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ABSTRACT 

Many cellular responses for which timing is critical display temporal filtering – the 

ability to suppress response until stimulated for longer than a given minimal time.  

Temporal filtering can play a key role in filtering noise, choreographing the timing of 

events, and mediating the interpretation of dynamically encoded signals. To define the 

biochemical circuits capable of kinetic filtering, we comprehensively searched the space 

of three-node networks.  We define a metric of  “temporal ultrasensitivity”, a measure of 

the steepness of activation as a function of stimulus duration.  We identified five classes 

of core network motifs capable of temporal filtering, each with different functional 

properties such as rejecting high frequency noise, committing to response (bistability), 

and distinguishing between long stimuli. Combinations of the two most robust motifs, 

double inhibition (DI) and positive feedback with AND logic (PFAND), underlie several 

natural timer circuits involved in processes such as cell cycle transitions, T cell 

activation, and departure from the pluripotent state.  The biochemical network motifs 

described in this study form a basis for understanding the common ways in which cells 

make dynamic decisions. 
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INTRODUCTION 

Timing is critical in biological regulation.  How do cells tell time and measure the 

duration of events? In many processes, cells display temporal filtering or temporal 

thresholding -- the ability to measure the duration of time that they experience a given 

input, and to only respond after a given threshold duration of stimulation (Fig 1A). 

Closely related behavior has also been referred to as kinetic proofreading (Hopfield, 

1974) or persistence detection (Mangan and Alon, 2003). Temporal filtering is important 

for several types of physiological behaviors.  Signaling networks downstream of 

receptors must filter noisy, transient environmental fluctuations to distinguish them from 

real, more sustained signals (Hopfield, 1974).  Kinetic filters can absorb and dissipate 

these transient inputs.  Measuring stimulation time also allows cells to trigger a response 

to an initial cue only after a specific delay, which can be critical for coordinating the 

relative timing of events, especially in complex, sequential processes such as the cell 

cycle or development.  Finally, there is increasing appreciation that biological 

information can be encoded dynamically, e.g. in features such as input duration or 

frequency (Batchelor et al., 2011; Locke et al., 2011; Purvis and Lahav, 2013; Suel et al., 

2007), and cellular circuits that can measure duration of stimulation undoubtedly play a 

key role in interpreting and decoding this kind of more complex temporal information.    

How can biochemical circuits function as kinetic filters?  There have been few 

studies that systematically explore and compare which signaling circuit architectures can 

kinetically filter stimuli and measure time. Although some circuits that can serve as 

kinetic filters have been analyzed, for many biological examples, the precise molecular 

circuitry or mechanism responsible for the measurement of stimulus time is not known. 
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Some specific classes of circuits have been noted to be able to serve as kinetic filters.  

These include extended multistep cascades (Hopfield, 1974; Samoilov et al., 2002), as 

well as coherent feed forward loops that have both long (multi-step) and short branches 

of transmission that are simultaneously required for output (Mangan and Alon, 2003; 

Murphy et al., 2002). In transcriptional networks, positive feedback has also been 

proposed to play a role in noise suppression (Horning and Barkai, 2008). But are these 

the only solutions for effective kinetic filtering?  If there are more families of solutions, 

how do they compare with one another in terms of efficiency and various functional 

tradeoffs? As we begin to understand how the cell coordinates and interprets complex 

dynamic information, it will be important to have a road map to help identify and classify 

the general types of molecular circuits that will emerge.  

Coarse-grained network enumeration offers a computational approach to identify 

classes of biochemical network architectures that can achieve a given target function 

(Chau et al., 2012; Lim et al., 2013; Ma et al., 2006; 2009). Comprehensive, unbiased 

enumeration of a space of simple circuits allows identification of core solutions and 

evolutionary starting points for more complex networks. A set of core solutions forms the 

basis for understanding and cataloging natural timing circuits as well as providing 

blueprints for design synthetic circuits that can measure time.  

Here we apply this approach to search the full space of all possible 1-, 2-, and 3-

node enzymatic networks and identify the classes of network architectures that can 

robustly achieve kinetic filtering.  To identify kinetic filters, we defined a new metric – 

temporal ultrasensitivity – to measure the steepness with which activation of a system 

occurs as a function of increasing stimulus duration.   As the name implies, temporal 
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ultrasensitivity is an analog of concentration ultrasensitivity – the measure of the 

steepness of a system’s dose-response (Goldbeter and Koshland, 1981).   Here we find 

five classes of simple network motifs that can achieve kinetic filtering, including the 

previously characterized coherent feed forward loop (Mangan and Alon, 2003; Mangan et 

al., 2003). Two of these motifs can be optimized to yield kinetic filters with both sharp 

temporal ultrasensitivity and long trigger time (duration of input required for half-

maximal response).  In contrast, the other motifs identified can robustly achieve high 

temporal ultrasensitivity only at a lower range of trigger times.   We identify key 

mechanistic properties that allow for longer trigger times while retaining sharp activation 

dynamics.   

