, we calculate aggregate values similar to those for IDF as quality factors.

Similarity of collection—query (SCQ) (24 features): Proposed by [59], this query quality factor is
based on the hypothesis that queries that have higher similarity to the collection as a whole will be of higher

quality. For each term w in the query, SCQ is computed as:

SCQyw = (1 +1n(n(w)) x In(1 4+ Nﬁ)) (5)

w

where n(w) is the frequency of the term w in the collection while also considering separately three different
fields {title, abstract, body}. Based on the SCQ values of each term, we also calculated aggregate values

similar to those for IDF.
Inverse collection term frequency features (ICTF) (24 features): The inverse collection term fre-
quency of a term w is defined as:

ICTF,, =log(1 + ) (6)

T
n(w)
where n(w) is the frequency of the term w in the collection and T is the number of term occurrences in the

collection while considering separately three different fields {title, abstract, body}. Using the ICTF values,

we calculate aggregate statistics similar to those for IDF.

Query scope (QS) (4 features): Query scope ([21]) is a measure of the size of the retrieved document
set relative to the size of the collection. We can expect that high values of query scope are predictive of

poor-quality queries as they retrieve far too many documents. QS is computed as:

QS =log(1 + nﬁ) (7)

q
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where ng is the number of documents that match the query terms while considering separately four different

fields {title, abstract, body, all document}.

Similarity of relevant documents—query features (48 features): Based on the fact that a high
similarity value between a query and its relevant documents reflects a high query quality, we include several
information-theoretic, statistical, and practical similarity measures as quality indicators. These similarity
measures are: matching, overlap, Jaccard, Dice, cosine, mutual information (MI), and Okapi BM25. We also
used various IR similarity ranking functions including: the sum of TFIDF scores (SumTFIDF), the Lucene
vector-space model score (LuceneVSM),2! the BM25 score ([45]), language model scores based on (i) the
Jelinek-Mercer smoothing (LMJelinekMercer) ([58]) and on (ii) a Bayesian smoothing using Dirichlet priors
(LMDirichlet) ([58]), and an information-based score (IBSimilarity) ([13]). These similarities are computed
while considering separately four different fields {title, abstract, body, all document}.

Retrieval performance score (RPS) (28 features): Based on the relevance paradigm of IR, we assume
that a good quality record should rank its corresponding articles highly. Thus, we use the reciprocal rank
evaluation measure to define the RPS as follows:

1

Rt = rank; ®

where rank, is the rank of the first relevant document in the retrieved list of documents that matches the
query ¢; returned by the system. We have also considered query expansion using the following terms related
to the organism: (i) scientific name, (ii) common names, (iii) synonyms, (iv) abbreviations, (v) misnomers,
and (vi) misspellings. These terms are extracted from the NCBI Taxonomy,?? which is a curated classification
and nomenclature for all of the organisms in the public sequence databases. The basic intuition is that: if
(i), (ii), (iii), and (iv) improve the retrieval performance, there is a mismatch between the record and its
corresponding article, and thus, the record may be of low quality. Also, if (v) and (vi) improve the retrieval
performance, the article is clearly reporting the record using incorrect terms, and thus, the record is probably

of low quality. Here we consider querying separately four different fields {title, abstract, body, all document}.

Citation of the main organism in the article (3 features): The citation of the main organism in
the relevant document is an important quality factor since the article is supposed to report the content of
the record. Hence, we include this quality factor a binary feature while considering separately four different
fields {title, abstract, body}.

In total, we have defined 9 record-based features and 203 IR-based features, for a total of 212 features

that characterize the quality records.

2Ihttps://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
22nttp://www.ncbi.nlm.nih.gov/taxonomy
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5. Experimental Setup

In this section, we describe the dataset we have constructed from publicly available resources, and then

introduce the learning algorithm we used to classify records as “confident” or “suspicious”.
5.1. Data description

Articles: We used the PubMed Central Open Access collection®® (OA), which is a free full-text archive of
biomedical and life sciences journal literature at the U.S. National Institutes of Health’s National Library
of Medicine. The release of PMC OA we used contains roughly 1.13 million articles, which are provided in
an XML format with specific fields corresponding to each section or subsection in the article. We used the
Lucene IR System?* to index the collection, with the default settings for stemming and English stop-word
removal. We defined a list of biomedical keywords, which should not be stemmed or considered as stop-words,
such as the protein names “THE” and “Is”. Each section of an article (title, abstract, body) is indexed

separately, so that different sections can be used and queried separately to compute the quality features.

