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Abstract  

The processing ability and sensory quality of chicken breast meat are highly related to its ultimate 

pH (pHu), which is mainly determined by the amount of glycogen in the muscle at death. To 

unravel the molecular mechanisms underlying glycogen and meat pHu variations and to identify 

predictive biomarkers of these traits, a transcriptome profiling analysis was performed using an 

Agilent custom chicken 8×60K microarray. The breast muscle gene expression patterns were 

studied in two chicken lines experimentally selected for high (pHu+) and low (pHu-) pHu values 

of the breast meat. Across the 1,436 differentially expressed (DE) genes found between the two 

lines, many were involved in biological processes related to muscle development and remodelling 

and carbohydrate and energy metabolism. The functional analysis showed an intensive use of 

carbohydrate metabolism to produce energy in the pHu- line, while alternative catabolic 

pathways were solicited in the muscle of the pHu+ broilers, compromising their muscle 

development and integrity. After a validation step on a population of 278 broilers using 

microfluidic RT-qPCR, 20 genes were identified by partial least squares regression as good 

predictors of the pHu, opening new perspectives of screening broilers likely to present meat 

quality defects. 
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Introduction 

Poultry meat is known for its relative inexpensiveness and good nutritional quality. However, the 

competitiveness of the poultry industry is impacted by several quality defects such as the well-

known PSE- and DFD-like syndromes, which are respectively related to low and high meat pH1, 

and the emerging white striping (WS)2,3 and wooden breast (WB)4 defects, whose incidence is 

currently growing at a rapid pace. PSE- and DFD syndromes are directly related to muscle 

glycogen storage at death, which is the main determinant of meat’s ultimate pH (pHu) in 

chicken5. Several recent studies also highlighted that lower glycogen storage in muscle 

predisposes breast meat to the WS and WB conditions3,6. The genetic and physiological control 

of muscle glycogen in avian species is still largely unknown compared to mammals in which 

several mutations have been identified in relation to muscle glycogen and meat quality variations. 

Indeed, several mutations of the γ3 regulatory subunit of AMPK have been shown to be 

responsible for glycogen accumulation in muscle 7,8 and, in the case of the pig, low meat pHu and 

poor processing ability9. Studies performed in chicken have not yet identified major genes 

responsible of the pHu variation, suggesting a polygenic determinism of the trait10,11. Therefore, 

unravelling the biological processes and molecular pathways underlying glycogen variations in 

chicken muscle remains an important objective that would help to limit the occurrence of the 

main meat quality defects in poultry7,8. In this perspective, a divergent selection on the pHu of the 

breast pectoralis major muscle was carried out on a commercial line representative of the current 

broiler performances. After only five generations of divergent selection12, this experiment led to 

the creation of two lines, namely the pHu- and the pHu+ lines, which are respectively 

characterised by a very low and very high pHu. These two lines were recently fully characterised 

for their phenotypes related to meat quality attributes12–14 and for their serum and muscle 
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metabolomics profiles15. The metabolomics approach allowed for the identification of 20 and 26 

discriminating metabolites in the serum and muscle, respectively, and a set of 7 potential 

pertinent biomarkers of the pHu in the serum15. To gain a better understanding of the molecular 

pathways that underlie pHu variations in the breast meat of broilers, a chicken Custom 8×60K 

Gene Expression Agilent Microarray (Agilent Technologies, Santa Clara, CA, USA) was used to 

perform a transcriptomic analysis using the same individuals that had been previously selected 

for the metabolome profiling. The analysis of the transcriptome enabled the identification of a 

subset of potential muscle genetic biomarkers of pHu using a univariate filtered sparse partial 

least squares (fsPLS) approach16, whose predictive value was further tested on a large number of 

animals (n=278) by quantitative reverse transcription PCR (RT-qPCR) microfluidic arrays. 

 

Results 

Animals and breast pectoralis major muscle phenotypes. The transcriptome analysis was 

performed on 15 and 16 individuals from the pHu- and pHu+ lines, respectively. These 

individuals were chosen for their extreme low or high breast meat pHu values within each line. 

Their average phenotype values are described in Table 1. The individuals of the two lines showed 

a similar body weight, breast meat yield and abdominal fatness. However, they showed a 

difference in the breast meat pHu close to 0.8 pH units, corresponding to a 50 µM/g (lactate 

equivalent) difference in the muscle glycolytic potential, which is representative of the muscle 

glycogen content at death. The two populations were also characterised by great differences in 

terms of meat quality, especially the lightness, drip loss, and toughness, which were much higher 

in the pHu- line than in the pHu+ line, while the processing yield presented the opposite results 

(Table 1).  
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Muscle cross-sections from the two populations (pHu+ and pHu-) were further 

characterised using several histochemical stains. As expected, most of the pHu+ muscle fibres 

were depleted of glycogen despite their glycolytic metabolism (Fig. 1a and b). The muscle fibres 

of the pHu+ individuals were also characterised by a higher number of cells expressing the 

developmental embryonic and neonatal isoforms of the fast myosin heavy chain (Fig. 1e-h). 