These findings and the tradeoffs associated with each class of motif suggest 

particular functional roles of each subtype. Interestingly, one of the most common 

convergent motifs among natural kinetic filters, responsible for cell cycle transition 

circuits and T cell activation among other functions, is a combination of the two most 

robust classes uncovered in our search, which are predicted to combine both long, tunable 

trigger times with committed, temporally ultrasensitive switching.  We also predict that 

other types of combined circuit motifs that would have particular kinetic filtering 

properties.    

Our understanding of how cells respond to the complex dynamic information they 

receive, and how they control their own responses over time, is currently relatively 

primitive.  The design principles of kinetic filtering circuits explored in this study may 

help provide an initial road map for uncovering, identifying and understanding such 

temporal regulatory mechanisms. 
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RESULTS 
Defining kinetic filtering: temporal ultrasensitivity and trigger time 

We use two parameters to quantitatively define a kinetic filter (Fig 1B).  First, 

trigger time is the input duration required to achieve half-maximal response; second, 

temporal ultrasensitivity is the steepness of the response vs input duration curve.  

Analogous to concentration-based ultrasensitivity, temporal ultrasensitivity quantifies the 

sharpness of a signaling network’s kinetic filtering thresholding behavior, implying a 

steep temporal dose response curve where input stimulation with durations shorter than 

the trigger time result in minimal or no activation of the network, and inputs longer than 

the trigger time result in maximal activation.  Networks that perform as kinetic filters can 

thus be defined as those that show temporal ultrasensitivity or trigger times above a 

minimum cutoff value. 

 

Circuit enumeration and analysis of robust kinetic filtering  

To identify the simplest kinetic filtering circuits, we enumerated the space of 1-, 

2-, and 3-node enzymatic circuits, as described previously (Ma et al., 2009), and 

measured each topology’s temporal ultrasensitivity and trigger time under multiple 

parameter sets (Fig 1C).  Here we focused on enzymatic nodes, where each node is 

modeled with standard Michaelis-Menton parameters.   Each node is at a fixed total 

concentration partitioned into active and inactive states.  A regulatory link between nodes 

indicates that the active state of the upstream node catalyzes the conversion of the 

downstream node between its active and inactive state (Fig S1). 

In this model, nodes that integrate two regulatory inputs exhibit “AND” or “OR” 

logic.  Here we do not define these as absolute Boolean operators, but rather use this 
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nomenclature to describe whether the effects of two different upstream regulatory links 

are either multiplicative (“AND”) or additive (“OR”) (Fig S1).  Both logics are sampled 

in this enumeration because prior work has shown that some key kinetic filters require 

specific integrating node logic (Mangan and Alon, 2003).  These classes of nodes only 

describe two extreme models of two-input integration where both inputs are absolutely 

needed or both equally activating, but many intermediate behaviors are also possible, 

such as integrating nodes in which the weights of activation by each link are different 

(one input link is weak activator; other is strong).  

Altogether, we search a space of 68,705 possible network architectures and 

quantify temporal ultrasensitivity and trigger time for each architecture.  We measure 

these behaviors by tracking maximal output at any time during the simulation, since we 

also wanted to be able to capture networks that may require a substantial delay after the 

stimulus pulse to develop its full output (note that kinetic filtering as defined here is 

focused only on the duration of input stimulation, and is agnostic about the time delay 

required to see output). 

To capture only the kinetic filters with very strong all-or-none response to input 

duration, we applied a high stringency cutoff for temporal ultrasensitivity satisfied by 

<1% of simulated circuits (Fig 2A). Additionally, we required the circuits display a 

minimum trigger time of 1s (compared to tested input durations of up to 50,000 s) to 

exclude circuits with trivially short trigger times (Fig S2A).  These cutoffs yield circuits 

with steep dynamic activation thresholds, but with a range of trigger times.  We then 

quantified the robustness of each topology’s kinetic filtering by measuring the fraction of 

a topology’s tested parameter sets that satisfy the performance cutoffs (Dassow et al., 
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2000; Hornung and Barkai, 2008; Ma et al., 2009). A higher robustness implies that the 

topology’s performance is more robust to changes in parameter values.  High robustness 

circuits are thought to represent the most likely solutions to emerge from a random 

evolutionary process (Lim et al., 2013). 