Sequences: We work with the GenBank nucleotide database, but limit the sequence database records we
work with to those that are cited by the PMC OA article collection. Specifically, we used a regular expression
to extract GenBank accession numbers mentioned in the PMC OA articles, thereby identifying literature that
refers to at least one GenBank identifier. This resulted in a list of 733,779 putative accession numbers. Of
these, 494,142 were valid GenBank nucleotide records that we were able to download using the e-utilities API
([47]).2> Among the valid records, only 162,913 records also cite the corresponding articles (as determined
by matching their titles). This process gave us a list of 162,913 pairs of record accession numbers and PMC
article identifiers, which cite each other. Note that for the 331,229 records that we have put aside, each
record cites an article; however, we do not have access to all articles through PMC OA.

Each record in this dataset was labelled as “alive” or “dead”, an attribute that we obtained using the
eSummary APT ([47]). Note that the records that are reported as “dead” are explicitly labelled as such in
GenBank, whereas records that are “alive” are implicitly labelled by not being dead. In the classification
task, we consider dead records to be “suspicious” and all other records to be “confident” in our labelling.
We acknowledge that an “alive” record does not necessarily indicate that it is of good quality. However,
we made this assumption motivated by the fact that, overall, the records are of good quality, whereas only
a small fraction of the data may be faulty. This has been observed and reported in [6], where the authors
carried out a biocuration task by manually analyzing records that are alive. The authors have found that
among 100 alive records randomly selected in the dataset, roughly 5% have been reported as being faulty

by the database curator. Hence, we believe that even if this very small fraction of records that are faulty

23nttp://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/ The version used was downloaded on October 2015.
24http://lucene.apache.org/
25The sequences were downloaded on October 2015.
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and are included in our training dataset as of ”good quality”, they would have an insignificant impact on
the learned model.

Among the 162,913 records for which the relevant articles are in the PMC OA dataset, 162,486 are alive
and only 427 are dead. Hence, our dataset is skewed toward negative examples (alive records) with only a

few positive examples (dead records).

Organism taxonomy: To gather more information about the record organisms, such as the list of syn-
onyms, acronyms and common names, we used the NCBI Taxonomy database. This is a curated classification
of all of the organisms in the public sequence databases. It represents about 10% of the described species of

life on the planet.

5.2. Anomaly detection algorithm

Given as input a set of quality indicators for each record, our goal is to combine these inputs to produce a
value indicating whether the record is “confident” or “suspicious”. To accomplish this, we used the Support
Vector Machines (SVM) classification algorithm ([14]), which is one of the most widely-used and effective
classification algorithm.

Each record m is represented by its vector of k quality indicators @, = [Tm1, Tm2,- - -, Tmk| and its asso-
ciated label y,, € {confident, suspicious}. We used the SVM implementation available in the LibSVM ([9])
package. Both Linear and RBF kernels were considered in our experiments. The regularization parameter C'
(the trade-off between training error and margin), the gamma parameter of the RBF kernel, and the penalty
parameter w; that penalizes negative examples due to the skewed nature of the dataset were selected from
a search within the discrete sets {107°,1072,..., 10*3,10'%}, {1071%,10713,...,10%, 103}, and {10,20,...,
50, 100, 200} respectively, using 10 fold cross validation.

Although the differences were not substantial, experiments with the best RBF kernel parameters per-
formed slightly better than the best linear kernel parameters for the majority of the validation experiments.
Unless otherwise noted, all presented results were obtained using an RBF kernel, with C set to 1073, gamma

set to 1073, and w; set to 100.

6. Experimental Evaluation

We now report and discuss the main results of the experimental evaluation, considering both the effec-

tiveness of the method and our interpretation of which features are valuable in classification.