Gene expression and functional annotation analyses. Among the 61,657 probes spotted on the 

array, 39,653 (64%) corresponded to genes that were expressed in the chicken pectoralis major 

muscle tissue. This corresponded to 15,789 unique genes, each of them being represented by a 

single probe after k-means clustering. Among these genes, 1,436 (approximately 10%) were 

considered statistically and biologically differentially expressed (DEGs) between the pHu- and 

pHu+ lines (adjusted p-value ≤ 0.05 and fold-change ≥ 1.2 or ≤ 0.8). A total of 850 genes were 

upregulated and 586 were downregulated when comparing the pHu- individuals to the pHu+ 

ones. As expected, the heat map obtained from the clustering of the DEGs (Fig. 2) showed a clear 

discrimination between the two groups characterised by the low or high pHu values. The range of 

the fold-change (FC) ran between 0.21−0.8 and 1.2−3.9 in the down- and upregulated gene 

groups, respectively. Lists of the top 10 down- and upregulated genes are provided as 

supplementary data (Supplementary Table S1 online). 

Functional annotation was performed using an enrichment analysis with Fisher’s exact test. 

The over-representation of gene ontology (GO) terms within the group of DEGs was tested in the 

biological process ontology using the topGo R package, using the human orthology for collecting 

GO terms. Among the 1,436 DEGs, only 849 with human orthologues were mapped to Biological 

Pathway (BP) GO terms. The top 10 enriched BP GO terms were considered (Fig. 3). The most 

significantly enriched terms were canonical glycolysis with 53% of DEGs, muscle filament 
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sliding (30%), wound healing (14%), muscle cell cellular homeostasis (40%), insulin-like growth 

factor receptor signalling pathway (31%), regulation of integrin-mediated signalling pathway 

(57%), gluconeogenesis (23%), cardiac muscle tissue morphogenesis (26%), nucleotide 

diphosphate metabolic process (29%), and modulation of synaptic transmission (17%). It is worth 

noting that within the processes linked to carbohydrates (canonical glycolysis and 

gluconeogenesis), most of the DEGs (90%) were overexpressed in the pHu- line.  

Selection of putative biomarkers of breast muscle pHu using the fsPLS method. A first step 

of filtering by dimension reduction was necessary before the sparse partial least squares (sPLS) 

analysis in order to limit overfitting and select the relevant genes predicting the quantitative pHu 

variable. This filtered sPLS model (fsPLS) underwent a cross-validation (CV) procedure. At each 

step of the CV, a differential analysis was performed and a sPLS model, including the DEGs that 

were filtered, was fitted with two components. From 672 to 1,000 DEGs were filtered by the 

differential analysis and were included in sPLS models with a sparsity criterion of 50 genes to 

explain the pHu variation and select the relevant genes. Only the first component of the sPLS 

models was informative, with an explanatory power R2 ranging from 0.77 to 0.87 and a 

predictive ability Q2 from 0.68 to 0.79. The robustness of the prediction accuracy was assessed 

using the mean square error of prediction (MSEP) estimated on the test samples. The MSEP 

ranged from 0.02 to 0.49, with an average of 0.23. A stability analysis, based on the frequency of 

genes selected in the fsPLS, was performed. A total of 134 genes were retained in at least one 

fsPLS model, while 15 genes were common at each of the 10 CV steps (Table 2). A total of 21 

genes were kept in at least half of the fsPLS models and were retained for further validation on a 

large experimental population composed of 278 males and females derived from both the pHu+ 

and pHu- lines (Supplementary Table S2 online).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101170doi: bioRxiv preprint 

https://doi.org/10.1101/101170


7 
 

 
Validation using microfluidic RT-qPCR of a subset of 48 DE genes revealed by the 

microarray analysis as potential biomarkers of the chicken breast meat pHu. Among the 

genes found to be differentially expressed between the pHu+ and pHu- individuals, 48 were 

selected for validation on a large population of 278 male and female broilers derived from both 

the pHu+ and pHu- lines. This population included the 31 extreme birds chosen for the 

transcriptome analysis, 57 contemporary individuals producing DFD meat (pHu > 6.1), 79 

producing acid meat (pHu < 5.7), and 111 producing “normal” meat with a range of pHu values 

between 5.7 and 6.1. The genes under analysis included the 21 genes present in more than 50% of 

the pHu predictive fsPLS models described above, 6 genes showing a very high or low fold-

change according to the microarray analysis, and 21 genes whose function is related to muscle 

carbohydrate and energy metabolism (Supp. Fig. S1, Table S4). 

First, the fold-changes of DEGs obtained using microfluidic RT-qPCR were compared to 

the ratios obtained using microarrays on the subset of 31 individuals shared by both types of 

analyses (Fig. 4). Figure 4 reveals a high Pearson’s correlation coefficient between the log2 fold-

change (pHu-/pHu+) of gene expression from the microarray and microfluidic technologies (0.84, 

p-value = 8.31×10-14). When considering the whole population, i.e., the 278 chickens derived 

from the pHu+ and pHu- lines, the differences in gene expression measured by RT-qPCR 

between the two animal groups was confirmed by an analysis of variance (p-value ≤ 0.05) for 18 

of the 21 genes determined by the fsPLS models and only 9/28 of the other ones.  The 

differentially expressed genes are highlighted in Supplementary Table S4.    

Second, a first PLS model with 48 variables (corresponding to the 48 genes whose 

expression was measured using microfluidic RT-qPCR) was fitted on the entire population of 278 

individuals to explain the pHu variability. For predictive purposes, a parsimonious PLS model 
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with the most relevant variables (variable important in projection score (VIP) ≥ 1) was 

subsequently fitted without lowering the predictive ability. This final PLS model included 20 

genes and 3 components with a cumulative R2(cum) and Q2(cum) of 0.65 and 0.62, respectively 

(Fig. 5a). The model explained 65% of the observed variability of pHu with 35% for the first 

component. The scatterplot of the observed pHu vs. the predicted pHu revealed a strong linear 

relationship (Fig. 5b), and the root mean square error of estimation (RMSEE) was 0.16. This 

model included 14 genes from the fsPLS model (Supplementary Table S2 online), three showing 

extreme FCs according to the microarray analysis and three with functions related to 

carbohydrate or muscle metabolism (Figure 5). Loadings on the 3 components of the PLS model 

of the 20 genes kept in the model are provided in online Supplementary Table S3.  