We explored network space using a two-phase search strategy.  First we searched 

the network space with a low-stringency robustness cutoff, where only very low-

robustness networks were eliminated, in order to cast a wide net to find all minimal 

network motifs than can perform kinetic filtering.  We can search this set of architectures 

for clusters of core kinetic filtering network motifs.  In the second phase, we searched for 

optimal kinetic filters, which are likely to be more complex networks, by applying a 

much higher robustness cutoff.  We could then identify whether particular kinetic 

filtering motifs identified in the first search were enriched within this more selective set 

of network architectures.    

Over 25% of all the enumerated topologies satisfied the low stringency robustness 

cutoff, but only 83 topologies met the high robustness cutoff (Fig 2B). We first describe 

phenotypic clustering of the large set of topologies and define the main classes of 

minimal kinetic filtering motifs, then explore motif enrichment in the smaller, higher-

performing set of topologies.    

 

Low-stringency search and phenotypic clustering identifies five classes of kinetic 

filtering networks 

Of the 17,469 topologies that passed the low-stringency robustness cutoff, many 

are likely to be redundant – closely related networks that contain the same core motif that 
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executes kinetic filtering.  To reduce this large set of topologies to a minimal core set of 

non-redundant architectures, we systematically tested the effect of link pruning on 

robustness (Chau et al., 2012) (Fig S2B).  We considered a minimal kinetic filtering 

architecture to be one in which removal of any single link in the network resulted in a 

drop in robustness below the 0.001 cutoff.   

After this pruning procedure, 25 topologies were classified as minimal kinetic 

filtering architectures (Fig 2C). Each of the 17,469 kinetic filters in the low-stringency 

robustness set contains at least one of these 25 minimal kinetic filters as a core 

substructure, and the most robust kinetic filters often contain multiple minimal 

architectures. The minimal architectures thus form a basis set for analysis and 

classification of kinetic filters. 

To investigate whether the minimal topologies could be clustered by functional 

behaviors, we measured six “phenotypic” metrics for each parameter set of all the 

minimal topologies that were above our kinetic filtering metric cutoffs, a total of 2896 

topology/parameter combinations. The phenotypic metrics (Fig 3A) were: 1) trigger time, 

the duration of input required to achieve 50% maximal activation, without regard to 

kinetics of activation; 2) whether the network exhibited long-term memory, defined as 

final output concentration divided by maximum output concentration; 3) time for turning 

the circuit on (the time required for output to reach 50% maximum amplitude after 

application of input; 4) steepness of the circuit turning on (time required for output to 

reach 10% maximum amplitude divided by time required to reach 90% amplitude); 5) 

time to turn the circuit off (time required for output to decrease to 50% maximum 

amplitude after the input was turned off); and 6) steepness of the circuit turning off (time 
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required for output to decrease to 10% maximum amplitude after the input was turned off 

divided by time required to reach 90% of maximum amplitude after the input was turned 

off). Metrics 2-6 were measured for a single input pulse of duration 50,000 seconds.  

Principal component analysis was performed on these phenotypic metrics for the 

set of minimal kinetic filtering topologies (Fig S3). Figure 3B presents each minimal 

topology as a sphere in principal component space with center at the mean principal 

component value across the topology’s kinetic filtering parameter sets and radius 

reflecting the amount of phenotypic variation within that topology. 

The minimal kinetic filters fall into five functional clusters (Fig 3C). Principal 

component 1, consisting mainly of the long-term memory metric, divides the minimal 

kinetic filters into two groups, one with long-term memory and one without. The circuits 

with long-term memory are irreversible and bistable and are further divided by principal 

component 2 into two subtypes: positive feedback circuits with OR logic (PFBOR) and a 

class that we refer to as bistable inverters (BI).  

Among the circuits without long-term memory, principal component 3 

distinguishes between a class of kinetic filters that turn off slowly and gradually, 

requiring a long refractory period -- positive feedback circuits with AND logic (PFBAND) 

-- from kinetic filters that turn off quickly and steeply and are thus considered the most 

reversible. Principal component 2 further divides the reversible circuits into two 

subtypes, double inhibition (DI) circuits and coherent feed forward loops with AND 

logic (CFFL).  

 

Mechanisms of the five core kinetic filtering motifs 
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How does each of these five classes of core motifs achieve kinetic filtering 

behavior?  Here we describe in detail the activation trajectories for each of these core 

classes, using ideal parameter sets that display kinetic filtering, and summarize their basic 

mechanisms. Parameter constraints observed for each of the five classes are summarized 

in Fig S4. 

