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Abstract 

Genome-wide association studies are now shifting focus from analysis of common to uncommon and 
rare variants with an anticipation to explain additional heritability of complex traits.  As power for 
association testing for individual rare variants may often be low, various aggregate level association 
tests have been proposed to detect genetic loci that may contain clusters of susceptibility variants.  
Typically power calculations for such tests require specification of large number of parameters, including 
effect sizes and allele frequencies of individual markers, making them difficult to use in practice. In this 
report, we approximate power to varying degree of accuracy using a smaller number of key parameters, 
including the total genetic variance explained by multiple variants within a locus. We perform extensive 
simulation studies to assess the accuracy of the proposed approximation in realistic settings. Using the 
simplified power calculation methods, we then develop an analytic framework to obtain bounds on 
genetic architecture of an underlying trait given results from a genome-wide study and observe 
important implications for lack or limited number of findings in many currently reported studies. Finally, 
we provide insights into the required quality of annotation/functional information for identification of 
likely causal variants to make meaningful improvement in power of subsequent association tests. A 
shiny application in R implementing the methods is made publicly available. 
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Introduction 

Over the last decade genome-wide association studies of common variants of increasingly sample size 
have been the main driving force for discovery of susceptibility loci associated with complex diseases 
and traits. While analysis of heritability suggests that common variants have further ability to explain 
additional variation of these traits 1-3, the focus of the field is inevitably shifting towards studies of less 
common and rare variants with the rapidly decreasing cost of sequencing technologies and increasing 
sophistication of imputation algorithms 4-6.  However, limited or lack of findings from early studies 7-21 
indicate that effect sizes of rare susceptibility variants in general are likely to be modest and discovery of 
underlying loci will require large sample size in future studies22-24. 

Testing of association at the level of genetic loci or regions using various aggregate-level statistics have 
been proposed as a strategy to improve power of discovery in association studies of rare variants25-28.  
Simulation studies have been used under various anticipated genetic architecture of the traits for 
demonstration of potential power of these procedures 27-29.  In particular, analysis of power for variance 
component based test, such as the popular SKAT method, can be complex as they require specification 
of many different parameters including number of genetic variants under study, proportion of causal 
variants, allele frequency and effect-size distributions.  Use of various functional and annotation 
information to identify likely pathogenic variants a priori has also been proposed as a strategy to 
improve power of rare variant association tests30; 31. To the best of our knowledge, however, there has 
been no systematic study of the effect of use such extraneous information on power of the association 
tests. 

In this report, we first describe a first-order approximation that allows analytic characterization of power 
for popular variance component association tests simply based on the degree of phenotypic variance a 
locus explain and the number of variants under study – thus dramatically reducing the complexity of the 
power calculations. We perform simulation studies using allele frequency distribution observed in 
Exome Aggregation Consortium (ExAC)32 and various models for effect-size distribution to assess the 
accuracy of the proposed approximation in realistic settings. We then use this simplified framework to 
characterize power of association tests that may pre-select variants based on prior 
functional/annotation information.  These derivations allow us to study effect of sensitivity and 
specificity of extraneous information to identify causal variants on the power the association tests. 

We assess the power of a number of recently reported association studies of rare variants using the 
proposed framework and provide insights into the implications for current lack of findings on bounds of 
genetic architecture of the underlying traits. Our analysis also provides important insights into the 
required quality of annotation/functional information for identification of likely causal variants to make 
meaningful improvement in power of subsequent association tests. Finally, to facilitate convenient and 
rapid power calculations for rare variant association tests, we make a shiny app PCAAT (Power 
Calculations for Aggregated Association Test) available in R. 

Methods: 

Existing Power Calculations 

Many tests for association at the level of a genetic loci or a region aggregating SNP level association 
statistic have been proposed 25-29; 33-36. Multiple authors 22; 33; 37 have shown that existing methods can be 
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classified as sum-based tests 25; 26; 34; 35, variance component tests 27; 29; 37, and hybrid tests that are 
functions of both classes 28; 33; 36. Here, we focus on methods from sum-based and variance component 
classes. We do not consider hybrid tests because their power is usually close to one of the two 
components. Sum-based tests aggregate SNP level association statistics by a linear combination 

𝑇𝑆𝑇 = ∑ 𝑤𝑗𝑇𝑗,

𝐽

𝑗=1

 

where 𝑤𝑗s are MAF(pj)-based weights and 𝑇𝑖s are score statistics for 𝐽 SNPs (𝑗 = 1, … , 𝐽) from linear or 

logistic regressions 28; 33; 37. Variance component tests aggregate SNP level association statistics by 
quadratic combination: 

𝑇𝑉𝐶 = ∑ 𝑤𝑗𝑇𝑗
2.

