
Chromosome contacts in activated T cells identify autoimmune disease-candidate genes 

Oliver S Burren​1,2​*, Arcadio Rubio García​2,3​*, Biola-Maria Javierre ​4​*, Daniel B Rainbow​2,3​*, Jonathan 

Cairns​4​, Nicholas J Cooper​2​,  John J Lambourne​5​, Ellen Schofield​2​, Xaquin Castro Dopico​2​, Ricardo C 

Ferreira​2,3​, Richard Coulson​2​, Frances Burden​5,6​, Sophia P Rowlston​5,6​, Kate Downes​5.6​, Steven W 

Wingett​4​, Mattia Frontini​5,6,7​, Willem H Ouwehand​5,6,7,8​, Peter Fraser​4​, Mikhail Spivakov​4​, John A 

Todd​2,3#​, Linda S Wicker​2,3#​, Antony J Cutler​2,3#​, Chris Wallace​1,2,9# 

 

1​Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0SP, UK 

2​JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR 

Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of 

Cambridge, Cambridge, CB2 0XY, UK 

3​Current address: JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Nuffield Department of 

Medicine, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, 

Oxford, OX3 7BN, UK 

4​Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 

3AT, UK 

5​Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, 

Cambridge, CB2 0PT, UK 

6​National Health Service Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge, 

CB2 0PT, UK 

7​British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's 

Hospital, Hills Road, Cambridge, CB2 0QQ, UK 

8​Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, 

Hinxton, Cambridge, CB10 1HH, UK 

1 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2017. ; https://doi.org/10.1101/100958doi: bioRxiv preprint 

https://doi.org/10.1101/100958
http://creativecommons.org/licenses/by/4.0/


9​MRC Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Cambridge 

Biomedical Campus, Cambridge, CB2 0SR, UK 

 

 

*These authors contributed equally to this work. 

#​These authors contributed equally to this work. 

 

  

2 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2017. ; https://doi.org/10.1101/100958doi: bioRxiv preprint 

https://doi.org/10.1101/100958
http://creativecommons.org/licenses/by/4.0/


Autoimmune disease-associated variants are preferentially found in regulatory regions in immune cells, 

particularly CD4​+​ T cells. Linking such regulatory regions to gene promoters in disease-relevant cell 

contexts facilitates identification of candidate disease genes. Here we show that, within four hours, 

activation of CD4​+​ T cells invokes changes in histone modifications and enhancer RNA transcription that 

correspond to altered expression of the interacting genes identified by promoter capture Hi-C (PCHi-C). 

By integrating PCHi-C data with genetic associations for five autoimmune diseases we prioritised 252 

candidate genes, of which 116 were related to activation-sensitive interactions. This included​ IL2RA​ , 

where allele-specific expression analyses were consistent with its interaction-mediated regulation, 

illustrating the utility of the approach. 
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Genome-wide association studies (GWAS) in the last decade have associated 324 distinct genomic             

regions to at least one and often several autoimmune diseases (​http://www.immunobase.org​). The            

majority of associated variants lie outside genes​1 and presumably tag regulatory variants acting on nearby               

or more distant genes​2,3​. Progress from GWAS discovery to biological interpretation has been hampered              

by lack of systematic methods to define the gene(s) regulated by a given variant. The use of Hi-C​4 and                   

capture Hi-C to link GWAS identified variants to their target genes for breast cancer​5 and autoimmune                

diseases​6 using cell lines, has highlighted the potential for mapping long range interactions in advancing               

our understanding of disease association. The observed cell specificity of these interactions indicates a              

need to study primary disease-relevant human cells, and investigate the extent to which cell state may                

affect inference. 

Integration of GWAS signals with cell-specific chromatin marks has highlighted the role of regulatory              

variation in immune cells ​7​, and in particular CD4​+ T cells, in autoimmune diseases​8​. CD4​+ T cells are at                  

the centre of the adaptive immune system and exquisite control of activation is required to guide CD4​+ T                  

cell fate through selection, expansion and differentiation into one of a number of specialised subsets.               

Additionally, the prominence of variants in physical proximity to genes associated with T cell regulation               

in autoimmune disease GWAS and the association of human leukocyte antigen haplotypes have suggested              

that control of T cell activation is a key etiological pathway in development of many autoimmune                

diseases​9​.  

Here, we explored the effect of activation on CD4​+ T cell gene expression, chromatin states and                

chromosome conformation. PCHi-C was used to map promoter interacting regions (PIRs), and to relate              

activation-induced changes in gene expression to changes in chromosome conformation and transcription            

of PCHi-C linked enhancer RNAs (eRNAs). We also fine mapped the most probable causal variants for                

five autoimmune diseases, autoimmune thyroid disease (ATD), coeliac disease (CEL), rheumatoid           
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arthritis (RA), systemic lupus erythematosus (SLE) and type 1 diabetes (T1D). We integrated these              

sources of  information to derive a systematic prioritisation of candidate autoimmune disease genes. 
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Results 

A time-course expression profile of early CD4​+​ T cell activation  

We profiled gene expression in CD4​+​ T cells from 20 individuals across a 21 hour activation time-course, 

and identified eight distinct gene modules by clustering these profiles (​Fig. 1, Supplementary Table 1 ​). 

This time-course focused on much earlier events than previous large time-course studies (eg 6 hours - 8 

days​10​) and highlights the earliest changes that are either not seen or are returning towards baseline by 6 

hours (​Supplementary Fig. 1​).  Gene set enrichment analysis using MSigDB Hallmark gene sets​11 

demonstrated that these modules captured temporally distinct aspects of CD4​+​ T cell activation.  For 

example, negative regulators of TGF-beta signalling were rapidly upregulated, and returned to baseline by 

4 hours.  Interferon responses, inflammatory responses and IL-2 and STAT5 signalling pathways showed 

a more sustained upregulation out beyond 6 hours, while fatty acid metabolism was initially 

downregulated in favour of oxidative phosphorylation. 

 

PCHi-C captures dynamic enhancer-promoter interactions 

We examined activated and non-activated CD4​+​ T cells in more detail at the four-hour time point, at 

which the average fold change of genes related to cytokine signalling and inflammatory response was 

maximal, using total RNA sequencing, histone mark chromatin immunoprecipitation sequencing 

(ChIP-seq) and PCHi-C.  Of 8,856 genes identified as expressed (see Methods) in either condition 

(non-activated or activated), 25% were up- or  down-regulated (1,235 and 952 genes respectively, 

FDR<0.01, ​Supplementary Table 2​).  We used PCHi-C to characterise promoter interactions in activated 

and non-activated CD4​+​ T cells.  Our capture design baited 20,676 ​Hind​ III fragments (median length 4 

kb) which contained the promoters of 29,131 annotated genes, 18,202 of which are protein coding 

(​Supplementary Table 3​).  We detected 283,657 unique PCHi-C interactions with the CHiCAGO 

pipeline​12​, with 55% found in both activation states, and 22% and 23% found only in non-activated and 
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only in activated CD4​+​ T cells, respectively ( ​Supplementary Table 4​).  11,817 baited promoter 

fragments were involved in at least one interaction, with a median distance between interacting fragments 

of 324 kb.  Each interacting promoter fragment connected to a median of eight promoter interacting 

regions (PIRs), while each interacting PIR was connected to a median of one promoter fragment 

(​Supplementary Fig. 2​).  

 

We compared our interaction calls to an earlier ChIA-PET dataset from non-activated CD4​+​ T cells​13​ and 

found we replicated over 50% of the longer range interactions (100 kb or greater), with replication rates 

over ten-fold greater for interactions found in non-activated CD4​+​ T cells compared to interactions found 

only in erythroblasts or megakaryocytes (​Supplementary Fig. 3 ​). We also compared histone 

modification profiles in interacting fragments in CD4​+​ T cells to interacting fragments found in 

erythroblasts or megakaryocytes.  Both promoter fragments and, to a lesser extent, PIRs were enriched for 

histone modifications associated with transcriptionally active genes and regulatory elements (H3K27ac, 

H3K4me1, H3K4me3; ​Supplementary Fig. 4​), and changes in H3K27ac modifications at both promoter 

fragments and PIRs correlated with changes in gene expression upon activation.  PIRs, but not promoter 

fragments, showed significant overlap with regions previously annotated as enhancers​14​. 

 

We found that absolute levels of gene expression correlated with the number of PIRs (​Supplementary 

Fig. 5a​, rho=0.81), consistent with recent observations ​13​. We defined a subset of PCHi-C interactions that 

were specifically gained or lost upon activation (2,334 and 1,866 respectively, FDR<0.01) and found that 

the direction of change (gain or loss) at these differential interactions agreed with the direction of 

differential expression (up- or down-regulated) at the module level (​Fig. 2 ​). We further found that 

dynamic changes in gene expression upon activation correlated with changing numbers of PIRs. Notably, 

the effect was asymmetrical, with a gained interaction having approximately twice the effect of a lost 
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interaction (​Fig. 3a​). Given the >6 hour median half life of mRNAs expressed in T cells​15 

(​Supplementary Fig. 5b)​, it is possible that the relatively weaker effects of lost interactions are due to the 

persistence of downregulated transcripts at the early stages of T cell activation. 

