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Abstract

Relaxation oscillators may exhibit small amplitude oscillations (SAOs) in addition to the typical

large amplitude oscillations (LAOs) as well as abrupt transitions between them (canard phenomenon).

Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the

LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other

oscillates in the SAO regime. We investigate the mechanisms underlying the generation of localized

patterns in globally coupled networks of piecewise-linear (PWL) relaxation oscillators where global

feedback acting on the rate of change of the activator (fast variable) involves the inhibitor (slow variable).

We also investigate of these patterns are affected by the presence of a diffusive type of coupling whose

synchronizing effects compete with the symmetry breaking global feedback effects.

1 Introduction

Several chemical, biochemical and biological systems exhibit oscillatory temporal patterns when they

are far from equilibrium [1–7]. These phenomena are generated by the nonlinear interplay of positive

and negative feedback effects operating at different time scales. Point (single) oscillators require at least

one variable (activator) that favors both changes in its own production via autocatalytic effects and the

production of a second variable (inhibitor). Inhibitors oppose changes in the activator on a slower time

scale. Activators and inhibitors represent different state variables in different systems. Examples are

the chemical compounds in the Belousov-Zhabotinsky (BZ) reaction [8, 9], the substrate and product in

product-activated glycolytic oscillations [4,10], the activator and repressor in genetic oscillators, and the

voltage and the recovery variabls of the ionic currents in neurons [5].

In many biologically realistic systems the time scales between activators and inhibitors are well sep-

arated, and the resulting oscillations are of relaxation type [2, 5]. These are captured by the prototypical

van der Pol (VDP) model for a triode circuit [11] and the FitzHugh-Nagumo (FHN) tunnel-diode model

for nerve cells [12,13]; and, also, by more detailed models as the Oregonator for the BZ reaction [14–16],

the Morris-Lecar model for neuronal oscillations [17] the modified versions of the Selkov model for gly-

colytic oscillations [18–21] and genetic oscillators [22].

The complexity of individual relaxation oscillators results from the combined effect of two distinct

inherent properties: (i) the presence of characteristic types of nonlinearities (typically cubic-like) and (ii)

the time scale separation between the participating variables referred to above. In addition to the typical

large amplitude oscillations (LAOs) of relaxation type, relaxation oscillators may exhibit small amplitude

oscillations (SAOs) with an amplitude difference of roughly an order of magnitude as well as abrupt

transitions between them (canard phenomenon) as a control parameter changes through a critical range
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(exponentially small in the parameter defining the slow time scale) [23–29]. Individual 2D relaxation

oscillators may display either SAOs or LAOs, but not both. Higher dimensional relaxation oscillators

may exhibit mixed-mode oscillations (MMOs) [30, 31], where LAOs are interspersed with SAOs. This

creates additional effective time scales.

In addition to the individual oscillators’ intrinsic feedback effects, oscillatory networks have feed-

back effects that result from the network connectivity and its interaction with the intrinsic properties of

the individual oscillators. One such type of feedback is generated by global coupling where each os-

cillator in the network is affected by the dynamics of the rest through one or more of the participating

variables. The effects of global coupling in shaping the network oscillatory patterns has been studied

in a variety of systems both experimentally and theoretically. These include oscillatory chemical reac-

tions [32–37], electrochemical oscillators [38–48], laser arrays [49], catalytic reactions [50], salt-water

oscillators [51], metabolic oscillators and cellular dynamics [20,52,53], cardiac oscillators [54,55], cou-

pling through quorum sensing [56–60], circadian oscillators [61–63], neuronal networks [5, 64–69] and

image processing [65, 70].

Globally coupled networks of 2D relaxation oscillators have been shown to generate oscillatory clus-

ter patterns [20,32–35,38,39,64,71–75]. Each cluster consists of synchronized in-phase identical oscil-

lators. Oscillators in different clusters differ in at least one of their attributes (e.g., frequency, amplitude

and phase). A typical example are the antiphase and, more generally, the phase-locked oscillatory cluster

patterns. In a phase-locked two-cluster pattern the two oscillators exhibit LAOs. In some cases, they may

also exhibit MMOs, which typically reflect the effects of the network connectivity (e.g., inhibition tran-

siently pushing the activator down or terminating an oscillation before it reaches high enough values),

but may also reflect the interaction between the connectivity and the intrinsic canard structure [76] of the

individual oscillators [72, 73].

A more complex type of pattern that emerges in these globally coupled networks are localized os-

cillations, where one cluster exhibits LAO or MMOs and the other shows no oscillations or SAOs

[32–36, 72, 73]. Each oscillator in the network is monostable (it can display SAOs or LAOs but not

both). The break of symmetry into patterns where each oscillator is in a different amplitude regime re-

quires some type of network heterogeneity such as different cluster sizes or the same cluster size with

different global feedback intensities in each cluster. In previous work we showed that the generation

of these patterns involves the interplay of the network connectivity and the intrinsic properties of the

individual oscillators, particularly their ability to exhibit the canard phenomenon and canard-like SAOs

(generated in a supercritical Hopf bifurcation). However, the dynamic mechanisms that give rise to lo-

calized oscillatory patterns in networks of relaxation oscillators and how these patterns depend on the

properties of the participating oscillators is not fully understood.

The goal of this paper is to address these issues in the context of globally coupled networks where

the global feedback acting on the rate of change of the activator involves the inhibitor [32–36, 72, 73].

An additional goal is to understand how these patterns are affected by the presence of a diffusive type of

coupling. Since, in contrast to global inhibition, diffusion tends to synchronize oscillators, their interplay

generates a competition between the two opposing effects. We use a cluster reduction of dimensions

argument [35] and assume the system is divided into two clusters with the same or different sizes. The

effects of the cluster size on the dynamics of this two-cluster networks are absorbed into the global

feedback parameter coding for the intensity. Different cluster sizes result in an effective heterogeneous

connectivity.

To capture the intrinsic dynamics we use a piecewise-linear (PWL) relaxation oscillator model of

FitzHugh-Nagumo (FHN) type, which is an extension of the one we used in [77] to investigate the

mechanisms of generation of the canard phenomenon. PWL models can be explicitly analyzed using

linear tools of dynamical systems and matching “pieces of solutions” corresponding to consecutive linear

regimes. PWL models have been used in a variety of fields as caricature of nonlinear models to provide

insights into the dynamics of smooth nonlinear models either to investigate the dynamics of individual

nodes or networks [78–104].

As in [77], the activator (v) nullcline we use is cubic-like and has four linear pieces (Fig. 1, red

curve). The inhibitor (w) nullcline is sigmoid-like and has three linear pieces (Fig. 1, green curve). The

canard phenomenon requires the presence of the two linear pieces in the middle branch of the v-nullcline,

but a linear w-nullcline is enough. However, localization in models having a linear w-nullcline is more
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difficult to obtain and is less robust than in models having sigmoid-like w-nullclines.