𝐽

𝑗=1

 

Existing analytic power formulas for sum-based and variance component tests are complex functions of 
many parameters including number of genetic variants under study, proportion of causal variants, allele 
frequencies and effect-size distributions 37. Here we show that under modest model assumptions such 
as genetic variants explain small proportion of phenotypic variation and low correlation between rare 
variants, existing power calculations can be simplified substantially.  
We start with observing that analytic power of a single SNP statistic 𝑍𝑗  (e.g. Wald’s, Score tests),  

𝑍𝑗
2 =

𝑇𝑗
2

𝑉𝑎𝑟(𝑇𝑗)
~𝜒1,𝑛𝑐𝑗

2  

with a non-centrality parameter 𝑛𝑐𝑗 = 2𝑝𝑗(1 − 𝑝𝑗)𝛽𝑗
2𝑁 =  𝐸𝑉𝑗𝑁, is a function of three parameters:  

effective sample size (𝑁), level of the test (𝛼) and proportion of phenotypic variation explained by the jth 
SNP (𝐸𝑉𝑗)38. Derkach et al.37 showed analytic power for a sum-based test statistic 𝑍𝑆𝑇, 

 

𝑍𝑆𝑇
2 =

𝑇𝑆𝑇
2

𝑉𝑎𝑟(𝑇𝑆𝑇)
~𝜒1,𝑛𝑐𝐿

2 , 

depends on non-centrality parameter 𝑛𝑐𝑆𝑇 = 𝑁
(∑ 𝑤𝑗𝑠𝑖𝑔𝑛(𝛽𝑗)√𝑝𝑗(1−𝑝𝑗)𝐸𝑉𝑗  

𝐽
𝑗=1 )

2

∑ 𝑤𝑗
2𝑝𝑗(1−𝑝𝑗)

𝐽
𝑗=1

 , a function of a vector of 

SNP level coefficients of explained variation.  

Previous studies27; 37 have shown that a variance component statistic is asymptotically distributed as a 
linear combination of non-central chi-square random variables, 

𝑇𝑉𝐶~ ∑ 𝜆𝑗𝜒1,𝑛𝑐𝑗

2 ,

𝐽

𝑗=1

 

with non-centrality parameters 𝑛𝑐𝑗 = 𝐸𝑉𝑗𝑁  as a functions of phenotypic variation explained by a single 

SNP and weights 𝜆𝑗 = 𝑤𝑗𝑝𝑗(1 − 𝑝𝑗)𝑁.  Power calculations for a variance component statistic use 

method derived in Liu et al. (2009) 39  to approximate asymptotic distribution of 𝑇𝑉𝐶 by single non-
central chi-square distribution. There are also several modifications of this method matching higher 
moments to improve the tail probability approximation 27; 40; however, a power difference seems to be 
marginal and we focus on Liu’s approximation here. Non-centrality parameter and degrees of freedom 
of chi-square distribution are calculated by matching at four cumulants  𝑐𝑘 of the test statistic 𝑇𝑉𝐶, 
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                                                    𝑐𝑘 = ∑ 𝜆𝑗
𝑘

𝐽

𝑗=1

+ 𝑘𝑁 ∑ 𝜆𝑗
𝑘𝐸𝑉𝑗

𝐽

𝑗=1

 for 𝑘 = 1, … ,4,                    (1)                          

a function of a vector of SNP level coefficients of explained variation.  

These power calculations for aggregate level tests are implemented in several statistical packages that 
require specification of MAFs and genetic effects for all SNPs in a locus 27; 40; 41.  

Approximate Power Calculations for Aggregate Tests 

Following, we describe simple formulae for approximating power for different aggregate level tests 
using a limited number of key parameters. First, we show that for sum-based test, under an assumption 
of independence between coefficients of explained variation and MAF, we can roughly estimate non-
centrality parameter as  
 

𝑛𝑐𝑆𝑇 ≈  𝑁
|𝐽𝐷 − 𝐽𝑃|

𝐽

|𝐽𝐷 − 𝐽𝑃|

𝐽𝐷 + 𝐽𝑃
𝐸𝑉, 

where 𝐽𝐷, 𝐽𝑃 is a number of deleterious and protective SNPs in a locus and ∑ 𝐸𝑉𝑗 = 𝐸𝑉
𝐽
𝑗=1  is a 

proportion of variation explained by 𝐽 SNPs (see Appendix A). Hence power of linear statistic depends on 
three parameters, total variation explained by all causal variants in a locus, proportion of “effective” 

causal variants in a locus (
|𝐽𝐷−𝐽𝑃|

𝐽
) and proportion of “effective” causal variants in a set of all causal 

variants (
|𝐽𝐷−𝐽𝑃|

𝐽𝐷+𝐽𝑃
). If all the causal variants in a locus can be assumed to deleterious (or protective), then 

the non-centrality parameter can be characterized by 𝐸𝑉 and the proportion of causal variants. 

Next we consider first- and second-order approximations for power calculations for variance component 
tests 𝑇𝑉𝐶. Exact theoretical power is calculated from single chi-square distribution with degrees of 
freedom and non-centrality parameter obtained by matching cumulants 𝑐𝑘. The first order 
approximation uses the same approach but estimates cumulants 𝑐𝑘  in (1) as a function of a proportion 
of a variance explained by a locus 𝐸𝑉 and number of variants in a locus 𝐽. The second order 
approximation uses, one additional parameter, number of causal variants in a locus 𝐽𝐶 = 𝐽𝑃 +  𝐽𝐷 to 
improve accuracy of the first-order approximation. 