 

As we sequenced total RNA without a poly(A) selection step, we were able to dete​ct regulatory region 

RNAs (regRNAs), which are generally non-polyadenylated and serve as a mark for promoter and 

enhancer activity​16​. We defined 6,147 “expressed” regRNAs (see Methods) that mapped within regulatory 

regions defined by a 15 state ChromHMM​17​ model (​Supplementary Fig. 6​) and validated them by 

comparison to an existing cap analysis of gene expression (CAGE) dataset​18​ which has been successfully 

used to catalog active enhancers.​19​  We found 2,888/3,897 (74%) regRNAs expressed in non-activated 

cells overlap CAGE defined enhancers.  This suggests that the combination of chromatin state annotation 

and total RNA-seq data presents an alternative approach to capture active enhancers.  

 

Almost half (48%) of expressed regRNAs showed differential expression after activation (2,254/681 

up/down regulated; FDR<0.01).  To determine whether activity at these regRNAs could be related to that 

at PCHi-C linked genes, we focused attention on a subset of 640 intergenic regRNAs, which correspond 

to a definition of eRNAs​20​.  Of these, 404 (63%) overlapped PIRs detected in CD4​+​ T cells and we found 

significant agreement in the direction of fold changes at eRNAs and their PCHi-C linked protein coding 

genes in activated CD4​+​ T cells (p<0.0001, ​Fig. 3b​). We also observed a synergy between eRNA 

expression and the effect of a PIR on expression with a gain or loss of a PIR overlapping a differentially 

regulated eRNA having the strongest effect on gene expression ( ​Fig. 3c​), supporting a sequential model 

of gene activation​21​.  While eRNA function is still unknown​20​, our results demonstrate the detection, by 

PCHi-C, of condition-specific connectivity between promoters and enhancers involved coordinating gene 

regulation.  
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PCHi-C-facilitated mapping of candidate disease causal genes 

We defined an experimental framework to integrate PCHi-C interactions with GWAS data to map 

candidate disease causal genes for autoimmune diseases (​Fig. 4 ​).  First, to confirm that  PCHi-C 

interactions inform interpretation of autoimmune disease GWAS, we tested whether PIRs were enriched 

for autoimmune disease GWAS signals in CD4​+​ T cells, compared to non-lymphoid PIRs.  We used 

blockshifter​ , which accounts for correlation between (1) neighbouring variants in the GWAS data and (2) 

neighbouring ​Hind​ III fragments in the interacting data by rotating one dataset with respect to the other. 

This method appropriately controls type 1 error rates, in contrast to methods based on counting associated 

SNP/PIRs which ignore correlation, such as a Fisher’s exact test (​Supplementary Fig. 7 ​).  We found 

autoimmune GWAS signals were enriched in CD4​+​ T cell PIRs compared to non-autoimmune GWAS 

signals (Wilcoxon p = 2.5x10​-7​) and preferentially so in activated ​versus​  non-activated cells (Wilcoxon p 

= 4.8x10​-5​; ​Fig. 4​).  

 

Next, we fine-mapped causal variants for five autoimmune diseases using genetic data from a dense 

targeted genotype array, the ImmunoChip (ATD, CEL, RA, T1D), and summary data from GWAS data 

imputed to 1000 Genomes Project (RA, SLE; ​Supplementary Table 5 ​).  For the ImmunoChip datasets, 

with full genotype data, we used a Bayesian fine mapping approach​22​ which avoids the need for stepwise 

regression or assumptions of single causal variants and which provides a measure of posterior belief that 

any given variant is causal by aggregating posterior support over models containing that variant. 

Variant-level results are given in ​Supplementary Table 6​, and show that of 73 regions with genetic 

association signals to at least one disease (106 disease associations), ten regions have strong evidence that 

they contain more than one causal variant (posterior probability > 0.5), among them the well studied 

region on chromosome 10 containing the candidate gene ​IL2RA​ 22​ .  For the GWAS summary data, we 
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make the simplifying assumption that there exists a single causal variant in any LD-defined genetic region 

and again generate posterior probabilities that each variant is causal​23​.  To integrate these variant level 

data with PCHi-C interactions and prioritize protein coding genes as candidate causal genes for each 

autoimmune disease, we calculated gene-level posterior support by summing posterior probabilities over 

all models containing variants in PIRs for a given gene promoter, within the promoter fragment or within 

its immediate neighbour fragments.  Neighbouring fragments are included because of limitations in the 

ability of PCHi-C to detect very proximal interactions (within a region consisting of the promoter baited 

fragment and one ​Hind​ III fragment either side).  The majority of gene scores were close to 0 (99% of 

genes have a score <0.05) and we chose to use a threshold of 0.5 to call genes prioritised for further 

investigation.  Having both ImmunoChip and summary GWAS data for RA allowed us to compare the 

two methods.  Overlap was encouraging: of 24 genes prioritised for RA from ImmunoChip, 19 had a gene 

score > 0.5 in the GWAS prioritisation, a further four had GWAS scores > 0.3.  The remaining gene, 

MDN1, ​ corresponded to a region which has a stronger association signal in the RA-ImmunoChip than 

RA-GWAS dataset, which may reflect the greater power of direct genotyping versus imputation, given 

that the RA-ImmunoChip signal is mirrored in ATD and T1D (​Supplementary Fig. 8 ​).  We prioritised a 

total of 252 unique protein coding genes, 116 of which related to activation sensitive interactions 

(​Supplementary Table 7​, ​Fig. 4)​. Of 135 prioritised genes which could be related through interactions to 

a known susceptibility region, 64 (48%) lay outside that disease susceptibility region.  The median 

distance from peak signal to prioritised gene was 152 kb.  Note that prioritisation can be one 

(variant)-to-many (genes) because a single PIR can interact with more than one promoter, and promoter 

fragments can contain more than one gene promoter. Note also that the score reflects both PCHi-C 

interactions and the strength and shape of association signals (​Supplementary Fig. 9 ​), therefore a subset 

of prioritised genes relate to an aggregation over sub-genomewide significant GWAS signals.  This is 

therefore a “long” list of prioritised genes which requires further filtering ( ​Table 1​). One hundred and 
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eighty six (of 252)  prioritised genes were expressed in at least one activation state; we highlight 

specifically the subset of 120 expressed genes which can be related to a genome-wide significant GWAS 

signal through proximity of a genome-wide significant SNP (p<5x10 ​-8​) to a PIR.  Of these, 83 were 

differentially expressed, 49 related to activation-sensitive interactions and 29 showed overlap of GWAS 

fine-mapped variants with an expressed eRNA (​Supplementary Table 7 ​).  

Taken together, our results reflect the complexity underlying gene regulation, and the context-driven 

effects that common autoimmune disease-associated variants may have on candidate genes. Our findings 

are consistent with, and extend, previous observations ​7,8​ and we highlight six examples which exemplify 

both activation-specific and activation-invariant interactions.  

 

PCHi-C may prioritise additional genes lying some distance from peak association signals.  For example, 

CEL has been associated with a region on chromosome 1q31.2, for which ​RGS1​  has been named as a 

causal candidate due to proximity of associated variants to its​ ​ promoter​24​. Sub-genome-wide significant 

signals for T1D (min. p=1.5x10​-6​) across the same SNPs which are associated with CEL have been 

interpreted as a colocalising T1D signal in the region ​25​.  ​RGS1​  has recently been shown to have a role in 

the function of T follicular helper cells in mice​26​, the frequencies of which and their associated IL-21 

production have been shown to be increased in T1D patients​27​.  However, our analysis also prioritises, in 

activated T cells, the strong functional candidate genes ​TROVE2 ​ and​ UCHL5​ , over half a megabase 

distant and with three intervening genes not prioritised, for CEL and T1D (​Fig. 5 ​).   ​UCHL5​  encodes 

ubiquitin carboxyl-terminal hydrolase-L5 a deubiquitinating enzyme that stabilizes several Smad proteins 

and TGFBR1, key components of the TGF-beta1 signalling pathway​28,29​.​  ​TROVE2​  is significantly 

upregulated upon activation (FDR=0.005) and encodes Ro60, an RNA binding protein that indirectly 

regulates type-I IFN-responses by controlling endogenous Alu RNA levels​30​
.  ​

 ​A global anti-inflammatory 

effect ​for ​TROVE2​  expression would fit with its effects on gut (CEL) and pancreatic islets (T1D).   
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A similar situation is seen in the ​chromosome 1q32.1 region associated with​ T1D ​in which ​IL10 ​ has been 

named as a causal candidate gene ​31​.​  Together with ​IL10​ , prioritised through proximity of credible SNPs to 

the ​IL10​  promoter, we prioritised other ​IL10​  gene family members ​IL19​ , ​IL20​  and ​IL24​  as well as two 

members of a conserved three-gene immunoglobulin-receptor cluster ( ​FCMR​  and ​PIGR,​  ​Supplementary 

Fig. 10​). While ​IL19, IL20​  and ​PIGR​  were not expressed in CD4​+​ T cells, ​FCMR​  was down- and ​IL24 

and ​IL10 ​ were up-regulated following CD4​+​ T cell activation. IL-10 is recognised as an important 

anti-inflammatory cytokine in health and disease​32​ and candidate genes ​FCMR​  and ​IL24​  are components 

of a recently identified proinflammatory module in Th17 cells​33​.  ​ At this, and other regions, we found 

candidate causal variants interacting with multiple genes.  Parallel results have demonstrated 

co-regulation of multiple PCHi-C interacting genes by a single variant ​34​, suggesting that disease related 

variants may act on multiple genes simultaneously, consistent with the finding that regulatory elements 

can interact with multiple promoters​35–37​.  This region also shows that clusters of multiple adjacent PIRs 

can be detected for the same promoter. It remains to be further validated whether all PIRs detected within 

such clusters correspond to 'causal' interactions or whether some such PIRs are 'bystanders' of strong 

interaction signals occurring in their vicinity.  The use of PCHi-C nonetheless adds considerable 

resolution compared to simply considering topologically associating domains (TADs), which have a 

median length of 415 kb in naive CD4​+​ T cells​34​ compared to a median of 37.5 kb total PIR length per 

gene in non-activated CD4​+​ T cells (​Supplementary Fig. 11​). 