 

Discussion 

In recent years, we have assisted in the incredible development of ‘foodomics’ coupled with high 

throughput techniques, aiming not only to improve the nutritional and gustative quality of food 

products but also to reduce waste due to product quality defects17. However, there is still a lack of 

understanding of the mechanisms underlying the variations in muscle pHu, which represents a 

major determinant of the sensory traits and processing ability of meat in poultry18.  

To improve our knowledge of the genetic and physiological control of meat pHu, we 

recently developed two broiler lines (pHu+ and pHu-) that exhibit quite different muscle pHu 

values after 5 generations of divergent selection but show, at the same time, similar growth 

performance and body composition12. The between-line difference in the pHu values is related to 

significant differences in the muscle glycogen content and many other meat quality traits, 

including colour, water-holding capacity, texture, processing yield, as well as white striping 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101170doi: bioRxiv preprint 

https://doi.org/10.1101/101170


9 
 

occurrence3,12–14. Therefore, the pHu+ and pHu- lines constitute an excellent model to study the 

molecular pathways specifically involved in the control of poultry meat quality traits related to 

pHu and glycogen storage in muscle. The muscle transcriptome analysis described in the present 

study revealed that regulations related to carbohydrates and energetic pathways as well as to 

muscle remodelling were most impacted by the selection of meat based on pHu. The over-

activation of glycolysis and gluconeogenesis pathways observed in the breast muscle of the pHu- 

line is directly related to its over-abundance of energy stored as muscle glycogen and ATP15. On 

the contrary, the lack of energy store that characterised the pHu+ muscles seems to be consistent 

with the overexpression of many genes involved in catabolic and muscle regeneration processes 

as well as in response to oxidative stress.  

Most genes involved in carbohydrate and energy metabolism are upregulated in the muscle 

of the pHu- line. The breast muscles of the pHu- line exhibited 36% more glycogen content 

compared to those of the pHu+ line. Therefore, it is expected that the metabolic pathways 

activated to produce energy differ between the two lines. The muscle transcriptome analysis 

showed that most of the genes involved in glycolysis were upregulated in the pHu- line, with 

gene expression increases that were between 24 and 70%. The only exception was aldolase C, 

which was downregulated (-29% in pHu-).  Our previous observations showed that broilers from 

the pHu- line were characterised by slightly higher amounts of glucose in the serum and of 

glucose-6-phosphate (G-6-P) and fructose 1,6-bisphosphate in muscle when compared to those of 

the pHu+ line15. Therefore, this is consistent with the observation that the glucose-6-phosphate 

isomerase that transforms G-6-P to fructose-6-phosphate (F-6-P) during the first step of 

glycolysis and the phosphofructokinase that catalyses the conversion of F-6-P into fructose 1,6-

bisphosphate (F1,6P) were overexpressed (+37 and +38%, respectively) in this line. Among the 
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genes directly involved in carbohydrate metabolism, β-enolase-3 showed the highest fold-change 

(+70% in the pHu- line). A deficiency in this gene is associated with the glycogen storage disease 

type XIII and a decreased production of ATP19. Similarly, the glucose-6-phosphate transporter 

(SLC37A4), which is implicated in the glycogen storage disease type Ib20, was also 

overexpressed in the pHu- line (+45%). The role of this endoplasmic reticulum-bound 

transporter, coupled with glucose-6-phosphatase, is to maintain glucose homeostasis between 

meals. It is reported that a deficiency in one of these two proteins results in a phenotype of 

disturbed glucose homeostasis21.    

It is worthy to note that the upregulation of most of the genes related to the glycolysis pathway is 

likely to increase the level of pyruvate entering the citric acid cycle, and thus, higher level of 

ATP are produced, as was observed with high-resolution 31P NMR15 in the muscle of pHu- 

animals. The overabundance of ATP observed in the pHu- muscle is in turn likely to enhance 

glycogen synthesis by glycogen synthase22.  

The expression levels of several key regulators of glycogen turnover were also affected by 

selection of breast meat pHu (Fig. 6). Indeed, the protein phosphatase-1 regulatory subunit 3A 

(PPP1R3A), which binds glycogen with high affinity, activates glycogen synthase (GYS), and 

inhibits glycogen phosphorylase kinase (PHK) by dephosphorylation through the protein 

phosphatase-1 catalytic (PPP1C) subunit, was upregulated (+72%) in the pHu- line. Moreover, 

the regulatory β subunit of the phosphorylase kinase (PHKB) was also upregulated in pHu- 

muscle tissue (+60%). It has been reported that the overexpression of PPP1R3A and its catalytic 

subunit in glycogen-depleted cells leads to slightly higher GYS and lower glycogen 

phosphorylase (PYG) activity, resulting in increased glycogen content23. Moreover, there are 

variants of PPP1R3A that impair glycogen synthesis and reduce muscle glycogen content in 
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humans and mice24. The low expression of PPP1R3A in the pHu+ line is therefore consistent 

with the low level of muscle glycogen that characterised this line. The selection of the breast 

meat pHu also affected the expression of several subunits of the AMP-activated protein kinase 

(AMPK) complex, another key regulator of glycogen turnover. The AMPK complex consists of 

one α catalytic subunit and two non-catalytic subunits, β and γ, and each is represented by several 

isoforms. The β subunit contains a binding domain to glycogen and a protein-protein interaction 

domain for the formation of the heterotrimeric AMPK complex by the binding of the α and γ 

subunits. The γ subunit has four repeat motifs CBS (cystathionine-β-synthase) involved in the 

binding of AMP and ATP. Quite interestingly, we observed an overexpression of the β2 (+35%) 

at the expense of the β1 (-34%) subunit in the pHu- muscle when compared to the pHu+ muscle.  