Coherent feed forward loops (CFFL) have been previously identified as being 

capable of kinetic filtering (Mangan and Alon, 2003).  These topologies use a fast 

arm/slow arm mechanism for kinetic filtering, where the output node shows AND logic 

and is only activated if it receives simultaneous signals from both the fast arm (a measure 

for whether the input is still present) and the slow arm (a measure of whether input was 

also on some time ago). A representative coherent feed forward loop timecourse (Fig 4A) 

shows that output node C is only activated when both active A and active B are above a 

threshold concentration; thus, trigger time is largely determined by the time required to 

transmit signal through the slower arm of the network, or the difference between the slow 

and fast arms.  Short inputs are filtered because they do not last long enough to allow 

both the long and short arm of the network to be simultaneously activating the terminal 

AND node (node C).  CFFL circuits are reversible after removal of input, and turn off 

sharply.  They can, however, display a moderate lag in initiating shutoff, which is 

dependent on how long the pool of active node A remains after removal of input.   

Bistable memory circuits, such as the positive feedback OR circuit (PFBOR), can 

also achieve kinetic filtering. These circuits simply require a given time of input 

stimulation to pass the tipping point or separatrix, resulting in switching from the OFF 

state to the ON state (Fig 4B).  The PFBOR motif requires only a single node to achieve a 
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bistable circuit.  Here activation of the OR node (node A) by input results in positive 

feedback stimulation to the node, which, once at sufficiently high levels to counter the 

basal inactivating activity, can self-sustain activation of the OR node even in the absence 

of input.  Short inputs are filtered because they leave the level of activated node A below 

the threshold required for locking ON.    

Another kinetic filtering motif that results in long-term memory is the bistable 

inverter (BI) class (Fig 4C).   This highly unusual class of circuits exhibits behavior 

where the output only switches ON after input has been halted.  To serve as a kinetic 

filter, the A and B nodes begin in activated states.  The output node (node C) is thus 

initially off, because node A represses C.  Upon input stimulation, the negative feedback 

relationship between B and A nodes initiates oscillations in the activity of both A and B, 

but if stimulation is long enough, then B becomes completely deactivated.  In the absence 

of active B, when input is halted, the activity of node A falls to zero.  Because node A 

was the only deactivator of the output node C, output will now turn on.  In short, this type 

of kinetic filter requires a minimal input stimulation duration to “prime” the system and 

eliminate active B (Fig S5).  This priming time defines the minimal trigger time of the 

kinetic filter.  The priming period can be followed by a holding time of variable length as 

long as input is sustained, but immediately after the input is switched off, the output will 

turn ON irreversibly.  This highly unusual motif has not been, to our knowledge, 

characterized in known examples of kinetic filters, but it is possible that this sort of two-

phase switch may be useful for particular biological behaviors.   

Positive feedback loop AND (PFBAND) circuits are another simple class of motifs 

capable of kinetic filtering (Fig 4D).   In this case the integrating node (node A) must be 
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simultaneously stimulated by input and positive feedback in order for the system to 

strongly activate output.  Initial input can lead to low levels of activation of A, if the 

basal deactivators of A are weak (here an “AND” gate is not an absolute Boolean gate, 

but one in which the integration of two activating stimuli is multiplicative rather than 

additive).  Nonetheless this buildup of initial amounts of activating A can be very slow 

and tuned by the strength of the basal opposing activity.  If the input is on long enough to 

build up enough active A to trigger positive feedback, then A will turn on synergistically 

because of dual AND activation.  In this case, the system does not formally display 

memory after input is removed, since it does turn off eventually.  However, most 

parameters that lead to kinetic filtering also lead to an extremely slow inactivation of the 

system.   Here the biggest difference between the PFBAND and PFBOR circuits is that the 

AND motif has a much stronger dependence on positive feedback in order to increase the 

level of active A.  It is important to remember that our coarse grained search considered 

only two types of integrating node behaviors, and it is certainly possible that there could 

exist related positive feedback circuits in which the key integrating node has intermediate 

behaviors such as an OR gate where the weights of activation are much stronger for the 

positive feedback stimulation compared to the direct input stimulation.  In this case, one 

would expect to obtain a kinetic filter that was like the PFBAND motif in that it would 

require a long period of direct input stimulation to initiate build up of active A, but also 

like PFBOR in that it could eventually lock on in a fully bistable manner.  

