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ABSTRACT

Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data12

from neuroimaging and electrophysiological techniques. Here we propose a non-parametric significance13

method to test the non-zero values of multivariate autoregressive model to infer interactions in recurrent14

networks. We use random permutations or circular shifts of the original time series to generate the15

null-hypothesis distributions. The underlying network model is the same as used in multivariate Granger16

causality, but our test relies on the autoregressive coefficients instead of error residuals. By means of17

numerical simulation over multiple network configurations, we show that this method achieves a good18

control of false positives - type 1 error - and detects existing pairwise connections more accurately than19

using the standard parametric test for the ratio of error residuals. In practice, our method aims to detect20

temporal interactions in real neuronal networks with nodes possibly exhibiting redundant activity. As a21

proof of concept, we apply our method to multiunit activity (MUA) recorded from Utah electrode arrays22

in a monkey and examine detected interactions between 25 channels. We show that during stimulus23

presentation our method detects a large number of interactions that cannot be solely explained by the24

increase in the MUA level.25
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INTRODUCTION

In recent years, there has been a growing interest in developing multivariate techniques to infer causal26

relations among time series. The initial formulation of the problem goes back to the seminal work by27

Granger in 1960’s (Granger, 1969) motivated by the analysis of the pairwise influence between economic28

time series. In this work, Granger decomposes the cross-spectrum of two autoregressive time series into29

two directional components that account for the potential causal influences between each other. A general30

solution of the problem in multivariate scenarios was developed a decade later by the introduction of31

multivariate autoregressive (MVAR) processes, which allow the estimation of causal relationships32

between nodes in networks with linear feedback based on their observed activity (Amemiya, 1974;33

Geweke, 1982, 1984; Lütkepohl, 2005). The MVAR was further combined with spectral analysis to34

develop the directed transfer entropy function (Kaminski & Blinowska, 1991; Kamiński, Ding, Truccolo,35

& Bressler, 2001), which has been employed to analyze connectivity patterns in neurobiological systems36

(Babiloni et al., 2005; Wilke, Ding, & He, 2008). Granger causality analysis is nowadays often used to37

evaluate the influence of a group of variables onto other, which corresponds to the influence of a subgroup38

of nodes onto another one in networks. Nevertheless, it it also applied to detect individual connections39

between pairs of nodes (each subgroup being a single node), which sets the context of the present paper.40

In neuroscience, this inference problem has been transposed to analyze interactions between neuronal41

populations from spiking activity or neuroimaging measurements such as fMRI, EEG and MEG (Lusch,42

Maia, & Kutz, 2016; Messé, Rudrauf, Benali, & Marrelec, 2014; Michalareas, Schoffelen, Paterson, &43

Gross, 2013; Rogers, Katwal, Morgan, Asplund, & Gore, 2010; Seth, Barrett, & Barnett, 2015; Storkey et44

al., 2007). Two types of estimation procedures may be distinguished: measures relying on an underlying45

interaction model such as Granger causality analysis (M. Ding, Chen, & Bressler, 2006) and dynamic46

causal modeling (DCM) (Friston, Harrison, & Penny, 2003) on the one hand; and model-free measures47

such as transfer entropy (Schreiber, 2000) and directed information (Massey, 1990), which make48

minimal model assumptions on the other hand. Although model-free approaches have proven useful to49

describe neural propagation at spike-train level (So, Koralek, Ganguly, Gastpar, & Carmena, 2012;50

Tauste Campo et al., 2015), certain assumptions are required when estimating interactions at the neuronal51
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population level, in which broader spatial and temporal scales contribute to shaping the signals.52

Motivated by data-driven practical problems, methodological refinements of Granger causality analysis53

(or MVAR-based methods) have considered additive noise (Vinck et al., 2015) or measurement noise via54

state-space models (Barnett & Seth, 2015; Friston et al., 2014). However, in the majority of cases, the55

ratio behind the detection test concerns sub-model error residuals, which might become too similar when56

connections are placed in a highly redundant network, thus increasing the missed detection rate57

(Stramaglia, Cortes, & Marinazzo, 2014).58

To overcome the difficulties of detecting directed connections in the general context of large networks,59

we propose to test the significance of the MVAR coefficients using a non-parametric procedure. As a60

generative model, the MVAR process is canonically related to Granger causality analysis: the linear61

regression in the upper right inset of Fig. 1A provides both coefficients and residuals, the latter being62

viewed as the remaining uncertainty in the prediction of the target time series by its source(s). By63

comparing the residuals of two linear regressions - one involving a supposed driver node and one without64

it - in a log ratio, traditional tests for Granger causality estimate the effective interaction of one node onto65

another (Barrett & Barnett, 2013). Since these log ratios asymptotically converge to known distributions,66

parametric statistical tests have been developed to assess the significance of these interactions (Barnett &67

Seth, 2014). Instead, our proposed method evaluates the significance of the MVAR coefficients to infer68

the existence of network connections. To achieve this, we propose a non-parametric significance test in69

the regression coefficients space. Previous literature on non-parametric testing for Granger causality has70

resorted to surrogate data generated by trial shuffling (Dhamala, Rangarajan, & Ding, 2008; Nedungadi,71

Rangarajan, Jain, & Ding, 2009), bootstrap procedures (Diks & DeGoede, 2001) or by phase72

randomization in frequency-domain measures (L. Ding, Worrell, Lagerlund, & He, 2007; Li et al., 2016).73

Here we focus on within-trial surrogate tests for time-domain coefficients and compare them across74

standard techniques (Faes, Marinazzo, Montalto, & Nollo, 2014; Schreiber & Schmitz, 1996; Winkler,75

Ridgway, Webster, Smith, & Nichols, 2014).76

Our approach is motivated by the growing of multichannel recording techniques in neuroscience,77

which require tailored multivariate analysis. In the context of recurrent networks, which are ubiquitous in78

neuroscience, we provide numerical evidence that these tests can achieve a good control of the79

false-alarm rate and might improve the miss rate by properly adapting the null distribution to each80
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connection. The focus of the present analysis is on the case where we observe more time samples (a few81

thousands per node) than the network size (about a hundred nodes), a usual ground for82

electrophysiological data. Within this regime, we test the robustness of the detection method for a broad83

range of network parameters and various non-trivial topologies inspired by neuronal networks.84