An advantage of using PWL models for this study is that they provide a way of understanding how

the intrinsic properties of the individual oscillators affect the network dynamics in terms of the different

linear portions of the PWL nullclines whose properties are easily captured by their slopes and end-points.

The scenarios we explore in this paper make heavy use of this property. For example, by increasing the

values of βL and βR in Fig. 1 the w-nullcline becomes “more linear” in the region of the phase-plane

where the oscillations occur (around the four branches of the cubic-like v-nullcine). Along this paper

we will compare two such scenarios where the w-nullcline is sigmoid-like (as in Fig. 1) and linear-like

(relatively large values of both βL and βR).

The localized patterns as well as the other types of MMO patterns analyzed in this paper can be a de-

sired or an undesired result of the network activity. For memory devices and working memory [105–108],

localized patterns allow for the effective representation of information in the LAO components. In con-

trast, the presence of localized oscillations may disrupt the communication between neurons [5] and

the effective pulsatile secretion of insulin when controlled by glycolytic oscillators or other oscillatory

systems (e.g., calcium) [20,109–111] (but see [112]). Our results will contribute to understand the mech-

anisms underlying the generation of these patterns and how to control or prevent them when necessary.

2 Methods

2.1 Piecewise linear models of FitzHugh-Nagumo type

We consider the following piecewise linear (PWL) models of FitzHugh-Nagumo (FHN) type

{

v′ = f(v)− w,
w′ = ǫ [ g(v;λ)− w ].

(1)

where the prime sign represent the derivative with respect to the variable t and the functions f and g are

PWL cubic- and sigmoid-like functions (see Fig. 1) given, respectively, by

f(v) =















−v if v < 0,
η v if 0 ≤ v < vc,
(1− η vc)/(1− vc) (v − 1) + 1 if vc ≤ v ≤ 1,
−v + 2 if 1 ≤ v,

(2)

and

g(v;λ) =







−βL if v < (λ− βL)/α,
α v − λ if (λ− βL)/α ≤ v ≤ (λ+ 1− βR)/α,
1 + βR if v > (λ+ 1− βR)/α.

(3)

The PWL cubic-like function f (Fig. 1, red) has a minimum at (0, 0) and a maximum at (1, 1). As

in the smooth case, this choice ensures that large amplitude oscillations are O(1) [77]. The parameter η
governs the slopes of the two middle branchesL2 and L3. The slope of L3 also depends on the parameter

vc (v-coordinate of the point joining L2 and L3). The slopes of both the left (L1) and right (L4) branches

are equal to −1.

The PWL sigmoid function g (Fig. 1, green) has three branches. The two horizontal branches S1

and S3 are below and above the minimum and maximum of f , respectively. The middle branch S2 joins

these two horizontal branches. The parameter λ controls the displacement of g to the right (lda > 0)

or the left (λ < 0). The parameter α controls the slope of the middle branch S2, which increases with

increasing values of α. In the limit of βL, βR → ∞, the PWL system is the one used in [77] where g is

a linear function.

2.2 Linear regimes and virtual fixed-points

The dynamics of a PWL model of the form (1)-(3) can be divided into four linear regimes Rk (k =
1, . . . , 4), corresponding to the four linear pieces Lk of the cubic-like PWL function f(v) (Fig. 2). The
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Figure 1: Cubic- and sigmoid-like piecewise linear v- and w-

nullclines for system (1). The v-nullcline f(v) (red) is given by

(2). We used the following parameter values: η = 0.3, vc = 0.3
The w-nullcline g(v;λ) (green) is given by (3). We used the fol-

lowing parameter values for the two superimposed w-nullclines:

α = 4 (solid-green), α = 2 (dashed-green), λ = 0.3 (solid-green),

λ = 0.21 (dashed-green), βL = −0.2, βR = 0.2. The arrows indi-

cate the effects of increasing values of λ and α. Increasing (decreas-

ing) λ displaces the w-nullcline to the right (left), while increasing

(decreasing) α increases (decreases) the slope of the w-nullcline.

initial conditions in each regime are equal to the values of the variables v and w at the end of the previous

regime where the trajectory has evolved.

In each linear regime the dynamics are organized around a virtual fixed-point (Fig. 2), which results

from the intersection between the w-nullcline (green line) and the corresponding linear piece (red line) or

its extension beyond the boundaries of this regime (dashed-red line). In the latter case the virtual fixed-

points do not coincide with the actual fixed-points, and are located outside the corresponding regime,

but still play an important role in determining the dynamics in that regime. The trajectories in a given

regime never reach the purely virtual stable fixed-points (outside the regime), but their presence provides

information about the trajectory’s direction of motion. More specifically, within the boundaries of each

regime trajectories evolve according to the linear dynamics defined in that regime as if the dynamics

were globally linear, and they “do not feel” that the “rules” governing their evolution will change at a

future time when the trajectory moves to a different regime. We refer the reader to [77] for more details.
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Figure 2: Linear regimes and actual/virtual fixed-point for system (1). The v-nullcline (red) is as in Fig. 1. For the w-

nullcline (green) we used α = 2, λ = 0.3 βL = −0.05 and βR = 0.05. The superimposed dashed-green w-nullcline is linear

(extension the linear piece S2). The virtual fixed-points for each regime (blue dots) are the intersection between the extensions of

the corresponding linear pieces and the w-nullcline. The stable virtual fixed-point for R2 coincides with the actual fixed-point.
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2.3 Networks of PWL oscillators with global inhibitory feedback

We consider networks of PWL oscillators of FHN type of the form (1) globally coupled through the

inhibitor variable (w)

{

v′k = f(vk)− wk − γ Γ(w),
w′

k = ǫ [ g(vk;λ)− wk ],
(4)

for k = 1, . . . , N , where N is the total number of oscillators in the network, γ ≥ 0 is the global feedback

parameter and

Γ(w) =
1

N

N
∑

k=1

wk. (5)

2.4 Cluster reduction of dimensions and heterogeneous coupling

Following previous work [35, 36, 72, 73] we assume the network is divided into two clusters where all

oscillators in each cluster are identical and have identical dynamics, while oscillators in different clusters

may have different dynamics. Accordingly, for a two-cluster network,

Γ(w) = σ1w1 + σ2w2 (6)

where σ1 and σ2 (σ1 + σ2 = 1) are the fractions of oscillators in each cluster. Alternatively, the global

coupling term (6) can be also interpreted as consisting of clusters with the same fraction of oscillators

each, but heterogeneous connectivity.

System (4) with (6) can be written as

{

v′k = f(vk)− (1 + σk γ)wk − σj γ wj ,
w′

k = ǫ [ g(vk;λ)− wk ],
(7)

for k, j = 1, 2 with j 6= k.