A similar regulation of the β1 subunit of the AMPK complex was observed in another chicken 

model. In the lean and fat lines that were originally selected for low and high abdominal fatness 

but that also diverge for breast muscle glycogen content (fat > lean) and meat quality, β1 was 

downregulated in the fat line that exhibited the highest glycogen content in muscle11.  The γ3 

subunit of AMPK was also overexpressed (+54%) in the muscle of the pHu- compared to the 

pHu+ broilers. As mentioned above, the γ subunits of the AMPK complex act as energy sensors 

in the muscle cell as they contain binding domains to AMP and ATP25. Several mutations in the 

γ2 subunit are associated with glycogen accumulation in the human heart (Wolff-Parkinson-

White syndrome)20, while a mutation of the γ3 subunit results in increased glycogen in pig 

muscle and production of acid meat with a poor processing ability9. Some PRKAG3 SNPs were 

identified in chicken leading to variations in their meat quality, but their potential biological roles 

remain unknown26. However, there is no evidence that an upregulation of this gene at the 

transcript level is a sufficient condition to induce glycogen accumulation in muscle8.  
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Beyond the genes directly involved in the regulation of glycogen turnover, several other 

genes that were overexpressed in the pHu- compared to the pHu+ line may influence glycogen 

storage in muscle. This is the case for the gene encoding phosphodiesterase 3B (PDE3B, +23%) 

whose activation by insulin may induce antiglycogenolytic effects27 or the one encoding 

mitochondrial creatine kinase (CKMT2, +59%), which is responsible for the transfer of high-

energy phosphate from mitochondria to creatine. This observation can therefore be clearly linked 

to the higher content of phosphocreatine (+36%) and in general to the higher energetic status that 

characterised the pHu- compared to the pHu+ muscles15. 

Our recent metabolomics study highlighted that muscles of the pHu+ line solicit more 

intense oxidative pathways, such as lipid β-oxidation and ketogenic amino acid degradation, to 

produce energy and compensate for the lack of energy due to carbohydrates and glycolysis15. At 

the transcript level, this results in the regulation of two genes in the pHu+ muscle. 3-

hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL), which catalyses the final step of leucine 

catabolism and ketone body formation in the mitochondria, and acetyl-CoA acetyltransferase-2 

(ACAT2), which transforms the acetoacetyl-CoA (resulting from β-oxidation or degradation of 

ketogenic amino acids) into acetyl-CoA28, were upregulated (+21% and +36%, respectively) in 

pHu+ muscle. Finally, there are several genes encoding nudix hydrolases that are overexpressed 

in the pHu- muscle compared to the pHu+ muscle, including NUDT7 (+49% )29, NUDT12 

(+27%)30, and NUDT19 (+38%)31. Nudix hydrolases hydrolyse a wide range of organic 

pyrophosphates, including nucleoside di- and triphosphates, dinucleoside and diphosphoinositol 

polyphosphates, nucleotide sugars and RNA caps32. They are implicated in the elimination of 

oxidised CoA and the regulation of CoA and acyl-CoA levels in the peroxisome in response to 

metabolic demand29 but also in the regulation of β-oxidation33, which may differ between lines15.  
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Genes involved in protein breakdown, muscle remodelling, and response to oxidative stress 

were upregulated in the pHu+ line. Interestingly, a gene encoding m-calpain (CAPN2) was 

upregulated (+62%) in the pHu+ muscle. Calpains are Ca2+-activated cysteine proteases involved 

in the calcium-dependant proteolytic system. Their overexpression was reported in cases of 

muscular dystrophy34 or in the muscle of chicken subjected to a transitory dietary lysine 

deficiency35. They are known to catalyse a limited proteolysis of proteins involved in cytoskeletal 

modelling (e.g., desmin and vimentin) or signal transduction and also to play a role in 

regeneration processes34,36. In the pHu+ muscle, the upregulation of the two genes encoding 

desmin and vimentin, which belong to the muscle intermediate filaments37 (+45% and +30%, 

respectively), also supports the hypothesis of more intense muscle regeneration in this line. 

Moreover, the overexpression of the interferon related developmental regulator 1 (IFRD1, +44% 

in pHu+) and of the Leiomodin-2 (LMOD2, +103%), which mediates nucleation of actin 

filaments and thereby promotes actin polymerisation, could also be a good indicator of myoblast 

differentiation and skeletal muscle regeneration38. Caveolin 3 (CAV3), which plays a key role in 

muscle development and physiological processes as maintenance of plasma membrane integrity, 

vesicular trafficking and signal transduction, was also upregulated (+46% in pHu+)39. 

Histological observations made in this study highlighted a greater expression of embryonic 

and neonatal myosin heavy chain isoforms in the pHu+ muscle than in the pHu- muscle of 6-

week-old chickens, which is likely the sign of a stronger muscle fibre regeneration process40,41.  