METHODS: MULTIVARIATE AUTOREGRESSIVE MODEL AND CONNECTIVITY ESTIMATION

The activity in the MVAR process - a.k.a. noise-diffusion discrete-time network - is described by the

following equation:

xt = Axt−1 + ζt , (1)

where the connection matrix A describes the interactions between coordinates of the vector xt = (xti)85

with time t being an integer and node index 1 ≤ i ≤ N . Here we constrain our study to the case where ζt86

is Gaussian (possibly cross-correlated noise), whose realizations are time independent for successive time87

steps. Without loss of generality, we assume that all variables ζt have zero means, giving the same88

property for all xi. We only consider MVAR processes of order 1 in a first place, but will extend the work89

to the case of order 2 in a later section.90

Granger causality analysis91

Granger causality analysis is usually presented using time series and the estimation of non-zero

coefficients in A from observed activity over a period 1 ≤ t ≤ T relies on the linear regression of the

activity xti of a given node i at time t by the past activity of a subset S of network nodes:

xti =
∑
j∈S

Aijx
t−1
j + εt (2)

for 2 ≤ t ≤ T . When T is large, the coefficients aij converge toward Aij . We define the residual ε as the

standard deviation of the εt for the ordinary least-square (OLS) regression in Eq. (2), which is for

ε
(
x2≤t≤T
i |x1≤t≤T−1

S
)

=

√∑
t

(εt)2 , (3)

with a notation similar to conditional probabilities; the superscript t indicates the considered time range92

and the subscripts indicate the nodes involved. To detect the existence of connection j → i in a network,93

two types of Granger causality analysis exist: ‘unconditional’ and ‘conditional’ (Geweke, 1982, 1984). ,94
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they consider the comparisons of the following residuals:95

GRu(xj → xi) = ln

[
ε
(
x2≤t≤T
i |x1≤t≤T−1

i

)
ε
(
x2≤t≤T
i |x1≤t≤T−1

i,j

)] ; (4)

GRc(xj → xi) = ln

[
ε
(
x2≤t≤T
i |x1≤t≤T−1

1,··· ,j−1,j+1,··· ,N
)

ε
(
x2≤t≤T
i |x1≤t≤T−1

1,··· ,N
) ]

.

For both GRu and GRc, which have a univariate target node xi, the usual parametric test for

significance relies on the F statistics, which performs better for small number of samples (Barnett & Seth,

2014). The null hypothesis of no interaction for GRu(xj → xi) corresponds to m = T , p = 1, nx = 1

and ny = 2 using the notation in Barnett and Seth (2014)

ε
(
x2≤t≤T
i |x1≤t≤T−1

i

)
− ε
(
x2≤t≤T
i |x1≤t≤T−1

i,j

)
ε
(
x2≤t≤T
i |x1≤t≤T−1

i,j

) = [exp(GRuij)− 1] >
φ(α, 1, T − 3)

T − 3
(5)

with α the desired sensitivity and φ the inverse survival function of the F-distribution (www.scipy.org,

n.d.). The equivalent for GRc corresponds to ny = N , yielding

ε
(
x2≤t≤T
i |x1≤t≤T−1

1,··· ,N
)
− ε
(
x2≤t≤T
i |x1≤t≤T−1

1,··· ,j−1,j+1,··· ,N
)

ε
(
x2≤t≤T
i |x1≤t≤T−1

1,··· ,j−1,j+1,··· ,N
) >

φ(α, 1, T −N − 1)

T −N − 1
. (6)

We also use non-parametric tests for GRc by performing a circular shift (see details below in Section96

‘Generation of surrogate time series’) either on the target node for each connection (Faes et al., 2014) or97

independently on the time series of all nodes (in order to save time in estimating the full network’s98

connectivity by shuffling somehow all targets simultaneously). Both cases provide a null distribution for99

the log ratio, with which the actual estimated log ratio can be compared.100

Multivariate autoregressive (MVAR) estimation101

To detect the existence of connections Aij > 0, another possibility is to estimate the coefficients

themselves, which can be done using the covariances of the observed activity variables xt (Lütkepohl,

2005):

Q̂τ
ij =

1

T − τmax − 1

∑
1≤t≤T−τmax

(xt+τi − x̄i)(xtj − x̄j) , (7)

where T denotes the number of successive samples indexed by t, τ ∈ {0, 1} is the time shift (here

τmax = 1) and the observed mean activity for each node is x̄i = 1
T

∑
t x

t
i. The Yule-Walker equation gives

a consistency equation for the theoretical covariance matrices (without hat) in terms of the connectivity A
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in the dynamics described by Eq.(1):

Q1 = A Q0 . (8)

The estimation of network connections relies on evaluating A from Eq. (8) for the empirical covariance

matrices defined as Eq. (7) and calculated for a given time series:

A = Q̂1(Q̂0)−1 . (9)

Note that this OLS estimate corresponds to the linear regression related to ε
(
x2≤t≤T

1,··· ,N |x
1≤t≤T−1
1,··· ,N

)
and is also102

to the linear model with maximum likelihood under the assumption that the observed process is Gaussian.103

MVAR of order 2104

Eq. (1) can be extended to the case where the activity vector xt is determined by the two previous time

steps:

xt = A1xt−1 + A2xt−2 + ζt . (10)

For the second order, we use τmax = 2 in Eq. (7) and the estimation of A1 and A2 via the Yule -Walker

equation is given by (Lütkepohl, 2005, p. 86)

Ã = Q̃1 (Q̃0)−1, (11)

with the block matrices105

Ã =

(
A1 A2

)
, (12)

Q̃0 =

 Q̂0 Q̂1

(Q̂1)† Q̂0

 ,

Q̃1 =

(
Q̂1 Q̂2

)
.

The coefficients of A1 and A2 can thus be estimated using a matrix multiplication and an inversion106

involving the covariances, as with the first-order case in Eq. (9).107

Generation of surrogate time series108

In this paper, we consider circular shifts (CS), random permutations (RP) and phase randomization (PR)109

to shuffle the time points of the observed time series. From the original xti with 1 ≤ t ≤ T ,110
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CS draws a random integer t0 ∈ {1, · · · , T} and returns (xt0i , · · · , xTi , x1
i , · · · , x

t0−1
i );111

RP draws a random permutation σ of {1, · · · , T} such that each integer appears once (and only112

once) and returns xσ(t)
i ;113

PR calculates the discrete Fourier transform F(xti) of the original xti, then multiplies each of the T114

coefficients of F(xti) by exp(2πıφt) with φt randomly chosen in [0, 2π], and performs the inverse115

transform.116

Importantly, these operations are applied to each time series independently of the others.117

In addition, we consider the replacement of all time series in the network by T normally distributed118

variables with a standard deviation equal to the mean of the standard deviations of xti along the time axis,119

then averaged for all nodes. We refer to these surrogates as STD.120

Experimental setup and processing of electrode measurements to extract MUAe activity121

All procedures were carried out in accordance with the European Communities Council Directive RL122

2010/63/EC, the US National Institutes of Health Guidelines for the Care and Use of Animals for123