The zero-level surfaces (“higher-dimensional nullclines”) for the kth oscillator are given by

wk = Nv,k(vk, wj ; γ) =
f(vk)

1 + σkγ
− γ σjwj

1 + σkγ
, k, j = 1, 2, j 6= k, (8)

and

wk = Nw,k(v) = g(v;λ), k = 1, 2, (9)

respectively.

Eq. (8) describes a two-dimensional surface having the shape of the first term in the right hand side of

Nv,k(vk, 0; γ). For γ > 0, we view the nullsurface (8) as the v-nullcline for the individual (uncoupled)

oscillator Nv,k(v, 0; 0), flattened by the effect of the denominator and forced by the second oscillator via

the variable wj(t). When there is no ambiguity, we refer to the autonomous part Nv,k(vk, 0; γ) in (8)

as the v-nullcline for the oscillator Ok. The oscillations in the latter “raise” and “lower” this v-nullcline

following the dynamics of wj and therefore affect the evolution of the trajectories in the phase-plane

diagrams.

2.5 Diffusive coupling between clusters

System (7) with an added diffusion term reads

{

v′k = f(vk)− (1 + σk γ)wk − σj γ wj +Dv (vj − vk),
w′

k = ǫ [ g(vk;λ)− wk ],
(10)

for k, j = 1, 2 with j 6= k, where Dv is the diffusion coefficient.
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This way of adding diffusion is somehow artificial and does not reflect the diffusive effects in the

original system nor is it derived from it. However, its inclusion helps understand the competitive effects

of global inhibition and diffusion.

Equation (8) is extended to

wk = Nv,k(vk, vj , wj ; γ,Dv) =
f(vk)−Dv vk

1 + σkγ
− γ σjwj −Dv vj

1 + σkγ
, k, j = 1, 2, j 6= k. (11)

For Dv > 0 the v-nullcline Nv,k(vk, 0, 0; γ,Dv) is linearly modified by the term Dv vk. In contrast

to global coupling, this effect is not homogeneous for all values of vk, but is dependent on its sign.

For positive values of vk the v-nullcline is flattened, while for negative values of vk the v-nullcline is

sharpened. The oscillations in vj “raise” and “lower” this v-nullcline following its dynamics. In order

for the linear piece L2 to remain positive for Dv > 0, we will restrict Dv < η.

2.6 Dynamics of the linear regimes

The dynamics of system (1)-(3) in each linear regime are governed by a system of the form

{

v′ = η v − w,
w′ = ǫ [αv − w ],

(12)

centered at the fixed-point (v̄, w̄) (virtual or actual) corresponding to each linear regime. In (12) η
represents the generic slope of each linear piece of f(v) and not necessarily the slope of the linear piece

L2. The coordinates of the fixed-point for each regime, where f(v) is described by η (v − v̂) + ŵ, are

given by

v̄ =
κλ− η v̂ + ŵ

κ α− η
and w̄ = κ

λ η − αη v̂ + α ŵ

κα− η
. (13)

Note that we are using the same notation for the translated system (12) and the original system.

The case κ = 1 corresponds to the uncoupled system, while the case κ = 1+ σ γ corresponds to the

autonomous part of the globally coupled system (7). The effects of Dv are included in the parameter η.

The eigenvalues for each fixed-point are given by

r1,2 =
η − ǫ ±

√

(η + ǫ)2 − 4 κ ǫ α

2
. (14)

The fixed-points for linear regime (12) are stable if η < ǫ and unstable if η > ǫ. They are foci if

| η + ǫ | < 2
√
κ ǫ α (15)

and nodes otherwise. Since α ≥ 0 and κ > 0, saddles are possible only for α = 0. We refer the

reader to [77] for a more detailed discussion for the case κ = 1. The global feedback parameter γ > 0
affects both the location of the fixed-points and the eigenvalues. For large enough values of γ a node can

transition into a focus.

2.7 Numerical simulation

The numerical solutions were computed using the modified Euler method (Runge-Kutta, order 2) [113]

with a time step ∆t = 0.1 ms (or smaller values of ∆t when necessary) in MATLAB (The Mathworks,

Natick, MA).
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3 Results

3.1 The canard phenomenon for PWL models of FHN type revisited

In a two-dimensional relaxation oscillator, the canard phenomenon refers to the abrupt transition between

small amplitude oscillations (SAOs) and large amplitude oscillations (LAOs) as a control parameter

crosses a very small critical range which is exponentially small in the parameter defining the slow time

scale [23–29]. We identify this critical range with a critical value for the control parameter (e.g., λc

if the control parameter is λ). If the Hopf bifurcation underlying the creation of the small amplitude

limit cycles is supercritical, then the SAOs are stable. In contrast, if the Hopf bifurcation is subcritical,

then the small amplitude limit cycle is unstable. The relaxation-type LAOs are always stable. In the

subcritical case, there is bistability between a fixed-point and the LAOs for a range of values of the

control parameter.

The canard phenomenon for PWL models of FHN type with a linear w-nullcline has been described

in [77, 98] and has been throughly analyzed in [77]. Here we briefly describe it in the context of the

PWL models of FHN type with sigmoid-like PWL w-nullclines using the parameter λ as the control

parameter. Our results are presented in Fig. 3 for two representative types of w-nullclines. The first type

(βL = βR = 0.05 is truly sigmoid-like in the region of the phase-plane where the oscillations occur

(Figs. 3-a and -b). The second type (βL = βR = 1) is linear in that region (Fig. 3-b). In this paper

we refer to them as sigmoid- and linear-like w-nullclines, respectively. The primary difference between

them is the way they affect the effective time scales in the region of the phase-plane where SAOs and the

transition from SAOs to LAOs occur.

For the SAOs to be generated (Figs. 3-a1 and -c1) the limit cycle must cross either the linear piece

L2 or the first portion of the linear piece L3 of the v-nullcline. Otherwise (Figs. 3-a2 and -c2) the limit

cycle trajectory moves into the linear regime R4 and the system displays LAOs. For a trajectory arriving

in R2 to be able to cross L2 or the first portion of L3 the actual fixed-point in R2 must be a focus (see eq.

15 for κ = 1). In addition, the initial amplitude of the trajectory in R2 (the distance between the actual

fixed-point and the initial point in R2) must be small enough so that the trajectory reaches the v-nullcline

before reaching the region of fast motion that would cause it to move towards the right branch. For the

parameter values in Fig. 3-a, | η+ ǫ | = 0.4 and 2
√
ǫ α ∼ 0.89 in the linear regime R2 and therefore the

actual fixed-point is a focus. However, as ǫ decreases this inequality may no longer hold. For example,

for the parameters in Fig. 3-b, | η+ ǫ | = 31 and 2
√
ǫ α ∼ 0.28) and therefore the actual fixed-point is a

node and, as a consequence, the system is no longer able to exhibit the canard phenomenon.