However, it is difficult to relate the difference observed at the protein level in muscle cross-

sections to those observed at the gene level in the microarray. Indeed, several DNA probes match 

genes encoding fast myosin heavy chains (MHC), but the high degree of similarities existing 

between the RNA sequences makes the association between the probes and antibodies used for 

histological analysis difficult to determine. Nevertheless, among the 12 fast myosin isotypes 
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present on the microarray, three were overexpressed (+32% for MHC2, +48% for MHC6, +35% 

for MHC9) while one was under-expressed (MHC1, -48%) in the pHu- line when compared to 

the pHu+ line. This strongly supports our hypothesis that the muscle fibre regeneration process is 

accompanied by a switching within the fast myosin isotypes. All of these observations are 

consistent with recent data that suggest that muscle glycogen depletion is related to meat defects 

in which degeneration and regeneration processes occur.  Indeed, the occurrence and severity of 

white striping are higher in the pHu+ than in the pHu- line3. Moreover, wooden breast-affected 

muscles exhibit a much lower glycogen content that is associated with increased oxidative stress, 

elevated protein levels, muscle degradation, altered glucose utilisation and redox homeostasis 

when compared with samples from unaffected birds6. 

Hypoxanthine and xanthine, which are both products of purine degradation and may be 

markers of oxidative stress42, were the most differential serum metabolites between the pHu+ and 

pHu- lines (pHu+ > pHu-)15. Logically, the gene encoding xanthine dehydrogenase (XDH), 

which successively catalyses the oxidation of hypoxanthine to xanthine and the one of xanthine 

to urate43, tended to be overexpressed in the pHu+ muscle (+55%, FDR adjusted p-value < 0.1). 

Genes implicated in the cellular oxidative homeostasis, such as glutathione peroxidases (GPX3, 

+21% and GPX8, +37%) or glutathione reductase (GSR, +22%), were also upregulated in the 

pHu+ muscles. These observations are consistent with the observation that higher levels of 

antioxidant molecules present in the pHu+ line15 likely prevent the negative cellular effects of 

oxidative stress in this line. 

Identification of biomarkers predictive of breast meat pHu.  In addition to the integrated view 

of the transcriptional changes occurring in muscle in response to selection, our analysis was also 

an opportunity to identify potential biomarkers for this trait and more generally for chicken meat 
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quality. Contrary to what is generally practiced in transcriptomic studies, we applied k-means 

clustering to average the signal of probes targeting the same gene and showing a similar 

regulation. This prevents the loss of information by combining differential and non-differential 

probes targeting the same gene. Indeed, mutations, alternative splicing or early transcription 

ending may lead to differential regulation within probes belonging to the same gene, and this 

diversity of response is of high interest in a biomarker discovery approach. An sPLS model is a 

relevant approach to select the most predictive genes for pHu variation from a gene expression 

microarray.  Although sPLS usually performs better than PLS, it is not able to overcome the 

overfitting issue by itself16. Therefore, and as suggested by Le Floch et al16, dimension reduction  

and 10-fold cross-validation steps were performed to limit overfitting and extract a robust 

association between gene expression and pHu. This resulted in 10 fsPLS models based on one 

informative component including 50 genes. Among them, 15 genes were systematically kept in 

all 10 models, which identifies them as being the most robust genes to predict breast meat pHu in 

chicken. It is relevant to observe that these genes included a majority of genes implicated in 

muscle organisation but not directly involved in carbohydrate metabolism. Interestingly, the 

expression of Ankyrin Repeat Domain 1 (ANKRD1), which is implicated in lipid metabolic 

process and sarcomere organisation, was overexpressed (+71%) in the pHu+ line and is also 

shown to be positively correlated to pork meat pHu44.  Among this set of 15 genes, there were 

two genes whose expression was the most differential among all of the identified DEGs, and 

these included LOC107052650 (adjusted p-value FDR = 4.11×10-9) and LSMEM1 (adjusted p-

value FDR = 1.31×10-7). It is striking that they are both localised in a narrow region (26,908K - 

26,659K) of chromosome 1 (Gallus gallus 5.0 assembly) and that quite close, in the 26,361K - 

26,388K region, is a major regulator of glycogen turnover, PPP1R3A, whose expression was 

significantly higher in pHu- muscle compared to pHu+ muscle. Altogether, these observations 
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indicate that this region of the genome is important for the genetic determinism of breast meat 

pHu in chicken.  

To go further in the identification of biomarkers of breast meat pHu, we decided to enlarge 

the list of potential pHu biomarkers and to evaluate their predictive ability on a large population 

of 278 chickens covering a pHu range from 5.41 to 6.50. Therefore, we considered 21 genes 

issued from the fsPLS (kept in more than 50% of the predictive models) and 27 additional genes, 

including 6 exhibiting very high or low fold-changes between the pHu- and pHu+ lines, as well 

as 21 whose function is directly related to muscle carbohydrate and energy metabolism. A 

parsimonious PLS model was fitted on the expression of 20 genes among the 48 analysed by 

microfluidic RT-qPCR on the population of 278 chickens.  The explicative and predictive 

abilities were good (R2 = 0.65, Q2 = 0.62), and the root mean square error of estimation was 

surprisingly low (16%). Concretely, this model allowed us to correctly classify 74% of the 

muscles exhibiting a normal value of pHu, i.e., those between 5.7 and 6.1, within the population 

of 278 broilers evaluated. Furthermore, it is worthy to note that 70% of the biomarkers kept in the 

model were issued from the fsPLS analysis, which highlights the robustness of combining both 

filtering (as differential analysis) and sparsity in the PLS approaches.  