 

Three neighbouring genes on chromosome 16q24.1, ​EMC8​ , ​COX4I1 ​ and​ IRF8​ , were prioritised, the last 

only in activated T cells, for two diseases: RA and SLE (​Supplementary​ ​Fig. 12 ​).  Candidate causal 

variants for SLE and RA fine-mapped to distinct PIRs, yet all these PIRs interact with the same gene 

promoters, suggesting that interactions, possibly specific to different CD4​+​ T cell subsets, may allow us to 
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unite discordant GWAS signals for related diseases​6,38,39​.  ​EMC8​  and ​COX4I1 ​ RNA expression was 

relatively unchanged by activation, whereas ​IRF8 ​ expression was upregulated 97-fold, coincident with the 

induction of 16 intergenic ​IRF8 ​ PIRs, four of which overlap autoimmune disease fine-mapped variants. 

Although the dominant effect of ​IRF8​  is to control the maturation and function of the mononuclear 

phagocytic system​40​, a T cell-intrinsic function regulating CD4​+​ Th17 differentiation has been proposed​41​. 

Our data further link the control of Th17 responses to susceptibility to autoimmune disease including RA 

and SLE​42​. 

 

Other notable examples include ​CCR7​  and ​RARA, ​ prioritised for T1D through a GWAS signal which 

maps to chromosome 17q21.2 (​Supplementary Fig. 13a​) and ​AHR, ​ which​ ​ was prioritised in rheumatoid 

arthritis (RA), specifically in activated T cells rather than non-activated T cells (​Supplementary Fig. 

13b​).  Both ​CCR7​  and ​RARA​  are strong functional candidates with key roles in trafficking of CD4​+​ T 

cells and immune homeostasis​43​ and modulating T cell differentiation ​44​, respectively.   ​AHR is ​ a high 

affinity receptor for toxins in cigarette smoke that has been linked to RA previously through differential 

expression in synovial fluid of patients, though not through GWAS​45​.  Our analysis prioritises ​AHR​  for 

RA due to a sub-genome-wide significant signal (rs71540792, p=2.9x10​-7​) and invites attempts to validate 

the genetic association in additional RA patients. 

 

Interaction-mediated regulation of ​IL2RA ​ expression 

We focused on the gene ​IL2RA ​ and attempted to confirm predicted functional effects of fine-mapped 

variants on ​IL2RA ​ expression.  ​IL2RA​  encodes CD25, a component of the key trimeric cytokine receptor 

that is essential for high-affinity binding of IL-2, regulatory T cell survival and  T effector cell 

differentiation and function​46​. Multiple variants in and near ​IL2RA​  have been associated with a number of 

autoimmune diseases​31,47–49​. We have previously fine-mapped genetic causal variants for T1D and 
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multiple sclerosis (MS) in the ​IL2RA​  region​22​, identifying five groups of SNPs in intron 1 and upstream of 

IL2RA, ​ each of which is likely to contain a single disease causal variant.  Out of the group of eight SNPs 

previously denoted “A”​22​, three (rs12722508, rs7909519 and rs61839660) are located in an area of active 

chromatin in intron 1, within a PIR that interacts with the ​IL2RA​  promoter in both activated and 

non-activated CD4​+​ T cells (​Fig. 6a​).  These three SNPs are also in LD with rs12722495 (r​2​>0.86) that 

has previously been associated with differential surface expression of CD25 on memory T cells​39​ and 

differential responses to IL-2 in activated Tregs and memory T cells​50​.  We measured the relative 

expression of ​IL2RA ​ mRNA in five individuals heterozygous across all  group “A” SNPs and 

homozygous across most other associated SNP groups (​Supplementary Table 9​), in a four-hour 

activation time-course of CD4​+​ T cells.  Allelic imbalance was observed consistently for two reporter 

SNPs in intron 1 and in the 3’ UTR in non-activated CD4​+​ T cells in each individual (​Fig. 6b; 

Supplementary Fig. 14a​), validating a functional effect of the PCHi-C-derived interaction between this 

PIR and the ​IL2RA ​ promoter in non-activated CD4​+​ T cells .  While the allelic imbalance was maintained 

in non-activated cells cultured for 2-4 hours, the imbalance was lost in cells activated under our ​in vitro 

conditions.​ ​ Since increased CD25 expression with rare alleles at group "A" SNPs has previously been 

observed on memory ​CD4​+​ T cells but not the naive or Treg subsets that are also present in the  total 

CD4​+​ T cell population​39​, we purified memory cells from 8 group "A" heterozygous individuals and 

confirmed​ ​activation-induced loss of allelic imbalance of IL2RA mRNA expression in this more 

homogeneous population (​Fig. 6c​,​ Supplementary Fig. 14b​; Wilcoxon p=0.007).  ​ ​IL2RA​  is one of the 

most strongly upregulated genes upon CD4​+​ T cell activation, showing a 65-fold change in expression in 

our RNA-seq data.  Concordant with the genome-wide pattern ( ​Fig. 3​), the ​IL2RA​  promoter fragment 

gains PIRs that accumulate H3K27ac modifications upon activation and these, as well as potentially other 

changes marked by an increase in H3K27ac modification at rs61839660 and across the group A SNPs in 

intron 1, could account for the loss of allelic imbalance. These results emphasise the importance of 
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steady-state CD25 levels on CD4​+​ T cells for the disease association mediated by the group A SNPs, 

levels which will make the different subsets of CD4​+​ T cells more or less sensitive to the differentiation 

and activation events caused by IL-2 exposure ​in vivo​ 51​ .  
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Discussion 

Our results illustrate the dramatic global changes in chromosome conformation in a single cell type in 

response to a single activation condition, in addition to providing support for the candidacy of certain 

genes and sequences in GWAS regions as causal for disease.  Recent attempts to link GWAS signals to 

variation in gene expression in primary human cells have sometimes found only limited overlap​52–54​.  One 

explanation may be that these experiments miss effects in specific cell subsets or states, especially given 

the transcriptional diversity between the many subsets of memory CD4​+​ T cells.​55​  We highlight the 

complex nature of disease association at the ​IL2RA​  region where additional PIRs for ​IL2RA​  gained upon 

activation overlap other fine-mapped disease-causal variants (​Fig. 6a ​), suggesting that other 

allelically-imbalanced states may exist in activated cells, which may also correspond to altered disease 

risk.  For example, the PIR​ ​ containing rs61839660, a group A SNP, also contains an activation eQTL for 

IL2RA​  expression in CD4​+​ T effectors​56​ marked by rs12251836, which is unlinked to the group A variants 

and was not associated with T1D​56​. Furthermore, rs61839660 itself has recently been reported as a QTL 

for methylation of the ​IL2RA​  promoter as well as an eQTL for ​IL2RA ​ expression in whole blood​57​. The 

differences between CD25 expression in different T cell subsets​58,59​, and the rapid activation-induced 

changes in gene and regulatory expression, chromatin marks and chromosome interactions we observe, 

imply that a large diversity of cell types and states will need to be assayed to fully understand the identity 

and  effects of autoimmune disease causal variants.  