The canard critical value λc is affected by the vector field away from the local vicinity of the small

amplitude limit cycle (compare Figs. 3-a and -c). The fact that the horizontal branches of the w-nullcline

in Fig. 3-c are further away from the v-nullcline than in Fig. 3-a (βL and βR are larger in Fig. 3-c than

in Fig. 3-a) causes the oscillation frequency to increase and λc to decrease.

3.2 The canard phenomenon induced by global feedback

Here we follow previous work [35,36,73] and focus on the dynamics of the one-cluster globally coupled

system (7) with σ1 = 1 (σ2 = 0). This is not likely to be a realistic situation, but it provides informa-

tion about how the global feedback affects the oscillatory dynamics and the occurrence of the canard

phenomenon in an autonomous system. The results of this section will be helpful in understanding the

dynamics of the autonomous part of the two-cluster systems discussed below in this paper.

From (15) with κ = 1 + γ, increasing values of γ (all other parameters fixed) can cause the fixed-

point to transition from a node to a focus. In addition, from (14), increasing values of γ change the

location of the fixed-point. Therefore, the global feedback parameter γ can act as the control parameter

that induces the canard phenomenon for fixed-values of λ.

The top panels in Fig. 4 show curves of the oscillation amplitude versus γ for representative param-

eter values and α = 4. The corresponding bottom panels show the phase-plane diagrams for specific

values of γ (for the blue curves in the top panels). The parameter values in Figs. 4-a and -b are the same,

except for βL and βR that are smaller in Fig. 4-a than in Fig. 4-b (the w-nullcline is sigmoid-like in

panel a and linear-like in panel b).
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Figure 3: Dynamics of system (1) for representative parameter values. The v-nullcline (red) is as in Fig. 1. For the w-nullcline

we used the following parameter values: α = 2, βL = βR = 0.05 (a, b), βL = βR = 0.5 (c).
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For ǫ = 0.1 and the sigmoid-like w-nullcline in Fig. 4-a the canard phenomenon is induced by γ.

The transition is more pronounced for lower values of λ. As γ increases, the v-nullcline flattens (Figs.

4-a2 and -a3) and for γc the limit cycle trajectory is able to cross L3, thus generating SAOs (Figs. 4-a3),

instead of moving towards R4 to generate LAOs (Figs. 4-a2).

For ǫ = 0.1 and the linear-like w-nullcline in Fig. 4-b the system fails to exhibit the canard phe-

nomenon as γ increases. The effective time scale separation in the vicinity of the minimum of the

v-nullcline is smaller than in Fig. 4-a because of the absence of the horizontal piece of the w-nullcline

(compare panels a1 and a2 with panels b1 and b2), and therefore the limit cycle trajectories are more

rounded in Figs. 4-b than in Figs. 4-a. This causes the limit cycle trajectory to move further away from

L2 and L3 in Fig. 4-b2 than in Fig. 4-a2. As a result, the v-nullcline is able to flatten significantly before

the limit cycle trajectory is able to cross the middle branch, and therefore the oscillations’ amplitude

decreases gradually instead of abruptly. For lower values of λ (red and green curves in Fig. 4-b) the

transition from LAOs to SAOs is faster and the final amplitude smaller than for λ = 0.7, but still this

transition is not abrupt

A decrease in ǫ for the same parameter values as in Fig. 4-b (including the same linear-like w-

nullcline) restores the ability of γ to induce the canard phenomenon (Fig. 4-c). The decrease in ǫ
compensates for the lack of the horizontal pieces of the w-nullcline, thus maintaining similar levels of

the time scale separation in the vicinity of the minimum of the v-nullcline.

As we discussed in the previous section, for ǫ = 0.01 and α = 2 the uncoupled oscillator (γ = 0)

fails to exhibit the canard phenomenon. However, the canard phenomenon can be induced by γ (not

shown) with similar properties as for α = 4. The values of γc increase with λ and, in contrast to the

α = 4 case, they are both significantly larger for α = 2 than for α = 4. Also, the range of values of γc
spanned by λ is significantly larger for α = 2 than for α = 4.

3.3 Canard and non-canard (standard) SAOs for two interacting oscillators forc-

ing one another

As discussed above, the interaction between two oscillators due to global coupling can be thought of

as the oscillators forcing one another through the last term in the first equation in (7) . If the product

σk γ (k = 1, 2) is large enough, then the autonomous part of Nv,k (8) can be in an SAO regime. This

means that if wj (j = 1, 2 with j 6= k) would be artificially made equal to zero, then the oscillator Ok

would exhibit the type of canard-like SAOs discussed in the previous section. However, since wj is not

necessarily equal to zero or very small, but also oscillates, then Nv,k raises and shifts down from their

baseline location in an oscillatory fashion. This may interfere with the canard SAOs to create the more

complex patterns that we discuss in the following sections.

Among these patterns there are the MMOs (LAOs interspersed with SAOs) shown in Fig. 5-a (blue

curve). This MMO pattern consists of two types of SAOs. The ones along the ascending phase and

the ones on the more shallow phase (Fig. 5-a2). The former correspond to the portion of the trajectory

evolving along the left branch of Nv,1 (Fig. 5-c) as they respond to the motion of Nv,1 following the

forcing exerted by O2 (Fig. 5-c). The second group corresponds to the trajectories moving around

the minimum of Nv,1 as they are able to cross the linear piece L1 to create SAOs. We refer to them

as canard-like SAOs. The canard-like and standard SAOs are created by different mechanisms. The

standard SAOs in v1 (Fig. 5-a, blue) primarily respond to the oscillatory input from w2 (Fig. 5-b, red).

During the ascending phase, w1 is decreasing, therefore the oscillations in v2 and w2 are intrinsically

generated by a canard-like mechanism (Fig. 5-d) that does not require oscillations in the input. The

canard-like SAOs are created by the canard-like mechanism described above. Note that although v1
receives an oscillatory input from w2, the oscillations in w2 during the shallow phase have a smaller

amplitude than during the ascending phase, indicating that they are less important in the generation of

the SAOs in O1.

3.4 Localized, mixed-mode, phase-locked and SAO network oscillatory patterns

In the next sections we examine the consequences of the global feedback’s ability to induce the canard

phenomenon in a single-cluster oscillator (σ1 = 1 and σ2 = 0) discussed above for two-cluster network
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Figure 4: The canard phenomenon induced by global inhibitory feedback in bulk oscillatory systems. The solid-red v-

nullcline corresponds to the actual values of γ used in each panel. The v-nullcline for γ = 0 (dashed-red) is as in Fig. 1

and is presented for reference. For the w-nullcline we used the following parameter values: (a) α = 4, ǫ = 0.1, λ = 0.7,

βL = βR = 0.05. (b) α = 4, ǫ = 0.1, λ = 0.7, βL = βR = 1. (c) α = 4, ǫ = 0.01, λ = 0.08, βL = βR = 1.
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Figure 5: Canard and non-canard (standard) SAOs in two-cluster networks. (a) Curves of v1 and v2 vs. t. (b) Curves of w1

and w2 vs. t. (c,d) Phase-plane diagrams. The gray-dashed curves represent to the vnullcline for the uncoupled system (γ = 0).