Experimental Procedures, and the UK Animals Scientific Procedures Act. Two male macaque monkeys124

(5 - 14 years of age) were used in the experiment; only the data for the first one is used here. A surgical125

operation was performed under sterile conditions, in which a custom-made head post (Peek, Tecapeek)126

was embedded into a dental acrylic head stage. Details of surgical procedures and post-operative care127

have been published previously (Thiele, Delicato, Roberts, & Gieselmann, 2006). During the surgery128

microelectrode chronic Utah arrays (5*5 grids), attached to a CerePort base (Blackrock Microsystems)129

were implanted into V1. Electrodes were 1 mm in length in line with procedures described in Supèr and130

Roelfsema (2005). Stimulus presentation was controlled using CORTEX software (Laboratory of131

Neuropsychology, NIMH, http://dally.nimh.nih.gov/index.html) on a computer with an Intel Core i3-540132

processor. Stimuli were displayed at a viewing distance of 0.54 m, on a 25” Sony Trinitron CRT monitor133

with a resolution of 1280 by 1024 pixels, yielding a resolution of 31.5 pixels / degree of visual angle134

(dva). The monitor refresh rate was 85 Hz for monkey 1, and 75 Hz for monkey 2. A gamma correction135

was used to linearize the monitor output, and the gratings had 50% contrast. Monkeys performed a136

passive viewing task where they fixated centrally while stationary sinusoidal grating of either horizontal137

or vertical orientation and 2 cycle per degree spatial frequency, were presented in a location that covered138
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all receptive fields recorded from the 25 electrode tips. Stimuli were presented 500 ms after fixation onset139

for 150 ms. Raw data were acquired at a sampling frequency of 32556 Hz using a 64-channel Digital140

Lynx 16SX Data Acquisition System (Neuralynx, Inc.). Following each recording session, the raw data141

were processed offline using commercial (Neuralynx, Inc.). Signals were extracted using Cheetah 5 Data142

Acquisition Software, with bandpass filtering set to allow for spike extraction (600-9000 Hz) and saved at143

16-bit resolution.144

In the present study, we focus on the period starting 200 ms before and finishing 200 ms after the145

stimulus onset, for 4 conditions (vertical gradings with pre/post cue in the receptor/opposite field) that146

will not be compared in details. The electrode recordings is firstly down-sampled from 32556 Hz to147

1000 Hz. A high-pass filter above 400 Hz is then applied - 3rd-order Butterworth filter at 0.8 of the148

Nyquist frequency (www.scipy.org, n.d.) - followed by a smoothing of 4 ms to extract the envelope of the149

resulting signal, by retaining the 250 time points of 1000-ms period surrounding the stimulus onset.150

BENCHMARK OF DETECTION PERFORMANCE FOR SYNTHETIC DATA

The workflow of the benchmark for the estimation procedure is schematically represented in Fig.1A. We159

first consider a MVAR process defined by Eq. (1) with given connectivity matrix A and input covariances160

(obtained by mixing independent Gaussian processes) to generate the activity of the network. From the161

observed activity over a period of duration T , we estimate the coefficients matrix A using the covariances162

as described in Eq. (9). We also perform the linear regressions of each node activity over the past activity163

of given subsets of nodes corresponding to the unconditional (GRu) and conditional (GRc) Granger164

causality analysis, from which we calculate the ratios of residuals in Eq. (4). Actually, these estimates165

correspond to the same ordinary least-square (OLS) regression (top right in Fig. 1A) and the difference166

resides in the spaces where they lie: coefficients versus residuals.167

For each method, the prediction power can be measured by the relationship between the estimated168

values and the original connectivity values, as illustrated in Fig. 1B (left). To discriminate between169

existing and absent connections, one can apply a common threshold for all connections (top thread); by170

sliding this threshold, we obtain the ROC curve with the rate of false alarms on the x-axis and true171

positives on the y-axis. The area under the curve indicates in a single value how well the ranking of172

estimated value performs for the detection of connections in the original connectivity. Alternatively, an173
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Figure 1. Network model and connectivity estimation. A: For a given directed connectivity A and input covariances Σ (left), the network activity

(middle) is simulated using Eq. (1). From the observed time series, the existing interactions in the original connectivity can be estimated (right): Granger

causality analysis uses the residuals of linear regressions (ε in the upper right equation; see Methods for details about the residuals used in the log ratio),

whereas MVAR corresponds to the coefficients. Note that MVAR can be obtained using the empirical covariance matrices Q̂0 and Q̂1, see in Eq. (7) for τ = 0

and 1. B: The left panel compares the estimated values to the original values for all connections in the network. The upper thread displays the distributions

of estimated values for existing and non-existing connections in the original network. Using a sliding threshold (vertical dashed gray line) on the estimated

values, one can calculate the ROC curve (right). The lower thread compares the estimated value for a single connection to a null distribution. From this, the

choice whether the connection exists or not is made for each individual connection, yielding a single pair of true-positive and false-alarm rates.
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individual test can be made for each connection in the network, for example by comparing the estimated174

value to a null distribution (bottom thread). Here again, we obtain two rates of false positives and175

negatives.176

Coefficients from linear regression potentially predict better existing connections than residuals177

We start with the comparison between the predictability of coefficients and residuals for MV, GRu and178

GRc for all connections in a given network. To do so, we simulate 500 randomly connected networks,179

which are simulated with different sizes (N = 50 to 150 nodes), density and connectivity weights180

(uniformly drawn in a randomly chosen range [wmin, wmax]); here inputs are not correlated: the ζi are181

independent across node indices in Eq. (1). For each network configuration, we evaluate the accuracy for182

connection detection via the area under the ROC curve (see the upper thread in Fig. 1B). Fig. 2A displays183

this ROC-based accuracy as a function of the number of observed time samples (x-axis) represented by184

violin plots for 500 randomly connected networks. When considering many samples (104), all methods185

perform well. However, for smaller sample sets, the MVAR method exhibits superior performance than186

GRu: as measured by the Mann-Whittney test, p < 10−45, p < 10−19 and p < 10−5 for the three values of187

observed samples, respectively.188

Although error residuals ratios are in a different space from the true weights in A, one expects some189

degree of correlation between them, such that Granger causality analysis effectively detects connections.190

In Fig. 2B, both GRu and GRc estimates have a ranking similar to the original A weights (as measured by191

the Spearman correlation) for T = 10000 observed time samples, but this weakens dramatically for192