The final major class of minimal kinetic filters is the double inhibition (DI) motif 

(Fig 4E).  Networks in this class share a cascade with two successive inhibitory 

regulatory relationships.  The central node (here B) starts with high activity and acts as an 
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inhibitor of system output (node C).  Input stimulation inhibits the inhibitor to switch on 

the system. DI motifs can act as kinetic filters when the central inhibitor node (here node 

B), acts as a buffer to absorb system input.  Although input might immediately decrease 

node B activity, this does not register as a change in C node activity until after a longer 

duration of stimulation (trigger time) when the level of B has dropped very low,.  Trigger 

time is determined by the overall rate of decrease in B node activity, which is dependent 

not only on input, but is also opposed by the basal activation of B; higher basal activation 

can yield longer trigger times.  DI motifs are reversible: after removal of input, the 

system rapidly returns to its initial steady state. The DI motif can be arranged as a 

sequential element between input and output nodes as described above, but can also be 

found in a double inhibition feedback loops as long as a terminal element of the DI motif 

has a positive regulatory relationship with the output node.   

 

The most robust kinetic filtering networks are enriched for DI and PFBAND motifs 

To identify which of the five core motifs can give rise to the most robust kinetic 

filtering networks, we imposed a high-stringency robustness cutoff of 0.08 on the 

~70,000 sampled topologies (Fig 5A).  Remarkably, all 83 circuits in the high-robustness 

set contained DI and/or PFBAND motifs but none of the other three core architectures 

(Fig.5B).  Of the 83 highly robust kinetic filters, 25 have only PFBAND motifs, 9 have 

only DI motifs, and 49 have both PFBAND and DI motifs.  The distributions of robustness 

of architectures containing each of the five core motifs (Fig 5C) show that circuits 

containing DI and PFBAND motifs achieve much higher degrees of robust kinetic filtering 

than circuits containing CFFL and PFBAND motifs, and circuits containing BI motifs are 
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the least robust.  The strong enrichment for both DI and PFBAND motifs in the most 

robust kinetic filtering architectures prompted us to explore why these motifs may act as 

better kinetic filters than other related motifs.  

 

Why double inhibition cascades are better kinetic filters than double activation 

cascades   

The more robust DI motif and the less robust CFFL motif are structurally 

analogous – the slow arm of the CFFL motif, which plays a major role in trigger time, is 

a double activation cascade, in contrast to the double inhibition motif.  We examined the 

trigger time distributions of all DI parameter sets above our functional cutoffs, and found 

that they display trigger times ranging from 1s to >10,000s.  Under the same range of 

sampled parameters, CFFL circuits are limited to trigger times under 100s (Fig 6A).  

When we examine the trigger times and temporal ultrasensitivity found with 10,000 

random parameter sets imposed on archetypical DI or CFFL architectures, we find that 

DI circuits can occupy the quadrant with both high trigger time and high temporal 

ultrasensitivity (Fig 6B).  In contrast, the CFFL circuits appear to have constraints that 

lead to a tradeoff between temporal ultrasensitivity and trigger time in the parameter sets 

that lead to kinetic filtering (Fig S6).   

These differences between the behavior of DI and CFFL kinetic filters likely 

result from intrinsic differences between turning on an output by activating an activator 

versus inhibiting an inhibitor. To illustrate this point, we directly contrast a double 

inhibition circuit with a double activation circuit modeled with identical parameters — a 

double activation circuit is simply a coherent feed forward loop with the short arm 
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removed.  In Fig 6C we solve for the steady state concentration of active output node 

(node C) as a function of the fraction of active regulator node (node B). In both cases, 

output is initially low prior to input and increases the longer input is applied. For double 

inhibition circuits, the shape of the steady state output curve dictates that output remains 

low for a wide range of node B concentration; only after the amount of active B has been 

driven below a threshold does the fraction of active output (node C) begin to rapidly 

increase. Thus for double inhibition circuits, trigger time can be tuned to be very long, 

with little partial activation before reaching the trigger time. In contrast, for double 

activation circuits, output begins to partially increase substantially for even a small 

amount of initial increase in node B. Trigger time is thus limited by the shape of the 

output activation curve being steepest at low concentrations of node B, the early phase of 

the stimulation trajectory.    

This simple observation that double inhibition cascades will have intrinsically 

distinct temporal activation properties from double activation cascades is related to 

earlier work from Savageau on the noise resistance of different regulatory schemes 

(Savageau, 1977).   Systems that switch on by double inhibition cascade are more noise-

resistant than systems that switch on by activation cascade because of the intrinsic 

difference in which regimes of the dose-response curve are steep or shallow. 

 

Why Positive Feedback AND motifs are better kinetic filters than Positive Feedback 

OR motifs 

We then compared why the PFBAND motif is a more robust kinetic filter than the 

closely related PFBOR motif.  Taking the archetypical kinetic filter of each architecture 
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and carefully dissecting the trajectory of output activation, we observe that for the 

PFBAND motif, no significant amount of output activation occurs until the feedback 

activation loop has been significantly triggered, as would be expected for the AND 

integration of the central node (Fig 6D). Feedback activation can trigger only very late in 

the trajectory because activation requires accumulation of the activated node, which can 

only occur through leaky activation induced by direct input activation.   