The blue- and red-dashed curves represent to the v-nullclines for the autonomous part of the globally coupled system. The green-

dashed curves represent the w-nullclines. The solid blue and red curves represent the trajectories of the globally coupled system

for the oscillators O1 and O2 respectively. The right panels are magnifications of the left ones. We used the following parameter

values: α = 4, ǫ = 0.01, λ = 0.08, σ1 = 0.2, σ2 = 0.8, γ − 5 and βL = βR = 1.
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dynamics (σ1 < 1 and σ2 > 0). We focus on the case σ1 = 0.2 (σ2 = 0.8) as a representative case of

heterogeneous clusters. As we briefly discuss below, homogeneous clusters (σ1 = σ2 = 0.5) produce

relatively simple network patterns.

From (7), the autonomous part of each oscillator is affected by both the cluster size (σk) and γ. In

the absence of the forcing exerted by the other oscillator (wj), the canard phenomenon would be induced

by increasing values of both σk and γ [35, 36]. The global feedback parameter critical value for the

autonomous part of each oscillatory cluster is given by

γc,k =
γc
σk

(16)

where γc is the global feedback parameter critical value for the single-cluster oscillator discussed above

(e.g., γc = 0.32 in Fig. 4-a and γc = 0.38 in Fig. 4-c).

For σ1 = σ2 = 0.5, γc,1 = γc,2 and therefore both oscillators would simultaneously be either in the

LAO or SAO regime (Fig. 6) with no intermediate types of patterns. However, due to the forcing effects

that the oscillators exerts on each other the values of γ at which these abrupt transitions occur are larger

than the ones predicted by (16). For example, for the parameter values in Fig. 6-a, γc,1 = γc,2 ∼ 0.76
(see Fig. 4-c) and the transition occurs at γ ∼ 5.21. For another example, for the parameter values in

Fig. 6-b, γc,1 = γc,2 ∼ 0.72 (not shown) and the transition occurs at γ ∼ 0.99.
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Figure 6: Abrupt transition between antiphase LAO and SAO patterns in two-cluster networks for representative values

of γ. (a) Parameter values are as in Fig. 4-c. (b) Parameter values are as in Fig. 4-c, except for βL = 0.05 and βR = 0.05 (same

as in Figs. 4-a and -b). We used the following parameter values: α = 4, ǫ = 0.01, λ = 0.08, σ1 = σ2 = 0.5, βL = βR = 1 (a)

and βL = βR = 0.05 (b).

For σ1 6= σ2 it is be possible for one oscillator (σ1 < 0.5) to be in the LAO, while the other

(σ2 > 0.5) is in the SAO, thus generating localized patterns (described in more detail below). However,

as discussed above, the forcing effects that the oscillators exert on each other is expected to generate

more complex dynamics that disrupt this scenario, and it is not a priori clear whether and under what

conditions these localized patterns exist. For this to happen, the forcing effects should not interfere

with the canard phenomenon for each oscillator. A richer repertoire of intermediate patterns that are not
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“purely LAO” or “purely SAO” are expected to result from the complex interactions between oscillators

as it happens for other systems [72, 73].

We have identified various types of network patterns for different parameter regimes.
• Phase-locked LAO patterns (e.g., Figs. 7-a1 and -a2) correspond to both oscillators in the LAO

regime. All other parameters fixed, the phase-difference between the two oscillators depends on

the relative cluster sizes. For σ1 = σ2 = 0.5 the patterns are antiphase (Fig. 6). The underlying

mechanisms are qualitatively similar to these described in [72, 73] involving the standard SAOs

discussed above, and will not be discussed further in the context of this paper.• Mixed-mode oscillatory (MMO) patterns (e.g., Fig. 7-a3) correspond to either one or both oscilla-

tors exhibiting MMOs.• Localized patterns (e.g., Figs. 7-a5 and -a6 and Figs. 7-b2 and -b3) correspond to one oscillator

exhibiting LAOs or MMOs, while the other exhibits exclusively SAOs. From (16), the oscillator

with the larger cluster size is the one expected be in the SAO regime.• LAO localized patterns (e.g., Figs. 10-a3 and -a3) correspond to the two oscillators exhibiting

LAOs or MMOs, but the number of LAOs per cycle is different between the two oscillators. The

typical situation is one oscillator exhibiting one LAO per cycle, while the other exhibits a burst of

LAOs.• SAO patterns correspond to both oscillators exhibiting SAOs that may or may not be synchronized

in phase or have the same amplitude.
In addition, we have identified various irregular patterns that emerge mostly as transition patterns

between these mentioned above. We will not analyze these patterns in this paper.

3.5 From phase-locked to localized patterns through network MMOs in the PWL

model with a linear-like w-nullcline

Fig. 7-a shows various representative two-cluster patterns for the same parameter values as in Fig. 4-c.

The global feedback critical values are γc,1 ∼ 1.9 and γc,2 ∼ 0.475. The corresponding phase-plane

diagrams are presented in Fig. 8-a.

For low values of γ (Fig. 7-a1 and -a2) the system exhibits phase-locked LAO patterns. The duty

cycle is smaller for the larger cluster (oscillator O2) since its nullcline is flatter (Fig. 8-a2). The relative

size of the (smaller to larger) duty cycles for the two oscillators O1 and O2 decreases with increasing

values of γ.

As γ increases above these values the system transitions to MMO patterns (Fig. 7-a3 and -a4). The

SAOs for O2 in Fig. 7-a3 are canard-like (Fig. 8-a3) (the limit cycle trajectories cross the linear piece

L2 or at most the early portion of L3). The last SAO in each cycle for O1 is also canard-like. They all

occur as both w1 and w2 are very small so their forcing effects are almost negligible. In contrast, the

first SAOs in each cycle are standard (not canard-like) and reflect the motion of Nv,1 in response to the

dynamics of O2 as explained in Section 3.3.

During the active phase of O1, O2 is almost silent (constant). When O1 jumps down, w1 decreases

and Nv,2 raises, thus releasing O2. Because Nv,2 is flatter than Nv,1, O2 completes the cycle just before

O1, and for some time they are both silent (w1 ∼ 0 and w2 ∼ 0). Fig. 7-a4 corresponds to a slightly

higher value of γ. This causes the first O2 oscillation to transition to a SAO. As this happens O1 is

moving along the left branch of Nv,1 and continuing to release O2 from inhibition. As a result, the

second O2 oscillation is a LAO.

For larger values of γ the system transitions to localized patterns (Fig. 7-a5 and -a6) where the

smaller cluster (O1) exhibits MMOs and larger cluster (O2) exhibits canard-like SAOs (Fig. 8-a5 and

-a6). The SAOs displayed by O1 are a combination of canard- and standard SAOs. (as described above)

in response to the dynamics of O2. Note that the transition to localized patterns requires a much larger

value of γ than the one predicted by γc,1 and γc,2.