For the first order approximation, we propose to estimate the sum ∑ 𝜆𝑗
𝑘𝐸𝑉𝑗

𝐽
𝑗=1  in 𝑐𝑘 as an expectation of 

the form 𝐽𝐸(𝜆𝑗
𝑘𝐸𝑉𝑗). We decompose the expectation as a product of 𝐸𝑉 and some function of  𝜆𝑗

𝑘 and 

𝑝𝑗, 𝑓(𝜆𝑗
𝑘, 𝑝𝑗)  measures relationship between 𝐸𝑉𝑗 and MAF 𝑝𝑗. For example, if we assume independence 

between proportion of variation explained by SNP and MAF (e.g. 𝑓(𝜆𝑗
𝑘, 𝑝𝑗) = 1 ), we approximate 𝑐𝑘 as 

         𝑐𝑘 = ∑ 𝜆𝑗
𝑘

𝐽

𝑗=1

+ 𝑘𝑁 ∑ 𝜆𝑗
𝑘𝐸𝑉𝑗

𝐽

𝑗=1

 ≈ ∑ 𝜆𝑗
𝑘

𝐽

𝑗=1

+
∑ 𝜆𝑗

𝑘𝐽
𝑗=1

𝐽
𝐸𝑉 

In Appendix B, we derive approximations of 𝑐𝑘 for three commonly assumed relationships between 
genetic effects and MAFs and summarize them in Table 1.  Because the first order approximation 
implicitly treats all variants in a locus as causal which may result in loss of accuracy when signal is very 
sparse in a locus. To improve accuracy, we propose the second order approximation to estimate the sum 
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∑ 𝜆𝑗
𝑘𝐸𝑉𝑗

𝐽
𝑗=1  in (1) as function of 𝐸𝑉 and 𝐽𝐶  by using the same technique (see Appendix B). For example, if 

we assume the same hypothesis of independence between proportion of variation explained by SNP and 

MAF and that the first 𝐽𝐶  variants are causal, sum ∑ 𝜆𝑗
𝑘𝐸𝑉𝑗

𝐽
𝑗=1  in 𝑐𝑘 is approximated as 

1

𝐽𝐶
∑ 𝜆𝑗

𝑘𝐽𝐶
𝑗=1 𝐸𝑉. 

Probability of M Discoveries in Genome-wide Studies 

Using the proposed simplified power calculation framework, we further develop a mathematical 
framework to study bounds on genetic architecture of underlying traits from results reported in a 
genome-wide association study. We characterize probability of number of discoveries in a given study as 
a function of sample size 𝑁, number of underlying causal loci 𝐾 and distribution of their effect-sizes 
(𝐸𝑉), i.e. the total genetic variances the loci explain aggregated over the underlying susceptibility 
variants. In Appendix C we show that probability of 𝑀 discoveries in a study is 

P(M Discoveries|Genetic Model)     

≈ (
𝐾

𝑀
) 𝐸(𝑝𝑜𝑤(𝛼, 𝑁, 𝐸𝑉𝑘 , 𝐽𝑘 , 𝒑𝑘))

𝑀
𝑒(𝐾−𝑀)𝐸(log (1−𝑝𝑜𝑤(𝛼,𝑁,𝐸𝑉𝑘,𝐽𝑘,𝒑𝑘)),                  (2) 

which is essentially a function of average power of a variance component test calculated over 
distribution of causal loci characterized by three parameters: a proportion of phenotypic variation 
explained 𝐸𝑉𝑘, number of SNPs in a locus 𝐽𝑘 and vector of MAFs 𝒑𝑘. 

Now, suppose M = m is the number of discoveries reported based on gene-based tests in a given 
genome-wide association study of sample size 𝑁.  We can calculate  P(M ≤ m) using the above formula 
based on known distributions for MAFs (𝒑𝑘), and size of genes (𝐽𝑘).  In our calculations, we generated a 
class of L-shaped effect-size distribution a two-parameter gamma distribution: Gamma(α, γ) with α ≤1 . 
Under this model, the total heritability explained by causal loci is given 𝐾𝜇 by where  𝜇 ≈ 𝛼𝛾. For 
various combination of K and 𝜇, we evaluate the maximum value of P(M ≤ m)  over different values of 
the dispersion parameter (𝛼/𝛾). When this probability is low (e.g. < 5%), we conclude the underlying 
model for genetic architecture is unlikely. For example, many recent studies have reported no 
discoveries based on gene-level aggregated association tests. In these studies, the probability of no 
discoveries,  m = 0   can be used to provide bound on genetic architecture of the underlying trait.  

Effects of filtering variants by extraneous information  

We use our simplified framework to efficiently study the effects of filtering of variants based on prior 
functional/annotation information on the power of association tests. Here, power of association tests 
can be summarized as function of sensitivity and specificity of a filtering method.  Sensitivity (Se) is a 
probability of selecting a SNP given that it is truly causal variant, while specificity (Sp) represents a 
probability of a filtering a SNP out given that is non-causal variant. If selection/filtering is independent of 
MAF or proportion of variation explained by a causal variant, then number of remaining variants in a 
locus is 𝐽𝑆 = 𝑆𝑒 · 𝐽𝐶 + (1 − 𝑆𝑃) · (𝐽 − 𝐽𝐶) and proportion variation explained by them is 𝐸𝑉𝑆 = 𝑆𝑒 · 𝐸𝑉.  
Now, with new values of 𝐽 and 𝐸𝑉, we estimate power for a sum based and a variance component tests 
and compare it with base values. 