In contrast, the PFBOR circuit is able to immediately show significant and gradual 

activation of the central node, because the OR integration allows significant activation by 

the direct input even in the absence of positive feedback.  Thus the PFBOR circuit 

activation trajectory is inherently less steep than the equivalent PFBAND circuit.  

 

DISCUSSION 

General classes of signaling networks capable of kinetic filtering and their potential 

functional roles 

Here we have used coarse-grained network enumeration to identify classes of 

biochemical networks that can achieve kinetic filtering – the ability of a system to 

respond only after input stimulation has sustained for a given threshold duration.  

Networks that execute kinetic filtering can play a central role in filtering transient noise, 

interpreting complex dynamic inputs, and controlling the timing of a sequence of events.  

Given the growing appreciation of the importance of dynamics in cellular information 

processing, it will be important to understand the mechanisms that can be used for kinetic 

filtering and recognize and classify the networks that are found in cells (Purvis and 
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Lahav, 2013).  The design principles of such kinetic filters may also allow us to design 

cellular circuits with precision temporal control (Lim et al., 2013). 

Kinetic filters must be able to absorb and dissipate input pulses that are shorter 

than a threshold triggering time, thus suppressing the resulting output.  Here we focus on 

two behavioral parameters of the network: the trigger time -- the threshold stimulus 

duration time required to achieve half-maximal output, and temporal ultrasensitivity – the 

steepness of system activation as a function of input duration.   Ideal kinetic filters can be 

considered to have both high temporal ultrasensitivity and high trigger times. 

Our metric of temporal ultrasensitivity is analogous to the cooperativity index 

used to describe concentration-based ultrasensitivity. While well-established, this metric 

is sensitive to right translations: a temporal dose response of identical steepness will have 

a poorer score if trigger time is higher. Our analysis has focused on general properties of 

broad classes of circuits, but future work on kinetic filters may benefit from exploring 

other metrics capable of distinguishing subtle behaviors such as thresholding and 

switching (Gunawardena, 2005). 

When we perform an exhaustive search for networks capable of kinetic filtering, 

we identify five classes of architectures. Some classes (PFBOR, CFFL) require tradeoffs 

between high temporal ultrasensitivity and long trigger time, while others (PFBAND, DI) 

allow simultaneous optimization of trigger time and temporal ultrasensitivity. These 

findings suggest different potential functional roles for these different classes of circuits 

(Fig 7A).  The CFFL can effectively filter against activation by relatively transient noise, 

since this would only require optimization of a high temporal ultrasensitivity without a 

long trigger time.  DI and PFBAND circuits may be better as kinetic filters that also 
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incorporate a longer timer or delay function, since they can exhibit long trigger time 

without sacrificing temporal ultrasensitivity.  Finally, PFBAND circuits could also be used 

in cases where memory or a long turn-off lag is needed, while CFFL and DI would be 

more suited to cases where rapid shut-off is optimal. 

 

CFFL motifs in natural kinetic filtering circuits: Erk activation of cFos 

This analysis predicts that one should be able to find these circuit types in natural 

kinetic filtering systems, although some might be preferred for a given functional context.  

There are several signaling systems that are known to display kinetic filtering.  Here we 

examine these natural evolved systems and compare them with the motifs identified in 

this theoretical study. 

One classical example of kinetic filtering is the activation of the cFos protein only 

in response to sustained activation of the mitogen activated protein kinase (MAPK) Erk 

(Fig 7B).  In this case, activation of cFos occurs through a CFFL network (Murphy et al., 

2002).  Erk activation of transcription factors leads to increased transcription of the cFos 

gene.   The cFos protein is, however, rapidly degraded, so it does not accumulate.  Erk 

also directly phosphorylates the cFos protein, resulting in cFos stabilization.   Here Erk-

mediated transcription of cFos serves as the slow branch of the CFFL network, while 

direct Erk phosphorylation of cFos serves as the fast branch.  cFos accumulation acts as 

an AND gate, since both cFos transcription and phosphorylation are required.  

It is hard to know exactly why the somewhat less robust CFFL architecture is 

used in this case.  One possibility is that in some cases (e.g. EGF stimulation), Erk 

activation occurs in pulses, where the frequency of pulses can convey information 
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(Albeck et al., 2013).  For a downstream output to effectively integrate multiple Erk 

pulses only when they are relatively close together would require a system that neither 

shuts off immediately nor has an extremely long lag time.  The CFFL may be ideal for 

this kind of frequency-encoded information, since the DI networks shut off extremely 

fast, and the PFBAND networks show very long turn-off lag. 