6.1. Feature analysis

To explore the relationship between features and the record quality labels, we undertook a feature analysis
task. A general method for measuring the amount of information that a feature x; provides w.r.t. predicting
a class label y ( “confident” or “suspicious”) is to calculate its mutual information (MI) I(xy,y) or Pearson’s

chi-squared test x2(xx,y). In Table 1, we present the list of ten top-ranked features using these two metrics.
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Table 1: Ranking of the most important features using two different metrics.

Mutal Information Pearson’s chi-squared test

Rank | Field Feature Field Feature

1 title LMDirichlet Score | title LMDirichlet Score

2 abstract | SumTFIDF score abstract | SumTFIDF Score

3 abstract LMDirichlet Score abstract RDCS

4 abstract BM25 Score abstract LMDirichlet Score

5 abstract RDCS abstract BM25 Score

6 abstract IBSimilarity Score abstract IBSimilarity Score

7 title SumTFIDF Score title BM25 Score

8 title BM25 Score title IBSimilarity Score

9 title IBSimilarity Score title SumTFIDF Score

10 X Popularity Organism abstract LMJelinekMercer Score

The two lists are roughly similar except for the tenth line, where MI introduces a record-based feature. These

two lists led us to make the following observations:

. Features based on the similarity between the relevant documents and the record are the most informa-

tive (8/10 for mutual information and 9/10 for chi-squared). This confirms that a good and a confident

record is highly discussed in its associated articles.

. IR similarity ranking functions are the most informative features. They take into account the infor-

mation carried in both the query and the documents, in contrast to statistical similarity measures.

. For both rankings, the top feature is a language-model similarity score. It computes the similarity

between the record definition and the title of the relevant document, using Bayesian smoothing with
Dirichlet priors. This shows that a confident record is one in which the description has a high probability

of having been generated from the title of its associated document.

. Top features are mainly based on short and medium document fields (that is, title and abstract). This

reflects the fact that confident records can be expected to be referenced and discussed earlier in the

article.

. Almost all top features are IR-based features. Only one record-based feature appears in the two

rankings (popularity of the organism in the MI ranking). This confirms our initial assumption that

the literature is a strong resource for checking the quality of a record.

6.2. Classification performance

The effectiveness of our method (denoted SVM LBF+RBF, for SVM with Literature-based Features and

Record-based Features), is summarized in Table 2, broken down by the two classes in the data. The last
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column of the table shows the harmonic mean between the F1-Scores of the two classes. We provide a

comparison with two variants of this method and four baseline methods:
e SVM RBF: SVM classifier trained with only record-based features.
e SVM LBF: SVM classifier trained with only IR-based features.

e Majority class: a naive approach that simply predicts the most common class in the data (that is,

classify everything as “confident”).

e Random classification 1: which classifies a record as “confident” or “suspicious” with a 50% probability.

The classification was performed 10 times independently over the full dataset; we report average results.

e Random classification 2: classifies a record as “confident” or “suspicious” with a 99.73% probability
of being classified as confident. This value reflects the natural distribution of the source data, since
99.73% of the records are ‘alive’. The classification was also performed 10 times independently over

the full dataset; we report average results.

e RPS-based classification: classifies a record as “confident” or “suspicious” based on a fixed threshold

(0.05) for the RPS value.

Our method (SVM LBF+RBF) shows a statistically significant improvement over the best baseline (rel-
atively, 45.90% over SVM LBF). Second, the results confirm again our initial assumption that the literature
is a strong support to assess the quality of records in sequence databases. Third, by comparing SVM RBF
and SVM LBF, we conclude that the associated literature provides better evaluation of quality than can
be obtained by examining only the records. This has also been shown in the previous section through the
feature analysis. Due to the skewed nature of the dataset, all algorithms tend to classify the records as
“confident”, which results in high precision and recall values for this class, but these results are not very
informative. It is more meaningful to consider the performance over the class of “suspicious” records.

The instance-level TP and FP values given in Table 2 for each method illustrate how many FP records
would need to be reviewed in order to find the small number of TPs in each case. This allows to compare
the curator task difficulty for each method; the curator would need to examine everything retrieved (all
Positives) and then make a decision as to whether it was a correct retrieval of a suspicious record (TP) or a
perfectly valid record (FP from the perspective of “suspicious”). The table shows how much work needs to
be done in each scenario, and demonstrates that our method considerably reduces the curation workload. In
particular, to get reasonable recall with the random approach, the curator needs to review more than 100,000
records. Indeed, the curator would need to review 85x as many records with a random approach as compared
to our method, for a gain of only 83 TP records (respectively: 1,233 vs. 105,000 positive records; 127 vs. 210
true positives identified). This highlights the substantial amount of effort saved using the approach we are

proposing.