If all SNPs are selected, then 𝑆𝑒 = 100%,  but specificity is 𝑆𝑝 = 0% . If only a small subset of variants is 
selected within a gene based on functional annotation, then sensitivity may be reduced as some true 
causal variants could be missed while specificity may improve because of removal of non-causal SNP. If 
one takes random subset of SNPs, which is not enriched by causal SNP, then 𝑆𝑒 = 1 − 𝑆𝑝 as the casual 
and non-causal SNPs are selected at the same rate. If the functional/annotation information used for 
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screening is predictive of whether the SNPs are likely to be causal for the trait of interest, then one 
would expect specificity > 1- sensitivity. Using the proposed power calculation framework, we explore 
power of aggregated tests for various combinations of sensitivity and specificity of the underlying 
screening algorithm for identifying true causal SNP. Further, assuming than an underlying normally 
distributed continuous score represent the functional/annotation information for the SNPs, we evaluate 
receiver operating characteristic (ROC) curve generated by combination of sensitivity and specificity at 
different threshold for SNP selection. We track power of different methods along combinations of 
sensitivity and specificity that leads to specific value of the area under the curve (AUC), which is an 
overall summary of the ability of the underlying score to discriminate between causal and non-causal 
SNP (see Figure 5).  

 
Empirical Studies: 

Properties of the first- and second-order approximations 

We conduct extensive simulation studies to evaluate accuracy of the proposed power calculations for 
variance component tests in comparison to exact theoretical method that require specification of effect-
sizes of individual markers.  Here we focus on SKAT test statistic as representative of the class of 
variance component tests. For each fixed combination of size of region (𝐽) and total variance explained 
(𝐸𝑉), the two key parameters that determine the approximate power of the SKAT test, we simulate 
various possible values of allele frequencies and effect sizes for individual markers 𝐸𝑉𝑗. Then average 

power of the first- and the second-order approximations calculated over various values of allele 
frequencies is compared with average power of exact theoretical calculations estimated over various 
values of allele frequencies and effect sizes for individual markers 𝐸𝑉𝑗 . 

We consider three types of simulation scenarios: S1 ("MAF-independent EV") assumes that coefficients 
of explained variation 𝐸𝑉𝑗. is independent of MAF; S2 ('MAF-independent 𝛽𝑗') assumes that size of 

genetic effect 𝛽𝑗 is independent of MAF and S3 ('MAF-log-dependent 𝛽𝑗') assumes that genetic effect is 

related to MAF through 𝑙𝑜𝑔10 function (as defined in Table 1). For each type of simulation scenario, we 
estimate power for a locus of the size 𝐽 = 50, 100, 200 and 400. We additionally consider four values of 
a number of causal SNP 𝐽𝐶 = 10, 20, 30 and 50 for calculations based on exact theoretical and second- 
order calculations. In Appendix D, we describe simulation mechanisms in detail and we summarize 
simulation models and parameters required for each method in Table 2.   

Bounds on variation explained by a causal locus 

In Table 3, we provide key parameters that summarize recently published association analysis with rare 
variants7; 10; 13-15; 17-21.  Typically, studies on Human Exome BeadChip (Exome Chip) had larger sample sizes 
then studies on sequencing platform; however, they covered a much smaller number of rare variants. 
These much larger studies typically had at least one significant discovery, while studies with other 
platforms generally did not report any. We use our mathematical framework presented in the previous 
section to compare genetic bounds implied by these results. Here, we focus on results from the largest 
study with each sequencing and exome chip platforms18; 21 (see 5th and 9th rows of the Table 3).    

To estimate genetic bounds from the results of the first study on educational attainment with 
sequencing platform we use mathematical framework presented in previous section. We estimate 
probability of no discoveries (m=0) given a genetic model from formula (2) by using following 
parameters.  We set effective sample size to  𝑁 = 15,000 to match number of whole genome and 
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exome sequenced individuals in this study (see 5th row of the Table 3). We assume that analysis was 
conducted by the SKAT statistic with a gene as a unit. We use publicly available EXaC database32 to 
obtain empirical distributions for number of rare variants in a gene (𝐽𝑘) and vector of MAFs 𝒑𝑘 .  To 
ensure validity of asymptotic power formulas, we assume that MAF of rare variant ranges between 

0.0001 and 0.01 (e.g. no singletons and doubletons). Lastly, we set Type 1 error threshold 𝛼 =
0.05

20,000
=

2.5 · 10−6. 

To estimate genetic bounds for the second study on blood pressure outcomes with Exome Chip 
platform, we use following parameters to estimate probability of at most three discoveries(m=3). We 
set effective sample size to  𝑁 = 140,000 to match number of individuals genotyped by Human Exome 
BeadChip platform (see 9th row of the Table 3). Similarly, to the first study we assume that analysis was 
conducted by the SKAT statistic with a gene as a unit. Empirical distributions for number of rare variants 
in a gene (𝐽𝑘) and vector of MAFs 𝒑𝑘   are obtained from EXaC database.  Compared to the first study, we 
only assume that MAFs for rare variants are smaller than 0.01. Lastly, we use the same Type 1 error 
threshold 𝛼 = 2.5 · 10−6. 