 

It will be challenging to assay this diversity of cell types and states in large numbers of individuals for 

traditional eQTL studies, particularly for cell-type or condition-specific eQTLs that have been shown to 

generally have weaker effects​60,61​.  Allele-specific expression (ASE) is a more powerful design to quantify 

the effects of genetic variation on gene expression with modest sample sizes​62​ and the targeted ASE we 

adopt enables testing individual variants or haplotypes at which donors are selected to be heterozygous, 
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while controlling for other potentially related variants at which donors are selected to be homozygous.  By 

using statistical fine mapping of GWAS data, integrated with PCHi-C, to highlight both likely disease 

causal variants and their potential target genes, we enable the design of such targeted ASE analyses.  This 

systematic experimental framework offers an alternative approach to candidate causal gene identification 

for variants with cell state-specific functional effects, with achievable sample sizes. 
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Online Methods 

 

CD4​+​ T cell purification and activation, preparation for genomics assays 

CD4​+​ T cells were isolated from whole blood using RosetteSep (STEMCELL technologies, Canada) 

according to the manufacturer’s instructions. Purified CD4​+​ T cells (average =96.5% pure, range 92.9 - 

98.7%) were washed in X-VIVO 15 supplemented with 1% AB serum (Lonza, Switzerland) and 

penicillin/streptomycin (Invitrogen, UK) and plated in 96-well CELLSTAR U-bottomed plates (Greiner 

Bio-One, Austria) at a concentration of 2.5 x 10​5​ cells / well. Cells were left untreated or stimulated with 

Dynabeads human T activator CD3/CD28 beads (Invitrogen, UK) at a ratio of 1 bead : 3 cells  for 2-21 

hours at 37​o​C and  5% CO​2​. Cells were harvested, centrifuged, supernatant removed and either, (i) 

resuspended in RLT buffer (RNeasy micro kit, Qiagen, Germany) for RNA-seq (0.75-1 x 10​6​ CD4​+​ T 

cells / pool and activation state) or microarray (1 x 10 ​6​ CD4​+​ T cells / donor / timepoint and activation 

state) (ii) fixed in formaldehyde for capture Hi-C (44-101 x 10​6​ CD4​+​ T cells / pool and activation state) 

or ChIP-seq (16-26 x 10​6​ CD4​+​ T cells /  pool and activation state)  as detailed in​34​.  

 

ChIP-seq was carried out according to BLUEPRINT protocols​63​.  Formaldehyde fixed cells were lysed, 

sheared and DNA sonicated using a Bioruptor Pico (Diagenode). Sonicated DNA was pre-cleared 

(Dynabeads Protein A, Thermo Fisher) and ChIP performed using BLUEPRINT validated antibodies and 

the IP-Star automated platform (Diagenode). Libraries were prepared and indexed using the iDeal library 

preparation kit (Diagenode) and sequenced (Illumina HiSeq, paired-end).  

 

For PCHi-C​34​,  DNA was digested overnight with ​Hind​ III, end labeled with biotin-14-dATP and ligated in 

preserved nuclei. De-crosslinked DNA was sheared to an average size of 400 bp, end-repaired and 

adenine-tailed. Following size selection (250-550 bp fragments), biotinylated ligation fragments were 
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immobilized, ligated to paired-end adaptors and libraries amplified (7-8 PCR amplification rounds). 

Biotinylated 120-mer RNA baits targeting both ends of ​Hind​ III​ ​ restriction fragments that overlap 

Ensembl-annotated promoters of protein-coding, ​noncoding, antisense, snRNA, miRNA and snoRNA 

transcripts were used to capture targets. After enrichment,  the library was further amplified (4 PCR 

cycles) and sequenced on the Illumina HiSeq 2500 platform. 

 

PCHi-C interaction calls 

Raw sequencing reads were processed using the HiCUP pipeline ​64​ and interaction confidence scores were 

computed using the CHiCAGO pipeline ​12​ as previously described​34​.  We considered the set of interactions 

with high confidence scores (> 5) in this paper. 

 

Raw PCHi-C read counts from 3 replicates and 2 conditions were transformed into a matrix, and ​a 

trimmed mean of M-values normalization was applied to account for library size differences. 

Subsequently, a voom normalization was applied to log-transformed counts in order to estimate precision 

weights per contact, and differential interaction estimates were obtained after fitting a linear model on a 

paired design, using the limma Bioconductor R package ​65​. 

 

Microarray measurement of gene expression 

We recruited 20 healthy volunteers from the Cambridge BioResource. Total CD4​+​ T cells were isolated 

from whole blood within 2 hours of venepuncture by RosetteSep (StemCell technologies).  To assess the 

transcriptional variation in response to TCR stimulation, 10 ​6​ CD4​+​ T cells were cultured in U-bottom 

96-well plates in the presence or absence of human T activator CD3/CD28  beads at a ratio of 1 bead : 3 

cells.  Cells were harvested at 2 , 4, 6 or 21 hours post-stimulation, or after 0, 6 or 21 hours in the absence 

of stimulation.  Three samples from the 6 hour unstimulated time point were omitted from the study due 
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to insufficient cell numbers, and a further four samples were dropped after quality control, resulting in a 

total of 133 samples that were included in the final analysis.  RNA was isolated using the RNAeasy kit 

(Qiagen) according to the manufacturer’s instructions.  

 

cDNA libraries were synthesized from 200 ng total RNA using a whole-transcript expression kit 

(Ambion) according to the manufacturer’s instructions and hybridized to Human Gene 1.1 ST arrays 

(Affymetrix). Microarray data were normalized using a variance stabilizing transformation ​66​ and 

differential expression was analysed in a paired design using limma​65​.  Genes were clustered into modules 

using WGCNA​67​.  Clustering code is available at 

https://github.com/chr1swallace/cd4-pchic/blob/master/make_modules.R ​. 

 

ChIP sequencing and regulatory annotation 

ChIP sequencing reads for all histone modification assays and control experiments were mapped to the 

reference genome using BWA-MEM​68​, a Burrows-Wheeler genome aligner.  Samtools​69​ was employed to 

filter secondary and low-quality alignments (we retained all read pair alignments with PHRED score > 40 

that matched all bits in SAM octal flag 3, and did not match any bits in SAM octal flag 3840). The 

remaining alignments were sorted, indexed and a whole-genome pileup was produced for each histone 

modification, sample and condition triple. 

 

We used ChromHMM​17​, a multivariate hidden Markov model, to perform a whole-genome segmentation 

of chromatin states for each activation condition ( ​Supplementary Table 8​). First, we binarized read 

pileups for each chromatin mark pileup using the corresponding control experiment as a background 

model. Second, we estimated the parameters of a 15-state hidden Markov model (a larger state model 

resulted in redundant states) using chromosome 1 data from both conditions. Parameter learning was 
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re-run five times using different random seeds to assess convergence. Third, a whole-genome 

segmentation was produced for each condition by running the obtained model on the remaining 

chromosomes.  Each state from the obtained model was manually annotated, and states indicating the 

presence of promoter or enhancer chromatin tags were selected (E4-E11, ​Supplementary Fig. 6​). 

Overlapping promoter or enhancer regions in non-activated and activated genome segmentations were 

merged to create a CD4​+​ T cell regulatory annotation.  Thus, we defined 53,534 regulatory regions 

(​Supplementary Table 8​). 

 

RNA sequencing 

Total RNA was isolated using the RNeasy kit (Qiagen) and the concentrations and integrity were 

quantified using Bioanalyzer (Agilent); all samples reached RINs > 9.8.  Two pools of  RNA were 

generated from three and four donors and for each experimental condition.  cDNA libraries were prepared 

from 1ug total RNA using the stranded NEBNext Ultra Directional RNA kit (New England Biolabs), and 

sequenced on HiSeq (Illumina) at an average coverage of 38 million paired-end reads/sample. RNA 

sequencing reads were trimmed to remove traces of library adapters by matching each read with a library 

of contaminants using Cutadapt ​70​, a semi-global alignment algorithm. Owing to our interest in detecting 

functional enhancers, which constitute transcription units on their own right, we mapped reads to the 

human genome using STAR​71​, a splicing-aware aligner. This frees us from relying on a transcriptome 

annotation which would require exact boundaries and strand information for all features of interest, 

something not available in case of promoters and enhancers. 

 

After alignment, we employed Samtools​69​ to discard reads with an unmapped pair, secondary alignments 

and low-quality alignments. The resulting read dataset, with an average of 33 million paired-end 

reads/sample, was sorted and indexed. We used FastQC (v0.11.3, 
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http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure all samples had regular GC content 

(sum of deviations from normal includes less than 15% of reads), base content per position (difference A 

vs T and G vs C less than 10% at all positions) and kmer counts (no imbalance of kmers with p < 0.01) as 

defined by the tool.  We augmented Ensembl 75 gene annotations with regulatory region definitions 

obtained from our ChIP-seq analysis described above, and defined them as present in both genome 

strands due to their bidirectional transcription potential. For each RNA-seq sample, we quantified 

expression of genomic and regulatory features in a two-step strand-aware process using HTSeq​72​. For 

each gene we counted the number of reads that fell exactly within its exonic regions, and did not map to 

other genomic elements. For each regulatory feature we counted the number of reads that fell exactly 

within its defined boundaries, and did not map to other genomic or regulatory elements. 

 

By construction, this quantification scheme counts each read at most once towards at most one feature. 

Furthermore, strand information is essential to be able to assign reads to features in regions with 

overlapping annotations. For example, distinguishing intronic eRNAs from pre-mRNA requires reads 

originating from regulatory activity in the opposite strand from the gene.  