T ≤ 3000. In contrast, the ranking for estimated MVAR coefficients reflects much better the original A193

for T ≤ 3000. In the studied networks, GRu performs slightly better than GRc. As analyzed in previous194

studies, this can be consequence of the balance between redundant and synergistic activity exhibited by195

the simulated network nodes (Stramaglia et al., 2014). To shed light into the effect of the network196

structure, we next examine how the ROC-based performance in Fig. 2A depends on the controlled197

network parameters.The four panels in Fig. 2C display the trends of the values for the 500 networks as a198

function of the network size N , the network density, the minimum weight in the original network (wmin199

mentioned above) and the mean sum of incoming weights per node. For illustration purpose, the 500200

networks are grouped in quartiles for each parameter. Not surprisingly, the estimation accuracy of all201
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methods decreases as a function of the network size N and density, and increases as a function of the202

minimum connectivity weight and the mean incoming weight per node. More interestingly, in203

challenging configurations with small weights, MVAR consistently shows a superior performance by a204

larger gap compared to Granger causality analyses. These findings support the use of coefficients to205

robustly detect connections in recurrently connected networks. Note that GRu performs on average206

slightly better than GRc here: the discrepancy decreases as a function of the network density, which may207

follow from lower redundancy in the recurrent network (Stramaglia et al., 2014).208

A robust non-parametric significance test for MVAR217

We have so far examined the performance of different estimation methods based on the area under the218

ROC curve, which corresponds to a single threshold for all connections in a network and combines the219

information about false alarms and true detection over the whole range of estimated values. However, in220

the context of real data, the decision for the existence of a connection typically relies on comparing the221

value of the connection estimate with a given statistical threshold. For GRu and GRc, such parametric222

tests have been developed, for example, based on the F statistics (Barnett & Seth, 2014). Equivalently, it223

is sufficient to know how the values of the estimates for absent connections are distributed, in order to224

select a desired rate of false alarms (type-1 error). In this section, we develop a significance test for the225

estimated MVAR coefficients by providing a null-hypothesis distribution for absent connections.226

Our approach relies on the fact that covariances reflect the underlying connectivity: we thus construct227

the null distribution for estimates by performing a random permutation for each of the observed time228

samples, which “destroys” the covariance structure apart from the variances on the diagonal of Q̂0 as229

illustrated in Fig. 3A; other methods will be tested in a later section. From the resulting covariance230

matrices, we evaluate a surrogate connectivity matrix. The core result underlying our surrogate approach231

is shown in Fig. 3B: the distribution of surrogate estimates (thick black line) is compared against the232

distribution of existing (red) and absent (blue) connections in a simulated random network model: the233

surrogate distribution in black provides a good approximation for the distribution of estimates for234

non-existing connections in blue.235

We consider two options - corresponding to the two threads in Fig. 1B - to test the existence of a236

connection from an MVAR estimate while keeping the false alarm rate under control.237

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/100669doi: bioRxiv preprint 

https://doi.org/10.1101/100669
http://creativecommons.org/licenses/by-nc-nd/4.0/


A E�ect of number of samples

residuals GRcresiduals GRu coe!cients MV

0.35 0.45 0.53 0.65

mean in-weight per node

0.5

1.0

a
re
a
 u
n
d
e
r 
R
O
C

62 88 112 137

network size N

0.5

1.0

a
re
a
 u
n
d
e
r 
R
O
C

13 18 22 27

density (%)

0.5

1.0

a
re
a
 u
n
d
e
r 
R
O
C

0.0 0.01 0.02 0.04

minimum weight in A

0.5

1.0

a
re
a
 u
n
d
e
r 
R
O
C

1000 3000 10000

observed samples T

0.5

0.6

0.7

0.8

0.9

1.0

a
re
a
 u
n
d
e
r 
R
O
C

C E�ect of network parameters

B Match estimate - original A

1000 3000 10000

observed samples T

0.0

0.5

1.0

S
p
e
a
rm

a
n
 M
V
 G
R

Figure 2. ROC-based prediction power. A: Area under ROC for estimated A obtain from log-ratios of residuals obtained from Granger causality analysis

(unconditional for GRu and conditional for GRc) and MVAR. The x-axis indicates three sample size T for the observed network activity. The the violin plots

correspond to 500 simulated networks of various sizes and connectivity strengths (the horizontal black bar indicates the median). B: Match of the ranking

between GRu, GRc and MVAR estimates and the original connectivity weights A, as measured by the Spearman correlation coefficient. The plotted values

correspond to the 500 networks in A and the x-axis indicates the sample size T . C: Effect of network parameters on ROC-based performance. Influence of

network size N , connectivity density, sum of recurrent connectivity strengths, minimum weight wmin in A, mean noise on the diagonal of Σ and mean off-

diagonal noise in Σ on the ROC-based accuracy in Fig. 2A. In each plot, the network configurations have been grouped in quartiles according to the parameter

plotted on the x-axis, and the corresponding group mean and standard deviations are indicated; the curves are displaced horizontally to improve legibility.
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The global test relies on the null distribution corresponding to the black histogram in Fig. 3C, which238

is obtained by grouping together all SN2 matrix elements of all matrices for S = 200 surrogates.239

From that surrogate distribution, we perform a detection test by setting a threshold corresponding to240

a percentage of the right tail equal to the desired false-alarm rate (here 2%), as illustrated by the241

vertical gray dashed line.242

Instead, the local test uses for each connection the surrogate distribution of S values, corresponding243

to the same matrix element in each of the S surrogates. From that distribution in red in Fig. 3C, the244

detection threshold is defined similarly (vertical dark red dashed line).245

The rationale behind these two choices lies in the trade-off between taking into account spatial246

heterogeneity in the network and gaining larger sample size, as illustrated by the distinct thresholds in247

Fig. 3C. Note also that the F statistical test for Granger causality analysis corresponds to a global248

threshold on the log ratio values. When varying the desired false-alarm rate, the two tests perform well,249

as illustrated in Fig. 3D by their location close to the ROC curve (circles and triangles for local and250

global, respectively).251

To assess the effect of the small variability observed in Fig. 3D over the randomness of network252

configurations, we simulate 500 randomly connected networks with the same parameters as in Fig. 2,253

except for the size 50 ≤ N ≤ 90 and the presence of input cross-correlations. Note that, from Fig. 2, the254

chosen size N corresponds to a situation where Granger causality analysis performs relatively well as255

compared to MVAR. The control of the false-alarm rate is displayed in Fig. 3E for both local and global256

tests with various numbers S of surrogates. The control of false-alarm rates is close to perfect across257

various values for all S and both tests (local and global), demonstrating the robustness of the proposed258

method for randomly connected networks. Following, we fix the desired false-alarm rate to 2% and259

evaluate the miss rate (true negatives) of both methods depending on the actual weight strength: in260