 

Convergence on combined DI and PFBAND motifs in cell cycle transition control 

networks 

Several natural kinetic filters seem to have converged upon a similar combination 

of both the DI and PFBAND motifs, the two most robust kinetic filtering architectures 

identified in this work. Recent studies have observed that several phase transitions in the 

cell cycle utilize convergent regulatory networks (Fig 7C) (Bertoli et al., 2013; Skotheim 

et al., 2008; Yang et al., 2013).  In each of these cases, the networks contain integrated DI 

and PFBAND motifs.  In key cell cycle transitions, the cell starts with high activity of the 

cyclin dependent kinase (CDK) in complex with an initial phase.  The cell must then 

sharply transition to the next phase, associated with a sharp increase in the next phase 

cyclin-CDK complex.  These combination DI and PFBAND networks appear to be optimal 

to drive this transition in a temporally sharp and decisive manner. 

All of these circuits, even though they operate at different stages of the cell cycle, 

or in different organisms, have a central inhibitor that initially prevents output, i.e. next 

phase cyclin-CDK activity.  For yeast entry into START (the G1/S transition), the 

inhibitor is the protein Whi5, which binds to and inhibits the transcription factor SBF.  

The transition initiates with a double inhibition cascade:  when Whi5 is phosphorylated 
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by the initial phase G1/Cdk enzyme, it initiates release from SBF, which in turn allows 

SBF to initiate expression of  G1/S phase genes, including the G1/S cyclins.  This results 

in increase in G1/S Cdk enzyme, the next phase cyclin/CDK complex, which then acts in 

a strong positive feedback manner to even more strongly phosphorylate and inactivate 

Whi5.  Here, because Whi5 requires priming phosphorylation by the G1-CDK complex, 

but is more efficiently phosphorylated by the G1/S Cdk enzyme, it approximates an AND 

gate.   Overall, this system shows a very sharp temporal transition after a long delay, 

followed by a strong commitment to the next phase, a combination of behaviors that the 

DI/PFBAND hybrid network should be ideal for.   Here the central inhibitory node (Whi5 

= node B) is not an enzyme, as in the case of the network models used in our coarse-

grained search, but is instead a stoichiometric inhibitor.  This particular molecular 

manifestation of the network is expected to show temporal ultrasensitivity as long as the 

binding of Whi5 to SBF is sufficiently tight (Fig S7). 

Strikingly, the identical hybrid network is observed in other cell cycle transitions.  

In mammalian G1/S entry, the protein Rb serves as the central inhibitory node analogous 

to Whi5, even though it is evolutionarily unrelated (Bertoli et al., 2013). Rb is an 

inhibitor of a transcription complex, and Rb’s function is in turn initially inhibited by G1-

CDK mediated phosphorylation.  Rb’s inhibition leads to expression of the G1/S cyclins, 

leading to positive feedback when the G1/S CDK enzyme strongly phosphorylates Rb.   

In the case of the yeast S phase entry, the protein Sic1 serves as a central 

inhibitory node.  Sic1 is a direct inhibitor of the S-Cdk complex, but is initially 

phosphorylated by the earlier stage G1/S-CDK enzyme.  In a DI motif, phosphorylation 

of Sic1 leads to its degradation, initiating activation of the next phase G1-CDK enzyme.  
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This leads to positive feedback, since the G1-CDK enzyme more strongly phosphorylates 

Sic1, leading to its even more rapid degradation.  

 

Combined DI and PFBAND network in T cell activation and stem cell exit from 

pluripotency 

Committed activation of T cells upon antigenic peptide-MHC engagement is 

thought to involve kinetic filtering (Davis et al., 1998).  Activation is only observed with 

peptide-MHC complexes with sufficiently long engagement times.  One of the key 

proteins thought to play a role in this kinetic filtering is the negatively regulatory 

phosphatase Shp1 (Altan-Bonnet and Germain, 2005; Feinerman et al., 2008).  

Examination of the Shp1 network reveals a combined DI and PFBAND circuit (Fig 7C).  

Shp1 acts as an inhibitor that removes activating phosphorylation on the T cell receptor 

(TCR) and some of its downstream effectors.  Activation of the TCR leads to its own 

phosphorylation, and in subsequent steps, activation of the downstream MAPK Erk.  

Active Erk can in turn phosphorylate Shp1 in a manner that is thought to lead to its 

dissociation from the TCR complex.  Thus this network contains a DI cascade integrated 

with a positive feedback loop, with a related but slightly distinct configuration from the 

combined DI and PFBAND networks observed in the cell cycle transitions discussed 

above.  