 

Feature counts were transformed into a matrix, and a trimmed mean of M-values normalization was 

applied to account for library size differences, plus a filter to discard features below an expression 

threshold of < 0.4 counts per million mapped reads in at least two samples, a rather low cutoff, to allow 

for regulatory RNAs to enter differential expression calculations.  This threshold equates to 

approximately 15 reads, given our mapped library sizes of ~35 million paired-end reads.  A voom 

normalization was applied to log-transformed counts in order to estimate precision weights per gene, and 

differential expression estimates were obtained after fitting a linear model on a paired design, using the 

limma Bioconductor R package ​65​.  There was a strong correlation (rho=0.81) between microarray and 
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RNA-seq fold change estimates at 4 hours.  

 

Comparison of regRNAs to FANTOM CAGE data 

We compared expressed regRNA regions detected in our non-activated CD4​+​ T cell samples versus those 

found using CAGE-seq by the FANTOM5 Consortium.  RNA-seq, using a regulatory reference obtained 

from chromatin states, yields 17,175 features expressed with at least 0.4 counts per million in both 

non-activated CD4​+​ T cell samples. Among those, 3,897 correspond to regulatory regions. Unstimulated 

CD4​+​ samples from FANTOM5 

(​http://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.primary_cell.hCAGE/​, samples 10853, 11955 

and 11998) contain 266,710 loci expressed (with at least one read) in all 3 samples. 

 

We found 13,178 of our 17,175 expressed CD4​+​ T cell features overlap expressed loci in CAGE data 

(77%). Conversely, 243,596/266,710 CAGE loci overlap CD4​+​ T cell features (91%).  Similarly 

2,888/3,897 expressed regRNAs overlap expressed loci in CAGE data (74%).  

 

Comparison of PCHi-C and ChIA-PET interactions 

We downloaded supplementary table 1 from 

http://www.nature.com/cr/journal/v22/n3/extref/cr201215x1.xlsx​13​ and counted the overlaps of PCHi-C 

interactions from CD4​+​ T cells and comparitor cells (megakaryoctyes and erythroblasts) in distance bins. 

R code to replicate the analysis is at ​https://github.com/chr1swallace/cd4-pchic/blob/master/chepelev.R ​. 

Calling interactions requires correction for the expected higher density of random collisions at shorter 

distances​73​ which are explicitly modelled by CHICAGO​12​ used in this study but not in the ChIA-PET 

study​13​.  As a result, we expected a higher false positive rate from the ChIA-PET data at shorter distances.  
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Regression of gene expression against PIR count and eRNA expression 

We related measures of gene expression (absolute log2 counts or log2 fold change) to numbers of PIRs or 

numbers of PIRs overlapping specific features using linear regression.  We used logistic regression to 

relate agreement between fold change direction at PCHi-C linked protein coding genes and eRNAs.  We 

used robust clustered variance estimates to account for the shared baits for some interactions across genes 

with the same prey. Enrichment of chromatin marks in interacting baits and prey were assessed by logistic 

regression modelling of a binary outcome variable (fragment overlapped specific chromatin peak) against 

a fragment width and a categorical explanatory variable (whether the ​Hind​ III fragment was a bait or prey 

and the cell state the interaction was identified in), using block bootstrapping of baited fragments 

(​https://github.com/chr1swallace/genomic.autocorr ​) to account for spatial correlation between 

neighbouring fragments.  

 

GWAS summary statistics 

We used a compendium of 31 GWAS datasets ​34​ (​Supplementary Table 5​). Briefly we downloaded 

publicly available GWAS statistics for 31 traits. Where necessary we used the ​liftOver ​ utility to convert 

these to GRCh37 coordinates. To remove spurious association signals, we removed variants with P< 5 x 

10​-8​ for which there were no variants in LD (r ​2​>0.6 using 1000 genomes EUR cohort as a reference 

genotype panel) or within 50 kb with P<10 ​-5​. We masked the MHC region (GRCh37:chr6:25-35Mb) from 

all downstream analysis due to its extended LD and known strong and complex associations with 

autoimmune diseases. 

 

Comparison of GWAS data and PIRs requires dense genotyping coverage.  For GWAS which did not 

include summary statistics imputed for non-genotyped SNPs, we used a poor man’s imputation (PMI) 

method ​34​ ​ to impute.  We imputed p values at ungenotyped variants from 1000 Genomes EUR phase 3 by 
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replacing missing values with those of their nearest proxy variant with r ​2​>0.6, if one existed. Variants that 

were included in the study but did not map to the reference genotype set were also discarded.  

 

To calculate posterior probabilities that each SNP is causal under a single causal variant assumption, we 

divided the genome into linkage disequilibrium blocks of 1cM based on data from the HapMap project 

(​http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/2011-01_phaseII_B37/ ​).  For each region 

excluding the MHC we used code modified from ​Giambartolomei et al.​ 74​  to compute approximate Bayes 

factors for each variant using the Wakefield approximation ​75​, and thus posterior probabilities that each 

variant was causal as previously proposed​76​. 

 

Testing of the enrichment of GWAS summary statistics in PIRs using ​blockshifter 

We used the ​blockshifter​  method ​34​ (https://github.com/ollyburren/CHIGP) to test for  a difference 

between variant posterior probability distributions in ​Hind​ III fragments with interactions identified in test 

and control cell types using the mean posterior probability as a measure of central location.  ​Blockshifter 

controls for correlation within the GWAS data due to LD and interaction restriction fragment block 

structure by employing a rotating label technique similar to that described in GoShifter​77​ to generate an 

empirical distribution of the difference in means under the null hypothesis of equal means in the test and 

control set.   Runs of one or more PIRs (separated by at most one ​Hind​ III fragment) are combined into 

‘blocks’, that are labeled unmixed (either test or control PIRs) or mixed (block contains both test and 

control PIRs). Unmixed blocks are permuted in a standard fashion by reassigning either test or control 

labels randomly, taking into account the number of blocks in the observed sets. Mixed blocks are 

permuted by conceptually circularising each block and rotating the labels. A key parameter is the gap size 

- the number of non-interacting ​Hind​ III fragments allowed within a single block, with larger gaps 

allowing for more extended correlation. 
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We used simulation to characterise the type 1 error and power of ​blockshifter​  under different conditions 

and to select an optimal gap size. Firstly, from the Javierre ​ et al.​  dataset​34​ we selected a test (Activated or 

Non Activated CD4​+​ T Cells) and control (Megakaryocyte or Erythroblast) set of PIRs with a CHiCAGO 

score > 5, as a reference set for ​blockshifter​  input.  

 

Using the European 1000 genomes reference panel, we simulated GWAS summary statistics , under 

different scenarios of GWAS/PIR enrichment.  We split chromosome 1 into 1cM LD blocks and used 

reference genotypes to compute a covariance matrix for variants with minor allele frequency above 1%, 

Σ.  GWAS Z scores can be simulated as multivariate normal with mean μ and variance Σ ​78​.  Each block 

may contain no causal variants (GWAS​null​, μ = 0) or one (GWAS​alt​).  For GWAS​alt​ blocks, we pick a 

single causal variant, ​i​ , and calculate the expected non-centrality parameter (NCP) for a 1 degree of 

freedom chi-square test of association at this variant and its neighbours.  This framework is natural 

because the NCP at any variant ​j ​ can be expressed as the NCP at the causal variant multiplied by the r​2 

between variants ​i​  and ​j​ 79​ .  In each case we set the NCP at the causal variant to 80 to ensure that each 

causal variant was genome-wide significant (P < 5 x 10​-8​). μ is defined as the square root of this 

constructed NCP vector.  

 

For all scenarios we randomly chose 50 GWAS​alt​ blocks leaving the remaining 219 GWAS​null​. Enrichment 

is determined by the preferential location of simulated causal variants within test PIRs.  In all scenarios, 

each causal variant has a 50% chance of lying within a PIR, to mirror a real GWAS in which we expect 

only a proportion of causal variants to be regulatory in any given cell type.  Under the enrichment-null 

scenario, used to confirm control of type 1 error rate, the remaining variants were assigned to PIRs 

without regard for whether they were identified in test or control tissues.  To examine power, we 
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considered two different scenarios with PIR-localised causal variants chosen to be located specifically in 

test PIRs with either 50% probability, scenario power (1), or 100%, scenario power (2).  Note that a PIR 

from the test set may also be in the control set, thus, as with a real GWAS, not all causal variants will be 

informative for this test of enrichment. 

 

For each scenario we further considered variable levels of genotyping density, corresponding to full 

genotyping (everything in 1000 Genomes), HapMap imputation (the subset of SNPs also in Stahl et al. 

REF dataset) or genotyping array (the subset of SNPs also on the Illumina 550k array).  Where 

genotyping density is less than full, we used our proposed poor man’s imputation (PMI) strategy to fill in 

Z scores for missing SNPs.  

 

We ran ​blockshifter​ ,​ ​ with 1000 null permutations, for each scenario and PMI condition for 4000 simulated 

GWAS, with a ​blockshifter​  superblock gap size parameter (the number of contiguous non-PIR ​Hind​ III 

fragments allowed within one superblock) of between 1 and 20 and supplying numbers of cases and 

controls from the RA dataset​48​. 