3.6 Abrupt transition between phase-locked LAO and localized patterns for the

PWL model with a sigmoid-like w-nullcline

Fig. 7-b shows various representative two-cluster patterns for the same parameter values as in Fig. 7-a,

but a sigmoid-like w-nullcline instead of a linear-like one as in Fig. 7-a. The corresponding phase-plane

diagrams are presented in Fig. 8-b. The global feedback critical values are γc,1 ∼ 1.8 and γc,2 ∼ 0.45.
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In contrast to the case discussed in the previous section, the transition from phase-locked SAO pat-

terns (Fig. 7-b1) to localized patterns (Fig. 7-b2) is abrupt and occurs for a value of γ slightly higher than

γc,2. This is the result of the stronger time scale separation imposed by the sigmoid-like w-nullcline, par-

ticularly in the regions of the phase-plane where the left and right branches of the v-nullcline are located

(Fig. 8-b).

When O1 jumps up, it causes Nv,2 to shift down, thus inhibiting O2. For the parameter values in Fig.

7-b1 (phase-locked SAO patterns), the trajectory for O2 is above the minimum of Nv,2 and it continues

to move down along Nv,2. After O1 jumps down and begins to move down along Nv,1, decreasing

the forcing exerted on O2, this is released from inhibition and the trajectory moves through R2 without

crossing L2, thus jumping up.

For the parameter values in Fig. 7-b2 (localized patterns) the trajectory for O2 is almost at the

minimum of Nv,2 when O1 jumps up. The trajectory for O2 first displays a small non-canard SAO,

which is the result of O1 causing Nv,2 to move down, and then two canard SAOs after O1 jumps down

and moves down along Nv,1. The larger value of γ increases the ability of the trajectory for O2 to

generate canard-like SAOs by crossing Nv,2 without jumping up.

The two models considered in this and the previous sections differ in the distances (βL and βR)

between the horizontal pieces (S1 and S3) of the w-nullcline and the v-nullcline. To determine which

one of βL or βR has a stronger effect in creating the abrupt transitions between the phase-locked LAO and

localized patterns described in this section we looked at models with mixed values of these parameters.

We found that for βL = 1 and βR = 0.05 the system behaves as in Fig. 7-a, while for βL = 0.05
and βR = 1 the system behaves as in Fig. 7-b. This confirms that the increase in the effective time

scale separation created by the left horizontal piece of the sigmoid-like w-nullcline is key for the results

discussed above (and in the next section).

3.7 The oscillatory frequency of the PWL model with sigmoid- and linear-like

w-nullclines has different monotonic dependencies with γ

Comparison between the localized patterns in Figs. 7-a (panels a5 and a6) and -b (panels b2 and b3)

shows that the LAO frequency of the oscillator O1 decreases with increasing values of γ for the linear-

like w-nullcline (Figs. 7-a5 and a6), while it increases with increasing values of γ for the sigmoid-like

w-nullcline (Figs. 7-b2 and b3).

The underlying mechanisms in both cases involve the presence of canard-like SAOs. In Fig. 7-a5, O1

jumps up right after reaching the minimum of Nv,1 (Fig. 8-a5). In Fig. 7-a6, O1 engages in canard-like

SAOs after reaching the minimum of Nv,1 (Fig. 8-a6), thus increasing the LAO period. This is the result

of the forcing exerted by O2 and lower time scale separation for the linear-like w-nullcline in Fig. 7-a as

compared to the sigmoid-like w-nullcline in Figs. 7-b.

For the sigmoid-like w-nullcline (Figs. 7-b2 and -b3), the number of SAOs per cycle also increases

as γ increases. However, O1 jumps up upon reaching the minimum of Nv,1. Also, more importantly, the

number of cycles per unit of time increases with γ because the active phase of O1 significantly decreases

with increasing values of γ. This is the result of the flattening of the the v-nullcline as γ increases and

the fact that O1 jumps down near the maximum of the baseline Nv,1.

3.8 The localized patterns persist for lower values of α for the PWL model with

a sigmoid-like w-nullcline, but not for a linear-like w-nullcline

From our previous discussion about the effects of decreasing values of α on the ability of λ and γ to

induce the canard phenomenon in the uncoupled and coupled systems, respectively, it is not a priori clear

whether the localized patterns found in the previous section for α = 4 will persist when we decrease α.

In Fig. 9 we present our results for the same parameter values as in Fig. 7 for α = 2 (instead of α = 4).

For the uncoupled system and α = 2 (and all other parameters as in Fig. 9), the PWL model fails to

exhibit the canard phenomenon as λ changes. For the one-cluster system, in contrast, changes in γ are

able induce the canard phenomenon, although for significantly larger values of γc than for α = 4.

Our results in Fig. 9-b show that for α = 2 and sigmoid-like w-nullclines the ability of the PWL

model to exhibit abrupt transitions between phase-locked and localized patterns persist with similar
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Figure 7: Localization in a two-cluster network for representative values of γ. (a) Parameter values are as in Fig. 4-c. (b)

Parameter values are as in Fig. 4-c, except for βL = 0.05 and βR = 0.05 (same as in Figs. 4-a and -b). We used the following

parameter values: α = 4, ǫ = 0.01, λ = 0.08, σ1 = 0.2, σ2 = 0.8, βL = βR = 1 (a) and βL = βR = 0.05 (b).
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Figure 8: Localization in a two-cluster network for representative values of γ. Phase-plane diagrams for the parameter

values is Fig. 7. The gray-dashed curves represent to the vnullcline for the uncoupled system (γ = 0). The blue- and red-dashed

curves represent to the v-nullclines for the autonomous part of the globally coupled system. The green-dashed curves represent the

w-nullclines. The solid blue and red curves represent the trajectories of the globally coupled system for the oscillators O1 and O2

respectively. We used the following parameter values: α = 4, ǫ = 0.01, λ = 0.08, σ1 = 0.2, σ2 = 0.8, βL = βR = 1 (a) and

βL = βR = 0.05 (b).
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properties as for α = 4, but the abrupt transition occurs for much higher values of γ. In contrast, for

linear-like w-nullclines the PWL model fails to produce localized patterns (Fig. 9-a). There is an abrupt

transition from the LAO patterns in Fig. 9-a4 to the SAO patterns in Fig. 9.

There are additional differences between the patterns in Figs. 9-a and 7-a such as the occurrence of

two LAOs per cycle for α = 2, which we did not observe for α = 4.
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Figure 9: Localized and non-localized patterns in a two-cluster network for representative values of γ. We used the following

parameter values: α = 2, ǫ = 0.01, λ = 0.08, σ1 = 0.2, σ2 = 0.8, βL = βR = 1 (a) and βL = βR = 0.05 (b).