Any further development of predictive molecular tools would, however, require the 

validation of the predictive potential of the model on independent populations. The identification 

of this set of genes should contribute to advancing the understanding of the genetic control of this 

trait but also to better target nutritional or husbandry factors that regulate the storage of glycogen 

in the muscle and more generally the quality of breast meat in chicken. 

 

In conclusion, the transcriptomics approach developed here provided an integrative view of 

the gene regulation that underlies the muscle capacity to store glycogen in chicken and 
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highlighted several genes as predictive markers of chicken breast meat ultimate pH and quality 

defects. It clearly showed that muscles prone to produce acid meat are characterised by an 

overactivation of carbohydrate metabolism and highlighted an adaptive response of glycogen-

depleted muscles that induces several catabolic, oxidative and cellular repair processes also 

involved in the setting up of white striping and wooden breast conditions. Therefore, biological 

markers identified through the comparison of the pHu+ and pHu- lines could be of great interest 

for poultry producers due to the fact that a lack of carbohydrate storage in chicken muscle 

appears to be a predisposing factor or an indicator of sensitivity to such myopathies whose 

increasing incidence may compromise the competitiveness and consumer acceptability of the 

broiler industry.  

 

Methods  

Animals and sample collection. The present study was carried out on chickens belonging to the 

sixth generation of two lines divergently selected for high (pHu+) or low (pHu-) pectoralis major 

muscle pHu values12.  The Ethics Committee of Val de Loire for Animal Experimentation 

approved all of the animal care and procedures used in this experiment (program 00880.02). The 

birds were reared and slaughtered at 6 weeks of age at the PEAT experimental unit (INRA, 

Centre Val de Loire, Nouzilly, France). The broilers received ad libitum food and water until 8 h 

before slaughtering. Fifteen minutes after slaughter, samples of pectoralis major were collected, 

immediately snap frozen in liquid nitrogen and stored at −80 °C until RNA extraction. The pHu 

of the pectoralis major muscle was measured a day after slaughtering using a pH meter by direct 

insertion of the electrode into the thickest part of the muscle. A sub-sample of 16 pHu- and 16 
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pHu+ male broilers was selected for further analysis from the entire population, exhibiting 

extremely low (≤5.6) and high (≥6.2) breast muscle pHu values, respectively.  

Histochemical traits. Ten-micrometre thick pectoralis major muscle cross-sections were used to 

perform periodic acid-Schiff (PAS) staining and immunohistochemistry. For the PAS staining, 

muscle cross-sections were fixed in Carnoy’s fixative and were incubated for 5 minutes in 

periodic acid 1% and 90 minutes in Schiff’s reagent (Sigma-Aldrich, Saint-Quentin Fallavier, 

France) before washing in tap water. For immunohistochemistry, muscle cross-sections were first 

incubated in 10% goat serum for 30 minutes and were then incubated for 1 hour with primary 

MF14, B103 and 2E9 antibodies (1/30). The MF14 antibody, developed by Donald A. Fischman, 

and the B103 and 2E9 antibodies, developed by E. Bandman, were obtained from the 

Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at 

The University of Iowa, Department of Biology, Iowa City, IA 52242. The antibodies were 

detected using the Vectastain ABC kit (Vector Laboratories, Burlingame, CA, USA) followed by 

a 5-minute DAB (Sigma-Aldrich) incubation. The slides were mounted in Canada balsam (Merck 

KGaA, Darmstadt, Germany) after dehydration. 

RNA isolation. Total RNA extraction was performed using the RNeasy Mini Kit (Qiagen, 

Valencia, CA, USA) on pectoralis major muscle samples that were ground in liquid nitrogen. 

Residual genomic DNA was removed by DNase I treatment (Qiagen, Valencia, CA, USA). RNA 

concentrations were measured using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA, USA), and their integrity was assessed using RNA 6000 Nano chips 

(Agilent Technologies, Santa Clara, CA, USA) run on a Bioanalyzer 2100 (Agilent 

Technologies).  
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Microarray data production and statistical analyses 

Labelling and hybridisation. Muscle transcriptional profiling was performed using an 8×60K 

Agilent custom platform developed by the PEGASE Genetics and Genomics team (INRA, 

UMR1348, Rennes, France). The platform is referenced under the GEO reference GPL20588. 

Thirty-two samples were processed, corresponding to 16 pHu+ and 16 pHu- individuals. One 

pHu- sample was considered an outlier after the principal component analysis and was thus 

removed from the analysis. All of the steps of the RNA labelling and microarray processing were 

performed by the CRB GADIE facility (INRA, UMR GABI, Jouy-en-Josas, France, http://crb-

gadie.inra.fr/) as described in Jacquier et al.45. The microarray data were submitted to the Gene 

Expression Omnibus (GEO) microarray database (accession number GSE89268). 

Differential analysis. The single channel microarray data were analysed using the 

R/Bioconductor software package Limma (Linear Models for Microarray Data)46. The signals of 

all of the probes were log2 transformed and were subsequently normalised by median centring of 

each array. The differential analysis was performed using a t-test on each probe, and the p-value 

was adjusted for multiple testing by the Benjamini-Hochberg method to control the False 

Discovery Rate (FDR)47,48. The difference in the expression between the two lines (pHu- vs. 

pHu+) was measured using the log2 transformation of the fold-change (lfc). Probes with an 

adjusted p-value < 0.05 and alfc ≥ 0.26 were considered as statistically and biologically 

differentially expressed between the pHu- and pHu+ lines. In the case of several oligonucleotides 

mapping the same gene, a representative probe was defined using k-means clustering with the 

algorithm of Hartigan and Wong49. Basically, the representative probe was defined by the mean 

lfc of the probes, and the maximal adjusted p-values of the best cluster of the partition on probe 

data sets was defined by the coordinates (lfc, – log10 (adjusted p-value)) in the plane.  
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The scaled expression of the differentially expressed genes (DEGs) by row was displayed in a 

cluster heat map to identify clusters of genes and clusters of samples with a similar profile. The 

colour gradient was set to green for the lowest expression value in the heat map and to red for the 

highest expression value. Both the rows and columns were reordered to correspond to the 

hierarchical clustering results based on the Pearson correlation distance and Ward's minimum 

variance method. As a convention, the fold-changes of genes (ratio pHu- /pHu+) were only 

indicated if they were differentially expressed between the pHu+ and pHu- with an adjusted p-

value ≤ 0.05.    