For each combination of a number underlying of causal loci 𝐾 and L-shaped effect size distribution, we 
calculate probability m discoveries using formula (2) with study specific parameters. Expectations in (2) 
are estimated using 100,000 Monte Carlo simulations. For each 𝐾 and L-shaped effect size distribution, 
we recalculate power of the SKAT statistic using generated coefficient of variation explained 𝐸𝑉𝑘, the 
number of variants in a locus 𝐽𝑘 and a vector of MAFs 𝑝𝑘. Average values are then plugged in (2).  In this 
report, we calculate power of the SKAT test statistic under assumption of independence between 
proportion of variation explained by a SNP and MAF. Results for other genetic architecture are also 
discussed and presented in the Supplementary Materials. 

Effects of filtering variants by extraneous information on power 

We consider two values of a size of a locus 𝐽 = 50, 100  and two values of a number of causal variants in 
a locus, 𝐽𝐶 =  10, 20. Initial value of EV is selected so that power of the SKAT test is equal to 40% at Type 
1 error 𝛼 = 0.05/20,000 = 2.5 · 10−6  and sample size 𝑁 = 10,000. For every combination of 
sensitivity and specificity, we estimate average power for the SKAT test with recalculated parameters 𝐽𝑆 
and 𝐸𝑉𝑆,. With the same values of the coefficient of variation and the proportion of causal variants, we 
additionally investigate properties of burden test statistic assuming all causal variants are deleterious. 
For this empirical study, we also assume independence between proportion of variation explained by a 
SNP and MAF. Results for other genetic architectures are presented in the Supplementary Materials. 

Results: 

Properties of the First- and Second-Order Approximation 

We evaluate accuracy of first- and second-order approximations compared to exact power calculation of 
variance component test under variety of genetic models (see Table 2). As expected, the first order 
approximation matches exact calculation better as number of causal variants in a locus 𝐽𝐶  increases (see 
Figure 1). Particularly, we observe that with more than 20 causal variants in a locus (𝐽𝐶 ≥ 20) difference 
in power between those two methods is small regardless of the total number of variants in a locus 𝐽 =
50, 100  (see Figure 1 B and D and Supplementary Figure S1). Similar conclusion holds also for very large 
loci 𝐽 = 200, 400 and other relationships between genetic effect and MAF (see Supplementary Figures 
S2, S3 and S4 ). With lower number of causal variants in a locus (e.g. 𝐽𝐶 = 10), we observe upward bias 
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in first-order estimates when exact power is high and downward bias when exact power is low (see 
Figure 1 A and C).  

We observe that the second-order approximation is more accurate at estimating the exact power (see 
Figure 2). Now, difference in power between approximate and exact calculations is small even when 
number of causal variants in a locus is small,  𝐽𝐶 =  10 (see Supplementary Figures S5-S7).  Overall, our 
simulations demonstrate that the first-order approximation accurately estimates exact power when 
number of causal variants in a locus is not too small. However, if a number of causal variants in a locus is 
small then the first order approximation may produce biased results. On the other hand, the second-
order approximation estimates exact power more accurately regardless of underlying generic 
architecture but it requires specification of additional parameter, number of causal variants in a locus 𝐽𝐶.   

Estimation of Upper Bounds on Effect Size Distribution 

We use publicly available summary statistics from ExAC’s database to obtain empirical distributions for 
size of a gene (𝐽) and MAF (𝒑) for both studies on sequencing and Exome Chip platforms.  We provide 
key parameters of these empirical distributions in Supplementary Figures S8-S11. As expected, study 
with Exome Chip platform has on average smaller number of variants in a gene than a study on whole 
exome sequencing (WES) platform. We observe that average number of rare variants per gene (𝐽)  are 
35.5 and 13 in the studies on sequencing and Exome Chip platforms.  We also note that the first study 
with 15,000 whole exome sequenced individuals observes 743,094 rare variants and the second study 
with 140,000 Exome Chip genotyped individuals observes 215,674 rare variants.   

In Figure 3, we plot maximum probability of no discoveries in the study on educational attainment with 
sequencing platform18 for various combinations of number of underlying causal loci K and total 
phenotypic variation explained by causal loci. We observe that models with small number of underlying 
causal loci and large values of total phenotypic variability are very unlikely (e.g. maximum probity is 
smaller than 0.05). For example, if underlying loci explain 20% of phenotypic variation of a trait then it is 
very unlikely to have less than 250 underlying causal loci. If we assume independence between genetic 
effect of a SNP and MAF (e.g. the SKAT test has more power), then large number of loci should be 
present to explain the same total heritability explained by underlying loci (see Supplementary Figures 
S12). For example, if underlying loci explain 20% of phenotypic variation, then it is unlikely to have less 
than 700 underlying causal loci.  

In Figure 4, we plot maximum probability of observing three or less discoveries in much larger study on 
blood pressure with Exome Chip platform21.  We observe that limited number of findings in the study 
with very large sample size and smaller number of variants per gene yields very sharp bound on 
relationship between number of underlying causal loci and total heritability explained by the causal loci. 
For example, if underlying causal loci explain 20% of phenotypic variation, then there should be at least 
6,500 underlying casual loci.  Identically to results for the WES study, genetic bound is even sharper if 
independence between MAF and genetic effect is assumed (see Supplementary Figures S13). 