  

For comparison we also investigated the behaviour of a naive test for enrichment for the null scenario. We 

computed a 2x2 table variants according to test and control PIR overlap, and whether a variant’s posterior 

probability of causality exceeded an arbitrary threshold of 0.01, and Fisher’s exact test to test for 

enrichment. 

 

Enrichment of GWAS summary statistics in CD4​+​ and activated CD4​+​ PIRs 

We compared the following sets using all GWAS summary statistics, with a superblock gap size of 5 

(obtained from simulations above) and 10,000 permutations under the null:- 
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● Total CD4​+​ Activated + Total CD4​+​ NonActivated (test) versus Endothelial precursors + 

Megakaryocytes (control) 

● Total CD4​+​ Activated (test) versus Total CD4​=​ NonActivated (control). 

 

Variant posterior probabilities of inclusion, full genotype data (ImmunoChip) 

We carried out formal imputation to 1000 Genomes Project EUR data using IMPUTE2 ​80​ and 

fine-mapped causal variants in each of the 179 regions where a minimum p < 0.0001 was observed using 

a stochastic search method which allows for multiple causal variants in a region, 

(https://github.com/chr1swallace/GUESSFM)​22​.  The posterior probabilities for models that contained 

variants which overlapped PIRs for each gene were aggregated to compute PIR-level marginal posterior 

probabilities of inclusion.  

 

Variant posterior probabilities of inclusion, summary statistics 

Where we have only summary statistics of GWAS data already imputed to 1000 Genomes, we divided the 

genome into linkage disequilibrium blocks of 0.1cM based on data from the HapMap project 

(​http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/2011-01_phaseII_B37/ ​). For each region 

excluding the MHC we use code modified from ​Giambartolomei et al.​ 74​  to compute approximate Bayes 

factors for each variant using the Wakefield approximation ​75​, and thus posterior probabilities that each 

variant was causal assuming at most one causal variant per region as previously proposed​76​. 

 

Computation of gene prioritisation scores  

We used the COGS  method​34​ (https://github.com/ollyburren/CHIGP) to prioritise genes for further 

analysis. We assign variants to the first of the following three categories it overlaps for each annotated 

gene, if any 
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1. coding variant: the variant overlaps the location of a coding variant for the target gene. 

2. promoter variant: the variant lies in a region baited for the target gene or adjacent restriction 

fragment. 

3. PIR variant: the variant lies in a region overlapping any PIR interacting with the target gene. 

We produced combined gene/category scores by aggregating, within LD blocks, over models with a 

variant in a given set of PIRs (interacting regions), or over ​Hind​ III fragments baited for the gene promoter 

and immediate neighbours (promoter regions), or over coding variants to generate marginal probabilities 

of inclusion (MPPI) for each hypothesised group.  We combine these probabilities across LD blocks, ​i​ , 

using standard rules of probability to approximate the posterior probability that at least one LD block 

contains a causal variant: 

ene score 1 (1 [score for i])g =  −  ∏
 

i ∈ LD blocks
−   

Thus the score takes a value between 0 and 1, with 1 indicating the strongest support.  We report all 

results with score > 0.01 in ​Supplementary Table 7​, but focus in this manuscript on the subset with 

scores > 0.5.  

 

Because COGS aggregates over multiple signals, a gene may be prioritised because of many weak signals 

or few strong signals in interacting regions.  To predict the expected information for future users of this 

method, we considered the subset of 76 input regions with genome-wide significant signals (p<5x10 ​-8​) in 

ImmunoChip datasets.  We prioritised at least one gene with a COGS score > 0.5 in 35 regions, with a 

median of three genes/region (interquartile range, IQR = 1.5-4).  Equivalent analysis of the genome-wide 

significant GWAS signals prioritised a median of two genes/region (interquartile range = 1-3). This 

suggests that this algorithm might be expected to prioritise at least one gene in about half the genomewide 

significant regions input when run on a relevant cell type. 
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Whilst components 1 and 2 are fixed for a given gene and trait the contribution of ​variant​s overlapping                  

PIRs varies depending on the tissue context being examined. We developed a hierarchical heuristic              

method to ascertain for each target gene which was the mostly likely component and cell state. Firstly for                  

each gene we compute the gene score due to genic effects (components 1 + 2) and interactions                 

(component 3) using all available tissue interactions for that gene. We use the ratio of gene effects score                  

to interactions score in a similar manner to a Bayes factor to decide whether one is more likely. If gene                    

effect is more likely (gene.score ratio >3) we iterate and compare if the gene score due to coding ​variant​s                   

(component 1) is more likely than for promoter ​variant​s (component 2). Similarly if an interaction is more                 

likely we compare interaction gene scores for activated vs non-activated cells. If at any stage no branch is                  

substantially preferred over its competitor (ratio of gene scores < 3) we return the previous set as most                  

likely, otherwise we continue until a single cell state/set is chosen. In this way we can prioritize genes                  

based on the overall score and label as to a likely mechanism for candidate causal variants. 

 

Allele-specific expression assays 

Total CD4​+​ T cells were isolated from five donors and activated as described above and were harvested 

after 0, 2 and 4 hours in RLT Plus buffer.  Selected donors were heterozygous at all eight group A SNP 

and, homozygous for group  C and F SNPs.  Two and three of the donors were homozygous for the group 

D and E SNP groups, respectively (​Supplementary Table 9​).  Memory CD4​+​ T cells were sorted from 

cryopreserved PBMC as viable, αβ TCR​+​, CD4​+​, CD45RA​−​,CD127​+​, CD27​+​ cells using a FACSAria III 

cell sorter (BD Biosciences). Sorted cells were either activated for 4 hours in culture as described above 

or resuspended directly in RLT plus buffer post-sort.  Total RNA was extracted using Qiagen RNeasy 

Micro plus kit and cDNA was synthesised using Superscript III reverse transcriptase (Thermo Fisher) 

according to manufacturer’s instructions.  To perform allele-expression experiments we used a modified 

version of a previously described method for quantifying methylation in bisulfite sequence data​81​.  A 
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two-stage PCR was used, the first round primers were designed to flank the variant of interest using 

Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/) and adaptor sequences were added to the primers 

(Sigma), shown as lowercase letters (rs61839660_ASE_F 

tgtaaaacgacggccagtGCACACACCTATCCTAGCCT,  rs61839660_ASE_R 

caggaaacagctatgaccCCCACAGAATCACCCACTCT, product size 114bp; rs12244380_ASE_F 

tgtaaaacgacggccagtTTCGTGGGAGTTGAGAGTGG, rs12244380_ASE_R 

caggaaacagctatgaccTTAAAAGAGTTCGCTGGGCC, product size 180bp; rs12722495_ASE_F 

tgtaaaacgacggccagtGTGAGTTTCAATCCTAAGTGCGA, rs12722495_ASE_R 

caggaaacagctatgaccATTAAGCGGACTCTCTGGGG, product size 97bp).  The first round PCR contains 

10 µl of Qiagen multiplex PCR mastermix, 0.5 µl of 10 nmol forward primer, 0.5 µl of 10 nmol reverse 

primer, 4 µl of cDNA and made up to 20 µl with ultra-pure water. The PCR cycling conditions were 95 ​o​C 

for 15 minutes hot start, followed by 30 cycles of the following steps:  95 ​o​C for 30 seconds, 60​o​C for 90 

seconds and 72​o​C for 60 seconds, finishing with a 72​o​C for 10 minutes cycle.  The first round PCR 

product was cleaned using AmpureXP beads (Beckman Coulter) according to manufacturer’s instructions. 

To add Illumina sequence compatible ends to the individual first round PCR amplicons, additional 

primers were designed to incorporate P1 and A sequences plus sample-specific index sequences in the A 

primer, through hybridisation to adapter sequence present on the first round gene-specific primers.  Index 

sequences are as published​81​.  The second-round PCR contained 8 µl of Qiagen multiplex PCR 

mastermix, 2.0 µl of ultra-pure water, 0.35 µl of each forward and reverse index primer, 5.3 µl of Ampure 

XP-cleaned first-round PCR product.  The PCR cycling conditions were 95 ​o​C for 15 minutes hotstart, 

followed by 7 cycles of the following steps:  95 ​o​C for 30 seconds, 56​o​C for 90 seconds, 72​o​C for 60 

seconds, finishing with 72​o​C for 10 minutes cycle.  All PCR products were pooled at equimolar 

concentrations based on quantification on the Shimadzu Multina.  AmpureXP beads were used to remove 

unincorporated primers from the product pool.  We used the Kapa Bioscience library quantification kit to 
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accurately quantify the library according to manufacturer’s instructions before sequencing on an Illumina 

MiSeq v3 reagents (2 x 300 bp reads). 