3.9 The localized patterns are robust to changes in λ for the PWL model with a

sigmoid-like w-nullcline, but not for a linear-like w-nullcline

Increasing values of λ increase the global feedback critical value γc (Fig. 4-c), and therefore it increases

both γc,1 and γc,2, and is expected to increase the values of γ at the transition to localized patterns (if

they exist) are present. If the values of γ are to high, then the v-nullcline flattens before the canard

phenomenon can be induced by γ as for the case illustrated in Fig. 4-b3. Therefore, it is not clear a priori

that the transitions observed for λ = 0.08 in Figs. 7 and 8 persist for larger values of λ. To address this

issue we used the same parameter values as in these figures, but with λ = 0.4 (instead of λ = 0.08). Our
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results are presented in Fig. 10.

The model with a sigmoid-like w-nullcline (Fig. 10-b) shows an abrupt transition between phase-

locked LAOs to localized patterns with similar properties as for λ = 0.08 (Fig. 7-b). In contrast, the

patterns displayed for the model with a linear-like w-nullcline (Fig. 10-a) differ from these for λ = 0.08.

Importantly, for λ = 0.4 the model does not exhibit localized patterns. Other differences include the

presence of in-phase patterns (Fig. 10-a1) and LAO localized patterns (Figs. 10-a3, -a4 and -a5) where

the number of LAOs for O2 per cycle increases with increasing values of γ. There is an abrupt transition

between these patterns and the ones in Fig. 10-a6.
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Figure 10: Localized and non-localized patterns in a two-cluster network for representative values of γ. We used the

following parameter values: α = 4, ǫ = 0.01, λ = 0.4, σ1 = 0.2, σ2 = 0.8, βL = βR = 1 (a) and βL = βR = 0.05 (b).

3.10 Localized patterns are more robust for the sigmoid-like w-nullcline than for

the linear-like w-nullcline for higher values of ǫ

In Figs. 11-a and -b we show the different types of patterns for ǫ = 0.1 and the parameter values in Figs.

4-a and -b, respectively. In both cases, for low enough values of γ the system shows in-phase patterns
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(Fig. 11-a1 and -b1), consistently previous findings for the smooth FHN model [72].

As γ increases, the patterns in the PWL model with a linear-like w-nullcline transition to the complex

type of patterns shown in Fig. 11-a2 and then to the synchronized in-phase patterns shown in Fig. 11-a3.

The phase-plane diagrams for these patterns (not shown) are qualitatively similar to the ones obtained for

the single-cluster case (Fig. 4-b1), which does not exhibit the canard phenomenon as γ increases. The

absence of localization for the two-cluster system is associated to this lack of ability of the single-cluster

system to exhibit the canard phenomenon as γ increases.

In contrast, for the PWL model with a sigmoid-like w-nullcline, as γ increases the patterns transition

to the localized patterns shown in Figs. 11-b2 and -b3. The larger and smaller SAOs in Figs. 11-b2 and

-b3 correspond to the limit cycle trajectory crossing the linear pieces L3 and L2, respectively. In Fig.

11-b3 the limit cycle trajectory crosses L3 at a lower height than in Fig. 11-b2. A significant difference

between these localized patterns and the ones for ǫ = 0.01 (Figs. 7-b and 10-b) is that in the latter the

SAOs are interrupted during LAOs, while in the former SAOs and LAOs may occur simultaneously.

While localization does not occur for λ = 0.7 in the PWL model with a linear-like w-nullcline, it

may be restored for lower values of λ (Fig. 11-c3). For these parameter values the system also shows

antiphase patterns (Fig. 11-b2) for lower values of γ.

3.11 The canard phenomenon can be induced by the diffusion autonomous com-

ponent

In the next sections we investigate the combined effect of global coupling and diffusion. Here we first

look at the effects of the diffusion coefficient Dv on the dynamics of the autonomous part of system (10).

This is not a realistic situation, but, as for the effects of γ on the one-cluster systems discussed in Section

3.2, it provides information about the dynamics of the autonomous part of each oscillator.

Increasing values of Dv decrease the slopes (η) of the linear pieces L2 and L3. From (15) this

can cause the transition of the actual fixed-point in R2 from a node to a focus, therefore favoring the

occurrence of the canard phenomenon. This is illustrated in Fig. 12 for the same parameter values as in

Fig. 4 and γ = 0. (The baseline v-nullclines for Dv = 0 in panels a, b and c, are as in Figs. 4-a1, -b1,

and -c1, respectively.)

3.12 Interplay of diffusion and global feedback for equal-size clusters: in-phase

synchronization and the canard phenomenon

Global feedback and diffusion have opposite effects. While global feedback favors the generation of

phase-locked clusters (Fig. 6), diffusion favors in-phase synchronization (Fig. 13-a). Here and in the

next section we investigate the patterns that result from the interplay of global coupling and diffusion.

For visualization purposes, in Figs. 13 and 14 we present the patterns for the globally coupled system

in the absence of diffusion to the left of the dashed-gray line. In a separate set of simulations we have

checked that the patterns for both γ > 0 and Dv > 0 (right of the dashed-gray line) remain unchanged

when global feedback and diffusion are activated simultaneously (not shown).

For relative low Dv/γ ratios, the system shows antiphase patterns (Fig. 13). As this ratio increases,

the two oscillators synchronize in-phase (Fig. 13-c). In-phase patterns are also obtained for γ = 0.3
and Dv = 0.15 (not shown) for which Dv/γ = 0.5. For larger values of γ, but similar Dv/γ ratios,

the two oscillators exhibit in-phase SAOs. The increase in Dv does not always cause the transition from

LAOs to SAOs since once the two oscillators synchronize in-phase they behave as a single cluster and

the diffusive effects are negligible. Therefore, the transition from LAOs to SAOs in these cases depends

on whether whether γ > γc or not. For example, for γ = 0.3 and values of Dv larger than the one in

Fig. 13-c the patterns remain in the LAO regime in contrast to the patterns in Fig. 13-d).

3.13 Interplay of diffusion and global feedback for clusters with different size:

Diffusion-induced localized and MMO patterns

In Fig. 14-a1 we illustrate the diffusion-induced localized patterns for the same parameter values as in

Fig. 10-b and a relatively low Dv/γ ratio. In the absence of diffusion, the system exhibits phase-locked
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Figure 11: Localization in a two-cluster network for representative values of γ. We used the following parameter values:

α = 4, ǫ = 0.1, λ = 0.7, σ1 = 0.2, σ2 = 0.8, βL = βR = 1 (a) and βL = βR = 0.05 (b).
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Figure 12: The canard phenomenon induced by diffusion in bulk oscillatory systems. Parameter values are as in Fig. 4 The

baseline v-nullcline for γ = 0 (dashed-red) is as in Fig. 1 and is presented for reference. The solid-red v-nullcline corresponds

to the actual values of γ used in each panel. For the w-nullcline we used the following parameter values: (a) α = 4, ǫ = 0.1,

λ = 0.7, βL = −0.05 and βR = 0.05. (b) α = 4, ǫ = 0.1, λ = 0.7, βL = −1 and βR = 1. (c) α = 4, ǫ = 0.01, λ = 0.08,

βL = −1 and βR = 1.
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Figure 13: Interplay of global coupling and diffusion in a two-cluster network for representative values of γ. We used the

following parameter values: α = 4, ǫ = 0.01, λ = 0.08, σ1 = 0.5, σ2 = 0.5, βL = βR = 0.05. The dashed-gray line indicates

the time at which diffusion was activated.