In conclusion, limited number of discoveries in two types of studies indicates substantial percentage of 
heritability of the underlying traits can be explained by rare variants under study only under highly 
polygenic model involving many causal loci with very small effects.  It is also possible that rare variants 
included in these studies contributes very minimal to the heritability of the underlying traits. 

Effects of SNP Selection on Power of Aggregated Test 
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Lastly, we investigated potential effects of pre-selecting variants by functional/annotation information 
on power of the gene based tests (Figure 5). We consider a setting where if all SNPs are selected within 
a gene the variance component and sum-test have moderate and comparable power (40% and 36%, 
respectively). Apriori SNP selection does not improve the power of variance-component test 
substantially (e.g. by 10%) unless the underlying algorithm has very high accuracy to discriminate 
between causal and non-causal SNPs (AUC between 80-90%). On the other hand, power for sum-based 
test can improve substantially with more modest discriminatory accuracy of the SNP selection algorithm 
(AUC between 70-80%). Further, we observe the role of sensitivity and specificity is not symmetric on 
power of the tests. For both tests, substantial improvement of power is possibly only if sensitivity is at 
the minimal 30-40%. On the other hand, substantial improvement in power is possible with fairly poor 
specificity (e.g. about 20%) as along as sensitivity is high (e.g. 90%).  We observe the similar results in a 
studies with different genetic architecture and large number of SNPs in a locus (Supplementary Figures 
S14-S16).   

Discussion: 
Although large genome wide association studies of low frequency and rare variants are now becoming 
increasingly feasible due to technological advances, the likely yield of such studies in future remain 
uncertain as studies conducted to date have only yielded limited number of findings7-22.  For studies of 
common variants, which have mostly relied on association testing at the level of individual variants, we 
and other have shown that yield of genome-wide association studies critically depend on distribution of 
phenotypic variances explained by individual variants across the genome. For studies of rare variants, it 
has been suggested that tests for genetic associations be performed at an aggregated level by 
combining signals across multiple variants for powerful detection of underlying susceptibility loci22; 25-27; 

29. In this report, we show that how power for some of these more complex tests critically relates to 
total genetic variances explained by multiple variants within a locus. Based on such power calculations, 
we assess bounds on distributions of locus-level genetic variances that are consistent with limited 
findings reported in current studies. Further, based on these simplified power calculations, we evaluate 
potential for improving power for aggregated tests by pre-selection of likely causal variants based on 
functional/annotation information. 
 
Power analysis of a number of current studies of large sample sizes provides important bounds on 
genetic architecture of the underlying traits. In particular, our analysis suggests that rare variants 
investigated in these studies could explain significant fraction of heritability of the underlying traits only 
under highly polygenic models in which causal variants are distributed over hundreds or even thousands 
of different genetic loci. For example, lack of findings from gene-based analysis in the study of 
educational attainment involving 15,000 individuals18 indicate that at the minimum of 250 loci needs to 
be involved to explain 20% heritability for the underlying traits based on rare variants that are included 
in this sequencing platform (e.g. WES+WGS). Similarly, a very few findings (m=3) from a much larger 
study of blood pressure involving 140,000 individuals21 indicate that at the minimum of loci needs to be 
involved to explain 20% heritability of 6500 based on Exome Chip platform. These results are intuitive 
given that if a relatively small number, e.g. a few dozens, of genetic loci could explain a substantial 
fraction of heritability of these traits, then at least some of these loci will be detected by the sample size 
achieved so far in the current studies.  
 
A number of rare variant studies that have conducted both individual-variant and aggregated tests have 
detected more genetic loci using the former than the later approach10; 15; 20; 21 (see Table 3). Such finding 
is consistent with genetic architecture models where number of causal variants within susceptibility loci 
is sparse. In such scenario, aggregated tests will have low power and more informative bounds on 
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genetic architecture could be obtained by analysis of power for individual variant tests. The analytic 
formula we propose for calculating probability of certain number of discoveries under various models 
for genetic architecture can also be applied for single-variant tests. Applications in several real studies 
suggest that rare variants included in the studies can explain significant fraction of heritability of the 
trait only under highly polygenic disease architecture.  
 
A variety of studies have studied genetic architecture of common variants by characterization of 
underlying heritability, number of susceptibility variants and effect-size distributions24; 38. All of these 
studies consistently point toward a highly polygenic model where disease etiology may involve 
thousands or even tens of thousands common susceptibility variants, each conferring only a modest risk, 
but in combination they can explain substantial variation in risk. Some recent studies have reported that 
low frequency and rare variant studies have the potential to explain significant fraction of heritability for 
selected traits10; 42; 43. Further insights into genetic architecture of these traits can be obtained by 
comparing observed number discoveries in these studies with those from simulated studies under 
different models for genetic architecture23; 44. The proposed analytic framework provides an alternative 
fast and simple way of evaluating expected discoveries for a large variety of genetic models and 
quantification of their plausibility given results from a given study.  
 