 

Statistical analysis of allele-specific expression data 

Sequence data was processed using the Methpup package (https://github.com/ollyburren/Methpup) to 

extract counts of each allele at rs12722495, and rs12244380 (​Supplementary Table 10​). Individuals 

were part of a larger cohort genotyped on the ImmunoChip and were phased using snphap 

(https://github.com/chr1swallace/snphap) to confirm which allele at each SNP was carried on the same 

chromosome as A2=rs12722495:C or A1=rs12722495:T.  Allelic imbalance was quantified as the ratio 

A2/A1 and was averaged across replicates within individuals using a geometric mean.  Allelic ratios in 

cDNA and gDNA were compared using Wilcoxon rank sum tests.  P values are shown in ​Fig. 6b ​and 

Supplementary Fig. 13​.  Full details are in 

https://github.com/chr1swallace/cd4-pchic/blob/master/IL2RA-ASE.R ​.  
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Fig. 1 a: Summary of genomic profiling of CD4+ T cells during activation with anti-
CD3/CD28 beads. We examined gene expression using microarray in activated and non-activated
CD4+ T cells across 21 hours, and assayed cells in more detail at the four hour time point using
ChIP-seq, RNA-seq and PCHi-C. n gives the number of individuals or pools* assayed. b: Eight
modules of co-regulated genes were identified, and eigengenes are plotted for each individual (solid
lines=activated, dashed lines=non-activated), with heavy lines showing the average eigengene across
individuals. We characterized these modules by gene set enrichment analysis within the MSigDB
HALLMARK gene sets, and where significant gene sets were found, up to three are shown per
module. n is the number of genes in each module.
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a b

Fig. 2 Change in PCHi-C interactions correlate with change in gene expression a:
Distribution of significant (FDR<0.01) fold changes induced by activation of CD4+ T cells in (top)
gene expression, and (bottom) differential PCHi-C interactions for differentially expressed genes in
by module. b: Median significant expression and interaction fold changes by module are correlated
(Spearman rank correlation).
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Fig. 3 PCHi-C interactions and enhancer activity predict change in gene expression.
a: Change in gene expression at protein coding genes (log2 fold change, y axis) correlates with the
number of PIRs gained or lost upon activation (x axis). b: Fold change at transcribed sequence
within intergenic regulatory regions (eRNAs) was more likely to agree with the direction of protein
coding gene fold change when the two are linked by PCHi-C (red) in activated CD4+ T cells
compared to pairs of eRNA and protein coding genes formed without regard to PCHi-C derived
interactions (background, grey, p< 10−4). Interactions were categorised as control (present only
in megakaryocytes and erythroblasts, our control cells), invariant (invar; present in non-activated
and activated CD4+ T cells), loss (present in non-activated but not activated CD4+ T cells, and
significantly down-regulated at FDR<0.01) or gain (present in activated but not non-activated
CD4+ T cells, and significantly up-regulated at FDR<0.01). c: gain or loss of PIRs upon activation
predicts change in gene expression, with the effect more pronounced if accompanied by up- or down-
regulation at an eRNA. Points show estimated effect on gene expression of each interaction and
lines the 95% confidence interval. PIRs categorised as in b. eRNAs categorised as no (undetected),
invariant (invar, detected in non-activated and activated CD4+ T cells, differential expression
FDR≥0.01), up (up-regulated; FDR<0.01) or down (down-regulated; FDR<0.01). Bar plot (top)
shows the number of interactions underlying each estimate. Note that eRNA=down, PIR=gain
(light gray) has only one observation so no confidence interval can be formed and is shown for
completeness only.
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Fig. 4. a: An experimental framework for identifying disease causal genes. Before
prioritising genes, enrichment of GWAS signals in PCHi-C interacting regions should be tested to
confirm the tissue and context are relevant to disease. Then, probabilistic fine mapping of causal
variants from the GWAS data can be integrated with the interaction data to prioritise candidate
disease causal genes, a list which can be iteratively filtered using genomic datasets to focus on
(differentially) expressed genes and variants which overlap regions of open or active chromatin. b:
Autoimmune disease GWAS signals are enriched in PIRs in CD4+ T cells generally compared to
control cells (blockshifter Z score, x axis) and in PIRs in activated compared to non-activated CD4+

T cells (blockshifter Z score, y axis). Text labels correspond to datasets described in Supplementary
Data 5. c: Genes were prioritised with a COGS score>0.5 across five autoimmune diseases using
genome-wide (GWAS) or targeted genotyping array (ImmunoChip) data. The numbers at each
node give the number of genes prioritised at that level. Where there is evidence to split into
one of two non-overlapping hypotheses (log10 ratio of gene scores>3), the genes cascade down the
tree. Act and NonAct correspond to gene scores derived using PCHi-C data only in activated or
non-activated cells, respectively. Where the evidence does not confidently predict which of the two
possibilities is more likely, genes are stuck at the parent node (number given in brackets). When the
same gene was prioritised for multiple diseases, we assigned fractional counts to each node, defined
as the proportion of the n diseases for which the gene was prioritised at that node. Because of
duplicate results between GWAS and ImmunoChip datasets, the total number of prioritised genes
is 252 (see Table 1).
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Fig. 5. TROVE2 and UCLH5 on chromosome 1 are prioritised for T1D and CEL. The
ruler shows chromosome location, with HindIII sites marked by ticks. The top tracks show PIRs for
prioritised genes in non-activated (n) and activated (a) CD4+ T cells. Green and purple lines are
used to highlight those PIRs containing credible SNPs from our fine mapping. The total number of
interacting fragments per PCHi-C bait is indicated in parentheses for each gene in each activation
state. Dark grey boxes indicate promoter fragments; light grey boxes, PIRs containing no disease
associated variants; and red boxes, PIRs overlapping fine mapped disease associated variants. The
position of fine mapped variants area indicated by red boxes and vertical red lines. Gene positions
and orientation (ensembl v75) are shown above log2 read counts for RNA-seq forward (red) and
reverse (blue) strand. H3K27ac background-adjusted read count is shown in non-activated (green
line) and activated (purple line) and boxes on the regRNA track show regions considered through
ChromHMM to have regulatory marks.
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Fig. 6. PCHi-C interactions link the IL2RA promoter to autoimmune disease associ-
ated genetic variation, which leads to expression differences in IL2RA mRNA. a: The
ruler shows chromosome location, with HindIII sites marked by ticks. The top tracks show PIRs
for prioritised genes in non-activated (n) and activated (a) CD4+ T cells. Green and purple lines
are used to highlight those PIRs containing credible SNPs for the autoimmune diseases T1D and
MS fine mapped on chromosome 10p1522. Six groups of SNPs (A-F) highlighted in Wallace et
al.22 are shown, although note that group B was found unlikely to be causal. The total number of
interacting fragments per PCHi-C bait is indicated in parentheses for each gene in each activation
state. Dark grey boxes indicate promoter fragments; light grey boxes, PIRs containing no disease
associated variants; and coloured boxes, PIRs overlapping fine mapped disease associated variants.
PCHi-C interactions link a region overlapping group A in non-activated and activated CD4+ T
cells to the IL2RA promoter (dark grey box) and regions overlapping groups D and F in activated
CD4+ T cells only. RNA-seq reads (log2 scale, red=forward strand, blue=reverse strand) high-
light the upregulation of IL2RA expression upon activation and concomitant increases in H3K27ac
(non-activated, n, green line; activated, a, purple line) in the regions linked to the IL2RA promoter.
Red vertical lines mark the positions of the group A SNPs. Numbers in parentheses show the total
number of IL2RA PIRs detected in each state. Here we show those PIRs proximal to the IL2RA
promoter. Comprehensive interaction data can be viewed at http://www.chicp.org. b: Allelic
imbalance in mRNA expression in total CD4+ T cells from individuals heterozygous for group A
SNPs using rs12722495 as a reporter SNP in non-activated (non) and activated (act) CD4+ T cells
cultured for 2 or 4 hours, compared to genomic DNA (gDNA, expected ratio=1). Allelic ratio is
defined as the ratio of counts of T to C alleles. ’×’=geometric mean of the allelic ratio over 2-3
replicates within each of 4-5 individuals, and p values from a Wilcoxon rank sum test comparing
cDNA to gDNA are shown. ‘+’ shows the geometric mean allelic ratio over all individuals. c: Allelic
imbalance in mRNA expression in memory CD4+ T cells differs between ex vivo (time 0) and four
hour activated samples from eight individuals heterozygous for group A SNPs using rs12722495 as
a reporter SNP. p value from a paired Wilcoxon signed rank test is shown.
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Group Description Number of genes

1 Total 252
2 · · · Expressed 186
3 · · · · · · Proximal GWAS significant SNP (p< 5 × 10−8) 120
4 · · · · · · · · · Prioritised gene differentially expressed upon activation 83
5 · · · · · · · · · Prioritisation relates to activation sensitive interactions 49
6 · · · · · · · · · GWAS signal overlaps expressed eRNA in at least one state 29