Fig. 3F, connections are grouped in terciles for each network configuration. Interestingly, the local test261

improves with the number S of surrogates (right panel), whereas the global test exhibits a constant262

performance for all S (left panel). Note that the advantage of the local test over the global test263

particularly concerns connections with small weights, which are difficult to detect, in line with Fig. 2C264

(see influence of the minimum original weight).265
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Figure 3. Non-parametric test to assess significance for MVAR coefficients based on random permutations. A: Schematic illustration of random

permutation (numbers indicate time) applied independently to all observed time series (green curves) to generate the surrogate covariances (right panels). B:

Pooled distributions of estimated weights for the existing (in red) and absent (blue) connections. The thick black curve indicates the distribution of connections

over 100 surrogates, which closely matches the blue distribution. C: For a given connection, we compare two methods: for ‘local’ in red, the null distribution

corresponds to the matrix elements for the same connection in 200 surrogates; for ‘global’ in black, the null distribution is the pooled distribution for all N2

elements of the 200 surrogate matrices (same as in B). The dark red and gray dashed lines indicate the detection thresholds corresponding to the 4% tail for

those two options. D: The performance of the two non-parametric methods for the thresholds described in B and C is displayed on the ROC curve for a

desired false-alarm rate ranging from 1 to 5%. Triangles indicate the local test and circles the global test. E: Comparison of the desired (% of the tail of null

distribution) and actual rate of false alarms for the local and global tests when varying the the number S of surrogates (see figure in legend). Error bars indicate

one standard deviation for 500 random networks; importantly, inputs for these networks have cross-correlation, unlike Fig. 2. F: Influence of the strength of

original weight on the detection performance for the 500 random networks and a desired false-alarm rate set to 2% in E. In both panels, lighter colors indicate

smaller numbers of surrogates S, in red for the local test and gray for the global test (see legends).
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Because GRu does not take all network nodes into account, the presence of spatially correlated noise278

(indicated by the purple dashed arrows in Fig. 1A) dramatically affects the false-alarm rate when using279

the parametric significance F-test (Barnett & Seth, 2014), as shown in Fig. 4A by the dark blue dashed280

curve. This is solved by the “complete” linear regression in GRc, achieving a quasi perfect control281

irrespective of the input correlation level for both the parametric and two non-parametric tests (cyan,282

green and blue-green dashed curves, respectively), as our non-parametric tests do (red and gray; recall283

also Fig. 3E). We consider two non-parametric tests for GRc: ‘T’ stands for target, where the null284

distribution of a connection is obtained by shuffling only the target, and ’F’ stands for full, where we285

shuffle all time series simultaneously as in our coefficient-based tests. Both perform equally in terms of286

false alarms.287

The main result of the paper is described in Fig. 4B, where the dashed line corresponds to the miss rate288

for parametric GRc: our non-parametric method exhibits a better than miss rate - i.e., decrease - for both289

local and global tests (in red and gray, respectively) on average over the same 500 random networks as in290

Fig. 4A. For S ≥ 200, the local test even becomes better in all cases. Note that the small miss-rate291

improvements of about 7% actually corresponds to more than 50 existing connections per network here.292

In contrast, both non-parametric tests for GRc perform worse than the parametric test here, with the293

target-shuffling surrogate converging faster close to the non-parametric GRc. Fig. 4C displays the trends294

of the performance of all 5 tests in Fig. 4B as a function of two network properties: the mean incoming295

weight per node (left) and the density (right). The main result here is that the local test performs better296

especially in difficult configurations with small weights and dense connectivity.297

From Figs. 3F and 4B-C, we conclude that the local test is preferable to the global test provided298

S ≥ 200 surrogates are generated. However, the computational cost increases linearly with S, as299

illustrated in Fig. 4D by the red curves. Note that the parametric GRc (in cyan) takes the same time to300

calculate as S = 50 surrogates. However, our non-parametric method scales better than parametric GRc301

when the network size increases. As a comparison, the full-network non-parametric test for GRc takes302

longer time to compute, but further optimization of the calculations could be made that were not303

incorporated here.304

Comparison of generation methods for surrogates for non-parametric MVAR315
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Figure 4. Comparison of our coefficient-based method with Granger causality analysis. A: Comparison of the parametric tests for GRu (blue curve)

and GRc (cyan) with the non-parametric methods for GRc (green for GRcF and blue-green for GRcT, see the text for details) and MVAR (red for local test and

gray for global). The x-axis indicates the strength of input correlations (i.e., pink noise) in the simulated network. The desired false-alarm rate is set to 2% as

in Fig. 3F and the number of observed time samples is T = 3000. Error bars indicate one standard deviation over the 500 random networks as in Fig. 3E. B:

Comparison of the miss rate improvement (decrease) with respect to parametric GRc for the 500 networks in A as a function of the number S of surrogates

(x-axis). Red indicates the local test, gray the global test, green the full-network non-parametric GRc and blue-green the target-only non-parametric GRc. C:

Details of the performance of the 5 methods in B as a function of the mean incoming weight per node (left) and the network density (right). The plots for the

miss rate are similar to those for the ROC-based prediction power in Fig. 2C. D: Comparison of the computational cost for the surrogate-based method and
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The fact that the OLS MVAR estimates can be obtained via the two covariance matrices (with and316

without time shift, see Fig. 1A) hints at possible methods to generate surrogate by destroying the317

information in these covariances. Methods to generate surrogate time series have been widely used in the318

past: circular shifts of the time series (Faes et al., 2014), random permutation (Winkler et al., 2014) and319

phase randomization (Schreiber & Schmitz, 1996) to generate a null distribution for the ratios in Eq. (4);320

they are referred to here as CS, RP and PR, respectively. We thus consider these three methods (cf. box in321

Fig. 5), as well as surrogate time series that only preserve the mean standard deviation averaged over the322

network (STD), so as test to which extent it is important to preserve the spatial heterogeneity of the323

nodes’ activity. See Methods for details about the calculations.324

The control of false alarms for local tests in Fig. 5A and B is better for CS and RP, whereas the325

detection of true connections is similar for the four methods over 500 random networks of size N = 70.326