Power calculations for aggregated tests with selected subset of SNPs point towards some challenges for 
use of functional and annotation information for discovery of susceptibility locus. Overall, it appears that 
pre-selection of SNPs can significantly improve the power of aggregated test only if the underlying 
functional/annotation information have fairly high accuracy to discriminate (AUC > 70-80%) between 
causal and non-causal variants for the underlying disease of interest. In particular, the algorithm should 
be highly sensitive to capture the underlying causal variants for a disease. Use of too stringent criterion 
for SNP selection may increase specificity, but will lead to decreased sensitivity and hence could lead to 
loss of power in aggregated tests.  More empirical studies are needed to assess the impact of SNP 
selection on power of aggregated tests. 
 
Sophisticated imputation algorithms4; 5 and increasing sample size of reference datasets4 allowing 
imputation of low frequency and rare variants with increasing accuracy. Many association studies are 
now being conducted based on imputation in existing large genome-wide association studies. A 
limitation of our method is that it currently cannot account for imputation accuracy, which is expected 
to reduce with decreasing allele frequency. At the level of individual variants, it is possible to 
characterize reduction of power based on formula for effect-size attenuation due to imputation45. 
Further studies are needed to understand impact of imputation on aggregated tests encompassing 
variants of different allele frequency spectra. In this report, we have illustrated application of the 
framework in exome-based analysis where aggregated tests can be applied across largely non-
overlapping genes. For whole genome sequencing studies, where aggregated test may be applied in a 
sliding window fashion10; 14, more work is needed for genome-wide power calculations in terms of 
underlying models for genetic architecture. 
 
In conclusion, in this report we provide simple analytic approaches to power calculations for rare 
variants association tests at the individual locus level and at the whole genome level in terms of a few 
key parameters of underlying models for genetic architecture. These methods together, which we 
implement in a Shiny application in R, will provide useful design tools for planning next generation 
genome-wide association studies. 
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Table 1. The first-order approximations of ck as the function of phenotypic variation explained by a 
locus under three genetic models.  
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   𝑐𝑘 ≈ ∑ 𝜆𝑗
𝑘𝐽

𝑗=1 + 𝑘𝑁𝐸𝑉
∑ 𝜆𝑗

𝑘𝐽
𝑗=1

𝐽
+

𝑘𝜈(∑ 𝜆𝑗
𝑘𝑝𝑗 −

∑ 𝜆𝑗
𝑘 ∑ 𝑝𝑗

𝐽
𝑗=1

𝐽
𝑗=1

𝐽
),𝐽

𝑗=1  where 𝜈 is 

an average change in 𝐸𝑉𝑗 due to one-unit 

change in 𝑝𝑗. 

   𝑐𝑘 ≈ ∑ 𝜆𝑗
𝑘𝐽

𝑗=1 + 𝑘𝑁𝐸𝑉
∑ 𝜆𝑗

𝑘𝐽𝐶
𝑗=1

𝐽𝐶
+

𝑘𝜈(∑ 𝜆𝑗
𝑘𝑝𝑗 −

∑ 𝜆𝑗
𝑘 ∑ 𝑝𝑗

𝐽𝐶
𝑗=1

𝐽𝐶
𝑗=1

𝐽𝐶
),

𝐽𝐶
𝑗=1  where 𝜈 is 

an average change in 𝐸𝑉𝑗 due to one-unit 

change in 𝑝𝑗. 

 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2017. ; https://doi.org/10.1101/100891doi: bioRxiv preprint 

https://doi.org/10.1101/100891
http://creativecommons.org/licenses/by/4.0/


16 
 

 

Table 2: Parameters and parameter values for assessing accuracy of the first-order approximations. 
Scenario S1 ('MAF-independent EV') assumes MAFs and EVs are mutually independent. Scenario S2 ("MAF-
independent 𝛽𝑗") assumes MAFs and effect sizes are mutually independent. Scenario S3 ("MAF-log-dependent 𝛽𝑗") 

assumes MAFs and effect sizes are dependent through log10 function. For the exact calculations for the Scenario 
S1, we directly generate EVjs from specific value EV and for Scenarios S2 and S3, we first generate 𝛽𝑗𝑠 then 

calculate corresponding EVjs. 
 

 Parameters Parameter Values 

Parameters used in 

First-order 
Approximation 

Second-order 
Approximation 

Exact-
Calculations 

N Effective sample size 10,000 Yes Yes Yes 

J Total number of SNPs 50, 100, 200, 400 Yes Yes Yes 

EV 
Coefficient of explained 

phenotypic variation by a 
locus 

Ranges between 0.001 and 0.01 Yes Yes Yes 

pj MAF of SNP j 
Gamma (1,300) with minimum and 
maximum values at 0.0002 and 0.01 

Yes Yes Yes 

JC Number of causal SNPs 10, 20, 30, 50 No Yes Yes 

Scenario S1 ("MAF-independent EV") 

EVj 
Coefficient of explained 

variation by SNP j 

Randomly selected for each causal SNP 

under the constrain:  ∑ 𝐸𝑉𝑗 = 𝐸𝑉
𝐽𝑐
𝑗=1  

No No Yes 

Scenario S2 ("MAF-independent 𝛽𝑗") 

𝛽 
MAF adjusted average 

effect of SNP j 
MAF adjusted average effect of rare 

variant 
No No Yes 

𝛽𝑗 Genetic effect of jth variant 

𝛽𝑗
2~𝑁 (𝛽2, (

𝛽2

2
⁄ )