Table 1. Number of genes prioritised for autoimmune disease susceptibility under
successive filters. Note that group 2 is a subset of group 1, group 3 is a subset of group 2, and
groups 4, 5 and 6 are all subsets of group 3 but not necessarily of each other.
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Supplementary Fig. 1: Comparison of longer and shorter CD4+ T cell activation timecourses. Mi-
croarray timecourse summary from this experiment (solid points) overplotted with a longer timecourse from
GSE60680 (open points, Gustafsson et al, 2015). Points show the median log fold change amongst genes
assigned to each module at each timepoint, with the interquartile range displayed as vertical ranges around
each point. The results at 6 hours are slightly horizontally offset to allow the results from the two exper-
iments to be visually distinguished. Note the non-linear mapping of time to the x axis, which contains a
mixture of hours (h) and days (d), to allow visualization of the early timepoints in particular.
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Supplementary Fig. 2: Summary distributions of interacting fragments. Distributions of a, d number
of interacting promoter bait fragments per PIR; b, e PIRs per promoter fragment; and c, f distance between
midpoints of promoter and PIR HindIII fragments in activated (a-c) and non-activated (d-f) CD4+ T cells.
f Width profile of HindIII fragments according to whether they were baited promoter fragments or not,
and interacting fragments or not. g HindIII fragment length in the four categories of interacting and non-
interacting baited fragments and PIRs.
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Supplementary Fig. 3: Validation of PCHi-C by ChIA-PET. Distance profiles of PCHi-C and ChIA-
PET derived promoter-enhancer interactions in a PCHi-C, non-activated CD4+ T cells and b ChIA-PET
(Chepelev et al), black bars. Coloured bars show the count (b) or percentage (c) of ChIA-PET interactions
recovered in the PCHi-C experiment in non-activated and activated CD4+ T cells (CD4 (a) and CD4 (n), re-
spectively) and, for comparison, two non-lymphocyte cells, ethryroblasts and megakaryocytes processed in
parallel after exclusion of interactions found in either CD4+ T cell. Calling interactions requires correction
for the expected higher density of random collisions at shorter distances57 which are explicitly modelled by
CHICAGO9 used in this study but not in the ChIA-PET study12. As a result, we expected a higher false pos-
itive rate from the ChIA-PET data at shorter distances. Indeed, while we replicated only 17% of interactions
in the 10-50kb range, we replicated over 50% of the longer range interactions (>100 kb).
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Supplementary Fig. 4: Chromatin state profiles of interacting fragments. Log odds ratio that bait,
bait-to-bait (b2b) and PIR regions detected in background cells (back; megakayrocytes and erythroblasts),
activated and non-activated CD4+ T cells (cd4), specifically non-activated or activated CD4+ T cells (non
or act, respectively) overlap (a) given ChIP-seq peaks or typical (TE) or super (SE) enhancers in resting T
cells as previously defined12 and (b) differential (FDR<0.1) ChIP-seq peaks compared to non-interacting
regions. Regions considered specific to activated or non-activated cells had a CHICAGO score > 5 only in
that cell type and were considered differential interactions in a comparative analysis of mapped sequence
counts at FDR<0.1.
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Supplementary Fig. 5: Relationship of gene expression to PIR number and mRNA half-life. a RNA-
seq expression (counts per million mapped reads, log2 scale) shows a positive correlation with the number
of PIRs indentified through PCHi-C. b half-life of mRNA (Raghavan et al. 2002) by gene module in non-
activated and activated cells. The most dynamically regulated genes in our time-course, those in the black
module, had the shortest half-life (p = 3× 10−8).
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a b

c

Supplementary Fig. 6: Definition and quantification of regulatory RNAs. CHROMHMM analysis of ChIP-
seq marks was used to produce a whole genome segmentation into 15 states. Resulting emission (a) and
transmission (b) matrices are shown. States E4-E11 were defined as regulatory. c Neighbouring regions
containing promoter or enhancer states (E4-E11) were merged together into regulatory annotations. Expres-
sion levels of each regulatory area were quantified using RNA-seq in a strand-aware fashion, to avoid the
confounding effect of overlapping genomic features.
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Supplementary Fig. 7: blockshifter calibration. Each panel represents a simulated genotyping density:
1000 genomes (156,082 SNPs); HapMap (44,647 SNPs input, ); Ilumina 550k (10,241 SNPs input). Points
represent type 1 error rates (alpha=0.05) for the null scenario (no enrichment of GWAS variants in test
specific PIRs) and moderate (power 1) and strong (power 2) enrichment scenarios across 4000 simulated
GWAS, with differing blockshifter ‘SuperBlock’ gap size parameter. Error bars represent 95% confidence
intervals. Dashed red lines represent the type 1 error rate for Fisher’s test of enrichment of variants in test
and control PIRs. The naive application of Fisher’s test leads to substantial inflation of type 1 error rate,
more so in lower-density genotyping scenarios. Blockshifter maintains type 1 error rate control, although
a gap size of 5 or more is required to deal with the extended correlation induced by PMI in lower density
genotyping scenarios, while Blockshifter power is impacted, as expected, by genotyping density.
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Supplementary Fig. 8: Gene prioritisation using COGS. We prioritised disease candidate causal genes
by integrating GWAS data with PCHi-C interactions using the COGS algorithm. a The algorithm uses a
Bayesian method to define the marginal posterior probability of inclusion (MPPI, middle panel) for each
variant from GWAS data (top panel). We can also calculate the MPPI marginalising across PIRs (light blue,
bottom panel), coding variants and promoter regions for each focal gene. HindIII fragments are indicated
by dark/light vertical shading. b Note that the gene score is therefore a function of the strength of GWAS
signal, how peaked/diffuse it is, and the interactions. For example, in the top row there are two strong
GWAS signals, one peaked, one diffuse, but the PIRs cover all of the most strongly associated SNPs, and in
each case the gene score is expected to be close to 1. In the lower left plot, the GWAS signal is less strong,
not even genomewide significant, but all the most associated SNPs lie within the PIR. The score will fall,
perhaps to around 0.5, reflecting the weaker evidence for disease association. In contrast, the bottom left
plot shows a diffuse signal, only part of which lies within a PIR. Although we can be confident the disease is
genuinely associated, only about half the fine mapped candidate causal SNPs will lie within a PIR, and the
gene score will again fall, to about 0.5. The situations in the lower row are quite different, but will generate
similar scores.
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Supplementary Fig. 9: MDN1 is prioritised for RA through ImmunoChip but not GWAS data. Similar
signals are found for ATD and T1D, which also link to MDN1, supporting the RA-ImmunoChip result. The
lack of prioritisation in the RA-GWAS dataset relates to the weaker evidence for association in this region.
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Supplementary Fig. 10: Multiple genes on chromosome 1q32.1 (IL10, IL19, IL20, IL24, FCAMR/PIGR)
are prioritised for T1D, CRO and UC. For full legend see Fig. 5.
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Supplementary Fig. 11: Histograms show the distribution of summed PIR length by gene in non-activated
CD4+ T cells (top panel) and TAD length in naive CD4+ T cells. Note the x axis is drawn using a log scale
and that for each gene we have included the promoter-baited fragment and its two immediate neighbours to
allow that PCHi-C cannot detect very proximal interactions in this range.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2017. ; https://doi.org/10.1101/100958doi: bioRxiv preprint 

https://doi.org/10.1101/100958
http://creativecommons.org/licenses/by/4.0/


85.8 mb 85.9 mb 86 mb

IRF8 PCHi−C (a)

EMC8/COX4l1
PCHi−C (n)

Genes
COX4I1

EMC8 IRF8

−10
−5
0
5

10

RNA−seq 
(n)

−10
−5
0
5

10

RNA−seq 
(a)

0
50

100
150
200

H3K27ac

regRNA

IRF8 PCHi−C (n) (0)

(16)

(10)

(17)EMC8/COX4l1
PCHi−C (a)

SLE SNPs
RA GWAS SNPs

RP11−542M13.3

16q24.1

RA IChip SNPs
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full legend see Fig. 5.
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Supplementary Fig. 13: a CCR7 and RARA on chromosome 17 are prioritised for T1D. b AHR on chro-
mosome 7 is prioritised for RA in activated CD4+ T cells. For full legend see Fig. 5.
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Supplementary Fig. 14: Allelic imbalance in mRNA expression in individuals heterozygous for group
A SNPs is confirmed with reporter SNP rs12244380 (IL2RA 3’ UTR) a: Allelic imbalance in mRNA
expression in total CD4+ T cells from individuals heterozygous for group A SNPs using rs12244380 as a
reporter SNP in non-activated (non) and activated (act) CD4+ T cells compared to genomic DNA (gDNA,
expected ratio=1). Allelic ratio is defined as the ratio of counts of the allele carried on the chromosome
carrying rs12722495:T to that carried on the chromosome carrying rs12722495:C. ’×’=geometric mean of
the allelic ratio over 2-3 replicates within each of 4-5 individuals, and p values from a Wilcoxon rank sum
test comparing cDNA to gDNA are shown. ‘+’ shows the geometric mean allelic ratio over all individuals.
b: Allelic imbalance in mRNA expression in memory CD4+ T cells differs between ex vivo (time 0) and
four hour activated samples from eight individuals heterozygous for group A SNPs using rs12244380 as a
reporter SNP. p value from a paired Wilcoxon signed rank test is shown.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2017. ; https://doi.org/10.1101/100958doi: bioRxiv preprint 

https://doi.org/10.1101/100958
http://creativecommons.org/licenses/by/4.0/