However, CS fails to detect self connections (Fig. 5C). The reason is that, because CS surrogates preserve327

the autocovariances in the time-shifted covariance, they fail to build a proper null distribution for328

self-connections. The influence of the number of samples used in the estimation is similar for all329

methods, as illustrated in Fig. 5D. The comparison with STD (purple), which averages the covariance330

statistics over the whole network, suggests that the local test makes a good use of the heterogeneous331

information across nodes. As a conclusion, we retain RP as the best option.332

Influence of network topology341

In this part, we test and compare the robustness of global and local surrogate-based detection tests to342

specific connections and topological configurations. Here, T = 3000 observed samples and we compare343

the local and global tests with S = 400 surrogates for 500 networks of each type. In all cases, the344

simulated networks have the same size N = 70, but vary in connectivity density, distribution of recurrent345

weights and level of input cross-correlation. We compare the miss rate for unidirectional, reciprocal and346

self connections in the random networks examined until now (and a desired 2% of false alarms). Fig. 6A347

shows that the miss rate is similar in unidirectional and reciprocal connections with the local test, which348

performs slightly better than the global test (as in Fig. 3F).349

Now we consider more elaborate network topologies than the random connectivity (Erdös-Rényi)350

considered so far, namely modular and hierarchical networks. In Fig. 6B, we simulate 500 modular351
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networks with two groups (green and blue) linked by hubs (red, about 5 to 15% of the nodes).352

Interestingly, intra-group and hub-group connections have a similar miss rate with regard to using local353

and global surrogates. In Fig. 6C, we simulate hierarchical networks of three layers, for which354

connections either link the center and an intermediate node, or link an intermediate node and a leaf, or are355

self connections. This network type is much sparser than the two types in A and B, yielding a quasi356

perfect detection performance for all types of connections (miss rate < 0.1 in Fig. 6C). In all cases, the357

local test performs better than the global test. However, the control of false-alarm rate is similar for both358

tests with all topologies, as can be seen in Fig. 6D.359

Finally, we consider a network with both excitatory and inhibitory connections (with a inhibitory ratio360

equal to 5 to 50% of all) and perform the test by defining a threshold on both tails of the null distributions.361

As can be seen in Fig. 6E, the positive/negative nature of the connection weights affect neither the362

false-alarm nor the miss rate. However, the performance is poorer than with excitatory connections only.363

We conclude that, in those networks with spatial heterogeneity as with randomly connected networks,364

the local test with an individual null distribution per connection performs better than the global test.365

Recall that an improvement of the miss rate by 1% in a network with a density of 20% actually366

corresponds to N20.2/100 ' 10 existing connections here, so the plotted improvements concern about367

50 connections.368

Applicability to second-order MVAR process376

As explained in Methods, an MVAR process whose state depends on the two previous time steps can be377

estimated with the covariances with time shifts τ = 0, 1 and 2; see Eqs. (11) and (12) for details. Here we378

simply focus on random connectivity for the two corresponding matrices A1 and A2, with size N that is379

randomly drawn between 30 and 80; we construct A1 and A2 such that a connection j → i cannot be in380

both matrices, but at most in one. The existing connections are detected with the non-parametric local381

test relying on RP surrogates for each matrix separately, as a proof of concept. The control of false382

alarms in Fig. 7A and the overall detection performance in Fig. 7B suggest that our surrogate method can383

be extended satisfactorily to higher-order MVAR processes. Note that the improvement by generating384

more surrogates is rather weak here. Importantly, there is no difference between the detection in A1 and385
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Figure 7. Connectivity detection for second-order MVAR process. A: Control of false-alarm rate for the local test with S = 100, 200 and 400 in

both connectivity matrices A1and A2, corresponding to each time step. Error bars correspond to the variability over 500 network configurations with random

connectivity and T = 3000 observed samples. B: Influence of the number T of observed samples (x-axis) on the miss rate for the 500 networks in A. Lighter
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A2. The number of observed samples is indicated on the x-axis as in B. D: Influence of the network sizeN on the detection performance in C for the local and

global tests with S = 400 surrogates.

388

389

390

391

392

393

A2, as demonstrated in Fig. 7C. Last, the network size worsens the miss rate in Fig. 7D, which affects386

more dramatically the global test as compared to the local test.387

APPLICATION TO EXPERIMENTAL DATA

Multiunit activity data obtained from Utah electrode array in monkey394

Now we consider data recorded from a monkey performing a visual task, where the stimulus corresponds395

to vertical gratings covering all recorded V1 receptive fields from the Utah arrays (see Methods for396

details). We aim to provide a proof of concept for the connectivity analysis for this type of data, so as to397

complement the more classical analysis based on the activity of individual channels; therefore we do not398

focus on comparing the 4 stimulus conditions with each other.399
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The multiunit activity envelope (MUAe) is obtained as described in Methods. In Fig. 8A, the resulting400

MUAe is represented for two out of the 26 channels (red and purple) for two trials in the top and middle401

panels, 400 ms before and 600 ms after the stimulus onset. The typical analysis of MUAe activity402

consists of averaging over 200 trials, which exhibits a peak immediately after the stimulus for the two403

channels in the bottom panel. Among the 26 channels, about a third show a large increase in activity after404

the stimulus onset as compared to before (namely, a post-stimulus mean activity larger by more than three405

standard deviations compared to the pre-stimulus activity); almost all channels show a moderate increase406

of one standard deviation. One channel is discarded for a much larger activity (by 5 times) than all others.407

To further investigate the temporal information conveyed by MUAe jointly for pairs of channels, we408

calculate the pairwise covariances between them, after centering the MUAe activity individually for each409

trial. Fig. 8B shows the stabilization of the cross-covariance between the two channels in Fig. 8A from a410

single trial to averages over 20 and 200 trials. Note the asymmetry with respect to time difference: this411

information is extracted by the network model to estimate the interactions between the neuronal412

populations recorded by the channels. Then we verify that the model can be applied to these data, by413

examining the MUAe autocovariances in Fig. 8C, which exhibit a profile corresponding to an exponential414

decay up to two time shifts (i.e., 8 ms for the downsampling every 4 ms), that is, a straight line in the log415

plot. This suits an autoregressive model with large positive values on the diagonal of the connectivity416

matrix A.417

Both connectivity matrices for the 25 channels estimated using the MVAR method before and after the418

stimulus are illustrated in Fig. 8D for condition 1: we find larger off-diagonal values for the period after419

the stimulus than before. This is actually true for all conditions, as indicated by the more spread420

distributions in red as compared to gray in Fig. 8E. The channels appear to be coordinated at the421

considered time scale of 4 ms and their collective interaction scheme is affected by the stimulus422

presentation.423

Significance test for real data: interactions related to stimulus presentation433

We then use the local and global tests based on 1000 surrogates (with random permutation) to retain only434

significant interactions from the estimates in Fig. 8D: this leaves a few interactions for the pre-stimulus435

period in Fig. 9A (left panel), 8 out of 650, which is of the order of the desired false-alarm rate set to 1%436

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/100669doi: bioRxiv preprint 

https://doi.org/10.1101/100669
http://creativecommons.org/licenses/by-nc-nd/4.0/


−0.05
0.00
0.05
0.10 1 trial

0.00
0.02
0.04

M
U
A
e
 (
a
.u
.)