19


https://doi.org/10.1101/101246
http://creativecommons.org/licenses/by/4.0/

O©CO~NOOOTA~AWNPE

bioRxiv preprint doi: https://doi.org/10.1101/101246; this version posted January 18, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Table 2 shows relatively low values for precision and recall compared with some other machine learning
problems. However, first, the dataset is highly imbalanced, with far more records labelled as “confident” than
labelled as “suspicious”. Second, the records that are labelled as “suspicious” have been explicitly labelled,
whereas records that are “alive” are implicitly labelled and assumed (perhaps wrongly) to be “confident”;
an alive record may be a low-quality record that was missed in error. Hence, training a learning algorithm on
unlabelled data leads to poor effectiveness, particularly when the minority class is the most likely class to be
missed. Probably some of the records which have been classified as “suspicious” by our learning algorithm,
but were labelled in the data set as “confident”; are in fact problematic. We discuss below typical examples
of records which have been incorrectly classified by our method (false positives and false negatives). The
profile of each example is given in Table 3, using the top 7 features obtained in the feature analysis in Section

6.1.

Example 1. (False Positive) The record with accession number FJ82484826 has been classified as “suspi-
cious” by the algorithm, and presents the typical profile of a suspicious record as given in Table 3. This
record presents the complete sequence of the cloning vector pPDMK3.2” First, the record definition does not
give much information. Second, this record presents an organism for which there are relatively few other
records. Third, the content of the record is mentioned neither in the title of the article nor in the abstract
of the article with PMC identifier PMC26750582%. By examining the content of the article, we have noted
that this cloning vector is mentioned as pDMK2. This case leads us to make two inferences: either the title
of the record is incorrect, or the article uses an incorrect term to refer to this cloning vector. Consequently,
we contacted the corresponding author of PMC2675058, Anders Sjostedt, who acknowledged the error by
saying: “For practical purposes this doesn’t matter since the two vectors are identical with the exception
of two additional restriction sites in pDMK3. We should have stated pDMK3 in the paper so it can be de-
noted as a typographical error.” (personal communication, Anders Sjostedt). However, since both pDMK2
and pDMKS3 exist, we believe that this error cannot be considered as typographical error, but rather as a

confusion and inconsistency between that record and its associated article.

Example 2. (False Positive) The record with accession number CP006742% has also been classified as
“suspicious” by the algorithm, and also presents the typical profile of a suspicious record as given in Table
3. This record presents the complete genome of the Bacillus anthracis organism. In fact, according to the
article that reports the content of that record (accession number PMC39238853°), this record is supposed

to present the chromosome Cowl. However, this chromosome is not mentioned in the record. We have

26http://www.ncbi.nlm.nih.gov/nuccore/FJ824848
27 A cloning vector is a small piece of DNA, taken from a virus, a plasmid, or the cell of a higher organism, that can be stably

maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes.
28http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675058/
29nttp://www.ncbi.nlm.nih.gov/nuccore/CPO06742
30http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923885/
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Table 3: Example profiles.

Example 1 Example 2 | Example 3 | Example 4
Accession FJ824848 CP006742 BK008760 DW407270
PMC PMC2675058 | PM(C3923885 | PMC4233938 | PM(C1621083
Type FN FN FN FP
1 | Tit. LMDir. 0.00 0.00 1.4194 18.78
2 | Abs. SumTFIDF 0.00 0.00 2.25 27.04
3 | Abs. LMDir. 0.00 0.00 3.3450 30.26
4 | Abs. BM25 0.00 0.00 2.80 65.00
5 | Abs. RDCS 0.00 0.0302 0.034 0.68
6 | Pop. Organism 0.00000613 0.00 2.4828 0.00086
7 | RPS 0.00 0.0019 0.20 1.00

contacted the corresponding author, and he answered as follows: “After some reasoning, we decided to call
the isolates cow 1,2,3.. etc in the paper to increase readability. Their names in our strain collection is
however different. As far as I can see CP006742 is the B. anthracis chromosome sequence that we submitted,
although I haven’t checked every basepair...” (personal communication, Bo Segerman). Hence, we believe
that this little inconsistency between the record and its associated article has prompted the algorithm to

classify this record as “suspicious”.