LAOs and localization is induced by increasing values of γ (Fig. 10-b). Similar patterns were obtained

for other values of γ and low Dv/γ ratios.

As Dv increases, different types of MMO patterns emerge (Fig. 14-a2 to -a5), which combine the

two competing effects of global coupling and diffusion. These patterns include in-phase MMO patterns

with different ratios of SAOs and LAOs per cycle (e.g., Fig. 14-a2 and -a5) and MMO patterns where

the LAOs in both oscillators are phase-locked (e.g., Fig. 14-a3 and -a4). As Dv increases further, the

system exhibits in-phase SAOs.

In Fig. 14-b we show some representative patterns for low Dv/γ ratios. Fig. 14-b1 shows a transition

from localized to in-phase MMO patterns (similar to this in Fig. 14 -a5) that combine the features of both

oscillators when Dv = 0. The in-phase MMOs have a lower LAO frequency than the localized pattern

for Dv = 0. Fig. 14-b2 also shows a transition between localized and in-phase MMOs. However, these

MMOs have less SAOs per cycle and a higher LAO frequency than for Dv = 0. Finally, in Fig. 14-b3

there is a transition between two types of localized patterns with different ratios of SAOs per cycle and

a lower frequency. In all cases, there is relatively abrupt transition between these patterns and SAO

patterns, often not synchronized in-phase (not shown). These transitions sometimes involve irregular

patterns for very small ranges of Dv

4 Discussion

Localized patterns in oscillatory networks where one oscillator (or cluster) exhibits LAOs or MMOs,

while the other exhibits SAOs have been observed both experimentally and theoretically [32–36, 72, 73,

114–116]. In previous work we have established that these type of localized patterns can be obtained

in networks of relaxation oscillators such as the FHN model and the Oregonator where the individual

oscillators exhibit the supercritical canard phenomenon. In these networks, localized patterns required

the presence of heterogeneity in the cluster distribution, which effectively creates heterogeneity in the

inter-cluster connectivity. One important aspect of these networks is that the individual oscillators are

monostable (they exhibit either LAOs or SAOs, but not both). The break of symmetry in the oscillation
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Figure 14: Interplay of global coupling and diffusion in a two-cluster network for representative values of γ. We used

the following parameter values: α = 4 , ǫ = 0.01, λ = 0.4 (a), λ = 0.08 (b), σ1 = 0.2, σ2 = 0.8, βL = βR = 0.05. The

dashed-gray line indicates the time at which diffusion was activated.
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amplitude regime between the two (or more) clusters is a network phenomenon. However, how and

under what conditions do localized patterns emerge as the result of the interaction between the network

connectivity and the intrinsic properties of the individual oscillators (e.g., the canard phenomenon) was

not fully understood.

In this paper we set out to address these issues in the context of PWL model of FHN type where

the v-nullcline is cubic-like and the w-nullcline is either sigmoid- or linear-like. This model belongs to

the set of minimal models that are able to produce localized patterns. Oscillatory patterns in globally

coupled models have also been studied using the so called phase oscillators [37, 75, 117–122]. In these

models, each oscillator is described solely by its phase and the effects of the interaction of oscillators

on their amplitude is neglected by assuming weak coupling. These models are successful in capturing

the phase-lock cluster patterns where the two oscillators are in the same amplitude regime, but they fail

to capture the generation of the more complex patterns that involve more than one oscillatory amplitude

regime and transitions between both.

In order to identify the principles that govern how the interplay of the intrinsic properties of the indi-

vidual oscillators and the network connectivity interact to produce the localized patterns, we have con-

sidered a number of representative scenarios which include qualitatively different types of w-nullclines

(sigmoid- and linear-like) and different parameter values that control the slope of the w-nullcline (α), its

displacement with respect to the v-nullcline (λ), and the time scale separation between the participating

variables (ǫ).
Our results show that the presence of the supercritical canard phenomenon in the individual oscil-

latory clusters is a necessary ingredient to produce localized patterns, but it is not sufficient (e.g., Figs.

9-a and 10-a). Localized patterns require a specific tuning between the various model parameters and

the shape of the w-nullcline. The robustness of these patterns is strongly dependent on the shape of

the w-nullcline. Models with a sigmoid-like w-nullcline produced more robust localized patterns than

models with linear-like w-nullclines (e.g., Fig. 7) as well as abrupt transitions between phase-locked and

localized patterns that were absent in models with linear-like w-nullclines.

An additional goal of this study was to understand the effects of the interplay between the two

competing types of coupling: global inhibition and diffusion. Global inhibition tends to create clusters.

Diffusion is local and tends to cause oscillators to synchronized in-phase. Indeed, when the two clusters

have equal size and the oscillators are initially in the LAO regime, the addition of diffusion cause them to

synchronize in-phase either in the LAO or SAO regimes depending on the Dv/γ ratio. However, when

the cluster sizes were different, the addition of diffusion induced localized or MMO network patterns that

were either synchronized in-phase or not depending also on the Dv/γ ratio. Even when the resulting

patterns are synchronized in-phase, they do not resemble the patterns in the absence of diffusion.

We emphasize that the diffusive type of coupling we used in this paper is not realistic and does not

reflect the diffusive effects between oscillators in each cluster in the original system. The question of

how oscillators in each clusters are held together and how the different cluster sizes are generated as the

result of the interplay of global coupling and diffusion remains open.

In this paper we have considered a specific type of global coupling motivated by previous work.

Other studies have considered global feedback from the activator variable onto itself, rather than from

the inhibitor onto the activator [69,123–126]. More research is needed to establish if and under what con-

ditions localized patterns are possible in these networks and, if they exist, to characterize the similarities

and differences between the patterns generated by the two types of global feedback.

An alternative scenario to the one we present here would involve the presence of bistability in the

individual oscillators [108]. In this case, the role of the network connectivity would be to separate

the oscillators into clusters by causing each oscillator to choose between the stationary solutions of the

individual oscillators. This will require the presence of bistability between two oscillatory regimes.

Alternatively, the localized solutions would involve one oscillatory and one silent cluster.

Network patterns can be generated by various mechanisms. On one extreme, these patterns can be

imposed by the network connectivity with little or no participation of the individual oscillators. Our

results highlight the richness of the patterns generated by the interplay of the network connectivity and

the intrinsic properties of the individual oscillators.
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