20 trials

-20 0 20

time difference (ms)

0.00
0.02
0.04 200 trials

0 5 10 15 20

source channel

0

5

10

15

20

ta
rg
e
t 
ch

a
n
n
e
l

−0.04

0.00

0.04

pre stimulus

0 5 10 15 20

source channel

0

5

10

15

20

ta
rg
e
t 
ch

a
n
n
e
l

−0.04

0.00

0.04
0

1

co
u
n
t

cond 1

−0.05 0.00 0.05

weight

0

1
co
u
n
t

cond 2

cond 3

−0.05 0.00 0.05

weight

cond 4

0 4 8 12

time shift (ms)

−16

−14

−12

−10

−8

−6

−4

lo
g
 a
u
to
co

v
a
ri
a
n
ce0.0

0.2

0.0
0.2

M
U
A
e
 (
a
.u
.)

-400 0 400

time (ms)

0.00

0.05

A

D E

B

connectivity estimate

post stimulus

C

cumulative histograms

MUAe activity MUAe cross-covariance MUAe autocovariance

Figure 8. Application to multiunit activity (MUAe) data. A: Example of two trials (top and middle panels) of multiunit activity envelope (MUAe) for

two channels of recordings using Utah electrode array in the primary visual cortex of a monkey (in arbitrary units; see text for further details). The bottom
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(namely, the extreme 0.5% of each tail). In contrast, many more post-stimulus interactions survive the437

significance tests in the right panel: almost all these interactions are unidirectional. The counterpart for438

circular shift for Fig. 9B involve 24 interactions in common with Fig. 9A. On average over the 4439

conditions, 22 post-stimulus interactions are common between the two shuffling methods, to be440

compared with 7 for the pre-stimulus period (both with a standard deviation of 4); this corresponds to441

3.5% of all possible interactions. Almost all detected interactions are unidirectional, as illustrated in442

Fig. 9C for both local and global tests for the post-stimulus period. Varying the threshold on the tail of443

the null distributions, we see that the number of detected interactions is close to the desired false-alarm444

rate for the pre-stimulus period in Fig. 9D (dark red and black curves, respectively). In contrast,445

post-stimulus interactions are many more for both local and global tests (light red and gray). The global446

test detects fewer interactions than the local test, indicating the necessity to take into account the447

disparities across channels. Around 57% of post-stimulus interactions detected by the global test (largest448

values in absolute value) are found by the local test.449

Finally, we check the relationship between the strengths of significant interactions - in absolute value -450

and the increase of average MUAe observed in Fig. 8A (lower panel). In Fig. 9E, the plotted dots451

correspond to the pre-post change in the sum of incoming (left panel) and outgoing (right panel)452

significant interactions for each node. The summed interaction values positively correlate with the MUAe453

difference (post minus pre) only for the incoming interactions: p = 0.03 with a coefficient of 0.21;454

nevertheless, the plotted values exhibit a large variability, which moderates this significance. In contrast,455

outgoing interactions exhibit a non-significant negative correlation (p� 0.1). This suggests a456

stimulus-driven gating of the effective gain for incoming anatomical connections to recorded cell457

populations. The application of our method thus unravels stimulus-driven directed interactions and458

cannot be merely explained by an increase of single-channel MUAe activity.459

In comparison, similar detection with parametric GRc testing gives more interactions for the460

post-stimulus period in Fig. 9F (bright green), more than twice the number for a p-value of 0.01461

(corresponding to 1% in Fig. 9D). Moreover, the distributions of MVAR coefficients in Fig. 9E and the462

corresponding ones for GRc estimated values have similar KS distance when comparing - for each463

condition - the pre- and post-periods (mean of 0.17 with a std of 0.01 over the 4 conditions). This means464

that GRc values collectively discriminate between the two periods as well as the estimated MVAR465
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coefficients. However, the pre-post changes in incoming and outgoing GRc values strongly correlate with466

the change in mean MUAe (p < 10−20 for both incoming and outgoing connections); note that the467

estimated connectivity is not symmetric, though. This contrasts with the two plots in Fig. 9E and468

suggests that the two methods may capture distinct effects at work in the network of neuronal469

populations. Note that the non-parametric method for GRc did not work for the experimental data here,470

failing to detect more interactions than the expected false-alarm rate.471

DISCUSSION

Non-parametric MVAR-based detection of linear feedback in recurrent networks481

This paper proposed a non-parametric method to detect pairwise feedback connections in biological482

networks with possibly strong and/or dense recurrent feedback. We examined the benefit of detecting483

directional connections in MVAR-like models estimated using the OLS autoregressive coefficients484

instead of the error residuals ratios (Fig. 1). To our understanding, the good performance of the presented485

method has three reasons. First, the ROC-based prediction power in Fig. 2, which relies on the estimated486

ranking of connections in the network (i.e., from small to strong weights), is more robust for the487

regression coefficients than residual log ratios for recurrent networks with relatively large density488

(0.1− 0.3%); these networks overall imply many redundancy and convergence patterns of connections489

(M. Ding et al., 2006; Stramaglia et al., 2014). Second, practical coefficient-based connectivity detection490

performed using non-parametric significance tests based on time-series randomization (red distribution in491

Fig. 4B) yields better results than conditional Granger causality ratio test in the time domain, either with492

the standard parametric F test (Barnett and Seth (2014), dashed line) or with non-parametric testing493

(green and blue-green distributions). Finally, the use of connection-specific significance testing achieves494

higher accuracy than a network-pooled alternative, especially when asymptotic assumptions do not hold495

(e.g., small number of time samples), as illustrated by the local non-parametric test in Figs. 3F and 4B496

(red versus dark gray). Together, our results highlight the need for testing strategies that capture the497

heterogeneity of sufficiently large networks to detect individual connections. Further note that assessing498

the connectivity via the regression coefficients space brings an additional advantage for network studies:499

the estimated connection weights can be interpreted and compared across the whole network, for500

example using graph theory (Sporns, 2013).501
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Our approach for generating surrogate distributions can be encompassed in the family of constrained502

randomization methods (Schreiber, 1998; Schreiber & Schmitz, 1996). Here we have shown that random503

permutation provides a good estimation of all types of connections (Fig. 5) in false-alarm and miss rates.504

Comparatively, the circular-shift method performs as well except for self connections that are not505

detected at all; this also holds for non-random topologies (results not shown). Hence, preserving the506

autocovariance structure in the generation of surrogates does not provide a substantial advantage here507