Functional annotation. The biological interpretation of expressional data was performed using 

the topGo R/Bioconductor package (version 2.22.0) and the Human annotation database 

R/Bioconductor (org.Hs.eg.db version 3.2.3) 50. The over-representation of GO terms in the 

biological process ontology (BP) was tested with Fisher’s exact test and the elim algorithm 

within the group of DEGs compared to all of the expressed genes on the array. 

Filtering and sparse Partial Least Squares (fsPLS) model. Sparse Partial Least Squares (sPLS) 

regression was applied to select the relevant genes predicting the quantitative variable pHu, 

including a step of regularisation based on L1 penalisation using the mixOmics R package 

(version 5.2.0) 51. To deal with the high number of variables and overfitting, a two-step approach 

fsPLS combining univariate filtering (i.e., differential analysis) followed by a sPLS model was 

performed, as described by Le Floch et al. 16. The robustness of the prediction accuracy was 

obtained using a cross-validation (CV) scheme. First, a 10-fold CV scheme was constructed to 

provide 10 training sets for gene expression and pHu of approximately the same size (26 or 27 

samples) and with an almost balance between pHu- and pHu+. At each fold, a filter of at most 

1000 of the best ranked DEGs (with lfc ≥ 0.26 and an adjusted p-value < 0.05) was obtained 
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by differential analysis on the training gene expression set and consequently a new training set 

filtered for gene expression. Then, a sPLS model with two components, which were linear 

combinations of 50 arbitrary relevant genes, was fitted on each filtered training set and was 

evaluated on a corresponding test set (samples left out). To assess the explanatory power and the 

predictive accuracy of each fsPLS model, we estimated the R2 as a measure of the goodness of fit 

and Q2 as a measure of the predictive ability of the model using a 10-fold cross-validation on the 

training set and the MSEP on test sets. A stability analysis, based on the frequency of the genes 

retained in fsPLS models, was performed. A schematic representation of the fsPLS statistical 

method applied for pHu biomarker discovery is provided as online supplementary figure S1.  

Quantitative RT-PCR assay and the PLS model. Forty-eight genes, differentially expressed in 

the pectoralis major muscle between the pHu+ and pHu- lines, were selected for further analysis 

by RT-qPCR on 278 male and female chickens issued from the same populations (which include 

the 31 individuals used for microarray analysis). Total RNAs were extracted from pectoralis 

major muscle samples using RNA NOW (Ozyme, St Quentin en Yvelines, France). From each 

pectoralis major muscle sample, 10 µg of total RNA was reverse-transcribed using RNase H- 

MMLV reverse transcriptase (Superscript II, Invitrogen, Illkirch, France) and random primers 

(Promega, Charbonnières les Bains, France).  

The set of genes studied by RT-qPCR included (i) 21 genes present in more than 50% of 

the pHu predictive fsPLS models; (ii) 21 genes whose function was related to muscle energy 

metabolism; and (iii) 6 genes exhibiting high or low fold-changes according to the microarray 

differential analysis. Primers targeting those genes were designed with Primer3 version 4.0.0 

(Supplementary Table S4 online)52,53. The corresponding amplicons were analysed by gel 

electrophoresis and were subsequently sequenced. Afterwards, the levels of expression of these 
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genes in the pectoralis major muscle were quantified using a Fluidigm Biomark microfluidic 

platform (Fluidigm, South San Francisco, CA, USA). Two types of references were included for 

this type of analysis: the housekeeping gene CDK6 to normalise the Ct values of each target 

gene, and a mix of chicken pectoralis major muscle cDNAs as a calibrator sample. As previously 

described54, the calculation of the expression levels was based on the PCR efficiency and the 

threshold cycle (CT) deviation of target cDNAs versus the calibrator cDNAs, according to the 

equation proposed by Pfaffl55.  

First, the RT-qPCR data were used to confirm the expression results obtained from the 

microarray by calculating the Pearson’s correlation between the log2 fold-change obtained by 

microarray and RT-qPCR using the cor.test R function.  

Second, the pHu values from the 278 chickens population were fitted from the expression 

of the 48 genes measured by the RT-qPCR assay with a PLS model using the ropls Bioconductor 

R package56. The first three components of the model were considered to evaluate the prediction 

by their explicative (R2), predictive ability (Q2), and root mean square error of estimation 

(RMSEE) computed by a 7-fold cross-validation. To identify the most predictive genes, the 

variables with a variable importance in projection score (VIP) ≥ 1 were kept in a more 

parsimonious final model.  
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Figure Legends 

Figure 1. Serial light micrographs of the pHu+ (a, c, e, g) and pHu- (b, d, f, h) pectoralis 

major muscles. Periodic acid shift histochemical staining (a, b), immunohistochemical staining 

of the adult (c, d), both embryonic and neonatal (e, f), and neonatal (g, h) isoforms of the fast 

myosin heavy chain. Scale bar: 100 µm. 