Example 3. (False Positive) The record with accession number BK0087603! has also been classified as
“suspicious” by the algorithm. This record presents relatively low values in its profile compared to the
false negative example presented as given in Table 3. According to the article that reports the content of
that record (PMC identifier PMC423393832), this article is supposed to show two genes, Atg8a and Atg8b.
However, the record is only showing the coding sequence of the gene Atg8a. We also have contacted the
paper’s authors who acknowledged the error by saying: “Thanks for your important notification. Indeed
this is an entry error. The error was corrected in a Corrigendum that was published soon after the original
paper” [48] (personal communication, Assaf Vardi). Although the error is again in the research article itself,
this shows another record-literature inconsistency example, which illustrates a false positive that contributed

to the low precision-recall values obtained.

Example 4. (False Negative) In contrast, the record with the accession number DW407270%3 has been
classified “confident” by our method, while its current status is “suspicious”. The record references a popular

organism and is correctly discussed in its associated article. We did not discover any mismatch or conflict

3Inttp://www.ncbi.nlm.nih.gov/nuccore/BKO08760
32nttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233938/
33nttp://www.ncbi.nlm.nih.gov/nuccore/DW407270
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between this record and its associated article (PMC identifier PMC162108334). In fact, this record has been
removed because the underlying biological material suffered from bacterial contamination with pseudomonas
fluorescens, an issue that could only be resolved upon consideration of the similarity of the record sequence
to other sequences via a BLAST search. This example leads us to identify an important distinction — a
record can be coherent from one perspective (literature consistency) while being inconsistent from another
(biological content). It highlights the need to consider data quality from more than one perspective, and
demonstrates that literature alone is insufficient to detect all suspicious records. It further explains the

limitations on performance of our method.

The examples discussed above in this section are not necessarily faulty records. We have rather presented
these examples to provide a brief justification for why we obtained low precision-recall values. This motivates
us to build a manually curated dataset in order to remove any ambiguous and noisy records that may lead
to the build of a biased model, and to develop features that will capture further aspects of sequence record

quality. This will form part of our future work.

7. Conclusions and Future Work

In this paper we have introduced a list of factors that correlate with the quality of a record. We used
these quality indicators to train an anomaly detection algorithm based on supervised learning to classify
records as “confident” or “suspicious”. We then performed a complete analysis on the full PubMed Central
collection. The main outcome of this work is evidence that, in addition to the sequence itself, the literature
is a valuable external resource that can be used to assess the quality of a database record.

Despite the fact that our method significantly outperforms the suggested baselines, we obtained some-
what low effectiveness scores, compared to some other common machine learning problems. Therefore, we
undertook a feature analysis and a failure analysis, examining specific cases that indicate causes of this
performance — in particular, identifying that the ground truth may contain errors as well as recognising
that literature alone is insufficient to represent the full spectrum of data quality issues.

This work is to the best of our knowledge the first use of the literature as a tool for addressing the
data quality problem in biomedical sequence databases. We have shown that the approach can identify
problematic records with enough accuracy to be of value to curators, potentially reducing the effort required
to remove low-quality records by nearly two orders of magnitude.

Our current dataset relies on data from GenBank to obtain labels, and the negative labels are only derived
implicitly. This suggests two directions for future work. First, it would be desirable to construct a manually
curated dataset explicitly for development of automated quality analysis techniques. Second, there is a need
for new unsupervised learning methods for anomaly detection. It may be, for example, that good and bad

records have distinct distributions of attribute values, so that methods such as k-nearest neighbour or local

34nttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1621083/
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outlier factor ([8]) could be applied. Having established that automated literature analysis can be applied

in practice to this task, the challenge now is to improve performance and further reduce the effort needed to

clean databases. We also expect that leveraging external textual information to support data cleaning will

have broader application in other database contexts.
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