(Fig. 5B-C). Both methods show a good control for the false-alarm rate in comparison to phase508

randomization (Schreiber & Schmitz, 1996) and a control Gaussian approximation over the whole509

network (STD), which lead to an excess of about 1% of false alarms (i.e., ∼ 50 connections for a network510

of 70 nodes). These results show the importance of choosing a surrogate method adapted to the detection511

problem. For distinct dynamics governing the nodal activity such as nonlinearities, conclusions may512

differ and further research along these lines is necessary.513

As mentioned earlier, the use of an individual null distribution for each connection (local test) gives514

better results for the miss rate (by a few %) than lumping together all matrix elements of all surrogates515

(global test), provided sufficiently many surrogates are generated. For the size of networks considered516

here, computation time is not an issue (Fig. 4D) and our results support the choice of the local test over517

the global test to attain between accuracy in the true-positive detection. This may be especially true for518

specific topologies or networks with both excitatory and inhibitory connections, see Fig. 6. In other519

words, the local test incorporates to a better extent the network heterogeneities in order to build the null520

distribution for each connection. The present study was limited to ordinary least-square (OLS) estimates521

for MVAR, but there exist alternative estimators such as the locally weighted least-square regression522

(Ruppert & Wand, 1994) that may perform better for particular network topologies. The extension of the523

presented surrogate techniques to the case where observations are sparser than connections - implying524

that the covariance matrix is not invertible - is another interesting direction to explore (Castelo &525

Roverato, 2006).526

The problem of multiple comparison is intrinsic to brain connectivity detection as the number of527

testable connections across brain regions is massive (Rubinov & Sporns, 2010). In this context, different528

approaches have been developed to control the family-wise error rate in the weak sense. For instance,529

many studies on neuroimaging data (Genovese, Lazar, & Nichols, 2002; Nichols & Hayasaka, 2003) or530
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electrophysiology (Lage-Castellanos, Martı́nez-Montes, Hernández-Cabrera, & Galán, 2010) have531

resorted to procedures that control the false discovery rate (FDR) (Benjamini & Hochberg, 1995), namely,532

the expected number of falsely declared connections among the total number of detections. These533

methods make decisions on single connections relying on the entire sequence of p-values computed for534

each connection and yield substantial statistical power gains over more conservative methods such as535

Šidák-Bonferroni (Abdi, 2007). With the ever growing application of graph theory to brain connectivity,536

new methods have been proposed that exploit the clustered structure of the the declared connections537

(Han, Yoo, Seo, Na, & Seong, 2013; Zalesky, Fornito, & Bullmore, 2010) to propose cluster-based538

statistical tests (Maris & Oostenveld, 2007) that attain similar performance to FDR methods. The present539

work can therefore be understood as a primary step before performing any or several multiple-correction540

procedures. By defining an accurate null model of inexistent connections, p-value estimates per541

connection are improved and cluster-based surrogate distributions can be better approximated, which is542

expected to empower the overall control of false positive rates in network connectivity analysis.543

Applications to real electrophysiological and neuroimaging data544

A motivation for our method is the detection of neuronal interactions between electrode channels, which545

is often performed using spectral Granger causality analysis on local-field potential (low-passed signal of546

electrode measurements) or ECOG measurements. As an alternative, we have applied our connectivity547

detection method to MUAe recorded from macaque area V1 in order to provide a proof of concept.548

Multi-channel recording devices have been developed in the past years to obtain this type of data (Fan et549

al., 2011; Roy & Wang, 2012) and a recent cognitive study has highlighted group properties of MUAe550

activity for a similar experimental setup to the one used here Engel et al. (2016). Looking at the551

variability for individual trials in Fig. 8A (upper and middle panels), it is rather surprising that the MUAe552

conveys temporal information about joint activity for pairs of channels (Fig. 8B), which can be be related553

to causal directed interactions. This means that the high trial-to-trial variability is not an absolute554

limitation to temporal coordination, even though the latter only becomes apparent over multiple trial555

repetitions, just as the post-stimulus increase of MUAe for single channels (lower panel in Fig. 8A). The556

procedure detects a number of significant directional interactions well above the false positive rate that557

were not merely explained by the MUAe increase (Fig. 9D and E). In comparison, the control for the558

pre-stimulus period in the 4 different conditions detects just above the expected false-alarm rate. We find559
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that the parametric Granger causality test also detects many more interactions after the stimulus than560

before; however, these interactions happen to link channels exhibiting the strongest increases in MUAe561

activity. This presents the caveat of providing little information in addition to the changes observed at the562

single-node level, when interpreting the obtained results. The research of optimal preprocessing - in563

particular the filtering to obtain MUAe - to obtain a robust detection of interactions is left for a later564

study. Likewise, such electrode recordings are often analyzed with respect to specific frequency bands565

(e.g., alpha and gamma), but the adaptation of our framework along the lines of previous works (Dhamala566

et al., 2008; L. Ding et al., 2007) and comparison of detected interactions with established methods will567

be done in future research.568

More generally, our methodology requires adequate preprocessing of multivariate time series - activity569

aggregation over hundreds of voxels for fMRI and 4-ms smoothing of MUAe for electrode recordings -570

such that the autocovariance profiles match the exponential decay of the dynamic network model with571

linear feedback, which underlies the connectivity analysis. Although filtered and smoothed signals fall572

into the class of autoregressive moving-average (ARMA) models, our approach is applicable provided573

the autocovariances exhibit a profile resembling Fig. 8C. We further expect non-parametric testing574

methods for be extendable to ARMA processes, complementing approaches developed by Barnett and575

Seth (2015); Friston et al. (2014). In theory, stationarity of the time series remains a critical issue as we576

need sufficiently many observed samples to obtain precise covariances from which we estimate the577

connectivity, but this may not be a strong limitation for MUAe in practice in view of the post-stimulus578

average response shown in Fig. 8A.579

ACKNOWLEDGMENTS

MG acknowledges funding from the Marie Sklodowska-Curie Action (grant H2020-MSCA-656547).580

MG and GD were supported by the Human Brain Project (grant FP7-FET-ICT-604102 and581

H2020-720270 HBP SGA1). GD and ATC were supported by the European Research Council Advanced582

Grant DYSTRUCTURE (Grant 295129). AT was supported by the UK Medical Research Council (grant583

MRC G0700976). The authors are grateful to Robert Castelo and Inma Tur for constructive discussions.584

AUTHOR CONTRIBUTIONS

29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/100669doi: bioRxiv preprint 

https://doi.org/10.1101/100669
http://creativecommons.org/licenses/by-nc-nd/4.0/


Project was formulated by MG and ATC. Simulation code was developed by MG. Experimental data585

were provided by AT and XC. Manuscript was written by MG, ATC, AT and GD.586

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/100669doi: bioRxiv preprint 

https://doi.org/10.1101/100669
http://creativecommons.org/licenses/by-nc-nd/4.0/


587

REFERENCES588

589
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