 

Figure 2. Heat map from the hierarchical clustering of differentially expressed genes 

between the pHu- and pHu+ individuals. The scaled expression by row (gene) is shown as a 

heat map and is reordered by a hierarchical clustering analysis (Pearson’s distance and Ward’s 

method) on both rows and columns.  

 

Figure 3. Top 10 enriched biological process GO terms. A functional enrichment analysis of 

the biological process GO terms was performed using the topGo R package on the genes that 

were differentially expressed in the breast pectoralis major muscle from the two lines of broilers 

divergently selected for their breast meat ultimate pH. The levels of significance are indicated by 

*** p-value ≤ 1×10-5, ** p-value ≤0.001, and * p-value ≤ 0.01. 

 

Figure 4. Correlation between the log2 fold-change (pHu-/pHu+) of gene expression from 

microarray and quantitative RT-PCR microfluidic technologies.  

 

Figure 5. Final PLS model for the pectoralis major pHu prediction. The final PLS model  was 

fitted on the mRNA expression of 20 genes (measured using RT-qPCR microfluidic technology) 

on a population of 278 male and female individuals from the pHu+ and pHu- lines in order to 
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predict the pectoralis major pHu. (a) Score plot of the two first components (t1, t2) from the PLS 

model. Points correspond to chicken tags coloured according to their measured pHu value in the 

pectoralis major muscle. The cumulative explanatory and predictive performance characteristics 

of the model are R2(cum) = 0.65 and Q2(cum) = 0.62. The root mean square error of the 

estimation (RMSEE) was 0.16. (b) Scatterplot of the observed pHu vs. predicted pHu. (c) 

Variable Importance in Projection (VIP) of each variable (genes) in the final PLS model (the 

genes from the fsPLS model are highlighted in green, those with an extreme FC based on 

microarray analysis are in orange, and those whose function is directly related to carbohydrate 

and muscle metabolism are in blue).   

 

Figure 6. Molecular actors of glycogen turnover. Function of the studied enzymes in the 

regulation of muscle glycogen metabolism. AMPK = adenosine monophosphate-activated protein 

kinase; PHK = phosphorylase kinase; GYS = glycogen synthase; PYG = glycogen 

phosphorylase; PP1 = protein phosphatase-1; PPP1R3A = protein phosphatase-1 regulatory 

subunit 3A. 
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Table 1. Body composition and pectoralis major muscle traitsa of the pHu- (n=15) and pHu+ 

(n=16) individuals. a Values are expressed as the mean ± SD; b Two-tailed Welch’s mean values 

equality t-test at 95% confidence level; c Measured at 15 min post-mortem. 

test at 95 % confidence level; c Measured at 15 min post-mortem. 

Growth and body composition pHu- line pHu+ line p-valueb 
     Body Weight (g) 3058 ± 246 3002 ± 268 0.6 
     Breast Yield (%) 20.4 ± 1.2 20.7 ±2 .2 0.6 
     Abdominal Fat Yield (%) 1.6 ± 0.3 1.6 ± 0.3 0.9 
P. major quality traits    

     Glycolytic potential, µmol/gc 193.5 ± 16.1 142.1± 8.9 ≤ 0.0001 
     Ultimate pH 5.55 ± 0.03 6.34 ± 0.09 ≤ 0.0001 
     Lightness 54.8 ± 2.3 44.7 ± 4.6 ≤ 0.0001 
     Drip loss during storage, % of initial weight 5.1 ± 1.3 1.8 ± 1.2 ≤ 0.0001 
     Toughness after cooking, N 17.0 ± 2.0 11.7 ± 1.2 ≤ 0.0001 
     Processing yield, % of cured meat 80.0 ± 1.7 87.7 ± 3.0 ≤ 0.0001 
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Table 2. List of the 15 genes kept in all 10 fsPLS models fitted to identify predictive 

biomarkers of chicken breast meat pHu. 

Gene symbol Description Associated biological process Go term 

ATP2B1 
ATPase, Ca++ 
transporting, plasma 
membrane 1 

Calcium ion transmembrane transport 

LSMEM1 (C7ORF53) Leucine-rich single-pass 
membrane protein 1  

CDAN1 Codanin 1 Negative regulation of DNA replication, 
chromatin assembly, chromatin organization, … 

LOC100859584 (CR353014) Gas2-likeprotein 1-like  
LOC107052650 (CR387500) Non coding RNA  

ID3 Inhibitor of DNA binding 
3, HLH protein 

Negative regulation of myoblast differentiation, 
response to wounding, positive regulation of 
apoptotic process, … 

MORN4 MORN repeat containing 
4  

MYLIP Myosin regulatory light 
chain interacting protein 

Positive regulation of protein catabolic process, 
protein ubiquitination involved in ubiquitin-
dependent protein catabolic process, cholesterol 
homeostasis, … 

PCGF5 Polycomb group ring 
finger 5 

Positive regulation of transcription from RNA 
polymerase ii promoter, transcription, DNA-
templated 

PPFIBP1 PPFIA binding protein 1 Cell adhesion 
PRKCH Protein kinase C eta Protein phosphorylation, … 
SLC34A2 Solute carrier family 34 

member 2 
Sodium-dependent phosphate transport, cellular 
phosphate ion homeostasis, … 

THSD7B Thrombospondin type 1 
domain containing 7B  

TNS1 Tensin 1 Fibroblast migration, cell-substrate junction 
assembly 
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Figure 1 
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