2

), then coefficients 

of explained variations are scaled by 

the constant so that ∑ 𝐸𝑉𝑗 =  𝐸𝑉
𝐽𝑐
𝑗=1  

No No Yes 

Scenario S3 ("MAF-log-dependent 𝛽𝑗") 

C Adjustment 
𝐶 =

𝐸𝑉

𝐽𝑐𝐸 (2𝑝𝑗(1 − 𝑝𝑗)log10(𝑝𝑗)
2

)
 

 

No No Yes 

𝛽𝑗 Genetic effect of jth variant 

𝛽𝑗 = 𝐶log10(𝑝𝑗),  

then coefficients of explained 
variations are scaled by the constant so 

that   ∑ 𝐸𝑉𝑗 =  𝐸𝑉
𝐽𝑐
𝑗=1  

No No Yes 
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Table 2. Summary of recently published association studies with rare variants. 

 

Study 
Genetic Platform 

Sample Size 
Trait 

Association analysis with rare variants1 

Gene based 
tests 

# of significant 
findings with 

gene based test 

# of significant rare 
variant findings with 

single variant test  

A polygenic burden of rare disruptive mutations in 
schizophrenia7 

WES: 5000 Case/Control ~ 1/1 
SKAT and Burden Tests 

with a gene as a unit 
No findings NA 

Whole-genome sequencing identifies EN1 as 
determinant of bone density and fracture14 

WGS: ~2,900 
WES: ~3,500 

Imputation2: ~26,500 

Multiple QTs 
SKAT with sliding window 

with 30 SNP 
0-1 gene3 0-1 rare variant 

The UK10K project identifies rare variants in 
health and disease10 

WGS: ~3,500 
Imputation: ~9,200 

Multiple QTs 
SKAT with sliding window 

with 50 SNP 
0-1 genes 0-1 rare variants 

The genetic architecture of type 2 diabetes15 

WGS: ~2,600 
WES: ~13,000 

Exome Array: 80,000 

Case/Control ~ 1/1 
Case/Control ~ 1/1 
Case/Control ~ 1/2 

SKAT with a gene as a unit No findings 6 rare variants4 

Ultra-rare disruptive and damaging mutations 
influence educational attainment in general 

population18 

WGS: ~2,700 
WES: ~11,300 

QT 
Burden Tests with a gene 

as a unit 
No findings NA 

Inherited coding variants at the CDKN2A locus 
influence susceptibility to acute lymphoblastic 

leukemia in children13 
Exome Chip: ~12,000 Case/Control ~ 1/5 SKAT with a gene as a unit No findings 1 rare variant 

Meta-analysis of rare and common exome chip 
variants identifies S1PR4 and other loci influencing 

blood cell traits20 
Exome Chip: ~52,000 Multiple QTs 

SKAT and Burden Tests 
with a gene as a unit 

1-2 genes 1-3 rare variants 

Low-frequency and rare exome chip variants 
associate with fasting glucose and type 2 diabetes 

susceptibility19 
Exome Chip: ~61,000 QT SKAT with a gene as a unit 1 gene No findings 

Meta-analysis identifies common and rare variants 
influencing blood pressure and overlapping with 

metabolic trait loci21 
Exome Chip: ~145,000 Multiple QT 

SKAT and Burden Tests 
with a gene as a unit 

1-2 genes 1-2 rare variants 

                                                           
1 Variants with MAF<1%. 
2 Variants with MAF>0.1% 
3 Identified by single SNP analysis 
4 Variants with MAF<5% 
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Figure 1: Evaluation of the accuracy of the first order approximation under simulation 
scenario S1 (MAF-independent EV).  Exact Formula represents estimated average power using 
exact theoretical formulas for the SKAT test statistic. The First Order Approximation represents 
estimated average power using the first order approximation for the SKAT test statistic.   
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Figure 2: Evaluation of the accuracy of the second order approximation under simulation 
scenario S1 (MAF-independent EV).  Exact Formula represents estimated average power using 
exact theoretical formulas for the SKAT test statistic. The Second Order Approximation 
represents estimated average power using the second order approximation for the SKAT test 
statistic. 
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Figure 3: Maximum probability of observing no discoveries in the study on whole exome 
sequencing platform as function of the number of underlying causal loci K and the total 
variation explained by them, Total EV.  Effective sample size is set to 15,000 and level of the 
test is 2.5·10-6. Probabilities are estimated by (2) and assumption of independence between MAF and 
EV. We provide approximate contours (bounds) for probability of observing no discoveries at 5%. 
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Figure 4: Maximum probability of observing three statistical significant discoveries in the 
Exome Chip study as function of the number of underlying causal loci K and the total variation 
explained by them, Total EV. Effective sample size is set to 140,000 and level of the test is 
2.5·10-6. Probabilities are estimated by (2) and assumption of independence between MAF and EV. We 
provide approximate contours (bounds) for probability of observing no discoveries at 5%. 
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Figure 5: Effects of sensitivity and specificity on the power of variance component and burden 
tests under simulation scenario S1 (MAF-independent EV). Initial power for variance 
component test is set to 40%, number of variance in a locus is set to J=50 and number of causal 
variants to JC=10. Initial power of burden test statistic as result corresponds to 0.36.  
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