Similarly, the differentiation of pluripotent embryonic stem cells only to sustained 

but not transient differentiation signals (Sokolik et al., 2015).   The circuit that induces 

differentiation (or exit from the pluripotent state) has a combined DI and PFBAND motif. 

The Oct4-Sox2-Nanog maintains the pluripotent state through an autoregulatory positive 
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feedback loop, thus acting as a repressor of differentiation. Differentiation factors induce 

the switch by disrupting the Oct4-Sox2-Nanog complex through competitive binding, 

leading to Nanog degradation and thereby relief of the repression of differentiation 

(double inhibition) (Fig 7C). 

 

Other potential combinatorial kinetic filtering networks 

Some of the best-characterized cellular systems that display kinetic filtering 

contain combinations of the ideal core motifs identified in our analysis. We predict 

several other possible combinatorial motif circuits to have useful combinations of 

behaviors.  For example, a DI and CFFL combination circuit (Fig 7D) is expected to 

yield both a long trigger time and intermediate off-kinetics.  Such a circuit could be used 

to integrate multiple wide pulses of input.  Combining CFFL and PFBAND could lead to 

efficient transient noise filtration combined with a committed transition.  These networks 

built of multiple combinations of the core kinetic filtering motifs require more than three 

nodes, and thus would not have been identified from our enumeration of 3-node 

networks.   

It is likely that the core motifs identified here could be combined together, both 

sequentially or in an interlinked manner to build even more effective kinetic filters with 

longer trigger times, or in a way that can overcome particular functional tradeoffs of the 

individual simpler motifs.  We have previously found that a similar combinatorial use of 

minimal motifs leads to more robust cell polarization circuits (Chau et al., 2012).  

Multiple kinetic filters could be linked together in higher order sequences of events that 

control processes like the cell cycle or trafficking that require distinct steps to occur in a 
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defined order.  It is also possible that these minimal motifs could be combined with 

oscillatory networks to yield timer systems that combine pulsatile clock-like mechanisms 

with kinetic filtering (Suel et al., 2007). 

 

Evolutionary choice of signaling enzyme regulatory mechanisms may be linked to 

dynamic response behaviors 

The diverse dynamic behaviors examined here may also explain why particular 

molecular mechanisms of regulation are chosen for different signaling enzymes.  One of 

the most prevalent molecular mechanisms to gate signaling enzyme activity is regulation 

via an inhibitory domain that can act in trans or in cis (autoinhibition).  Activation can 

thus occur via double inhibition or relief of autoinhibition.  Although these mechanisms 

of enzyme regulation are very similar at a molecular level, this study suggests that when 

incorporated into circuits, the two molecular switches will have very different dynamical 

properties.  At a network level, circuits with core nodes that rely on regulation by relief of 

autoinhibition will behave like conventional activation cascades, which can switch on 

faster but are less likely to have sharp temporal ultrasensitivity.  In contrast, systems with 

an unlinked inhibitor could achieve much sharper temporal ultrasensitivity. It will be 

interesting to explore whether known signaling systems that use trans inhibition (e.g. 

protein kinase A, which is regulated by an inhibitory subunit that dissociates upon cAMP 

binding) are associated with robust time delays, while those that use c -inhibition (e.g. 

Src kinases, which are regulated by intramolecular autoinhibitory domain interactions) 

are associated with faster, more immediate processes.   
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CONCLUSIONS 

The motifs and understanding that emerge from this enumerative circuit analysis 

provide a useful roadmap for more deeply and predictively understanding how cells 

interpret dynamic information. These mechanisms can help understand why particular 

network perturbations that might disrupt timing control could contribute to diseases such 

as cancer.  The motifs that emerge also provide a catalog by which to define key 

dynamical control elements within complex cellular networks mapped by proteomic and 

genomic methods.   
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METHODS 

Simulation of biochemical circuits 

Reactions were modeled with total quasi-steady-state Michaelis-Menten kinetics 

(Ciliberto et al., 2007; Gomez-Uribe et al., 2007; Tzafriri, 2003). Nodes were converted 

between active and inactive states according to network linkages, where positive 

regulations catalyzed activations and negative regulations catalyzed deactivations (Fig 

S1). The total concentration of each node was held constant at 1. For nodes operating 

under OR logic, Michaelis-Menten expressions for incoming links were added. For nodes 

operating under AND logic, Michaelis-Menten expressions for incoming links of the 

same sign were multiplied, and expressions for incoming links of opposite signs were 

added. Each circuit was numerically integrated with a fifth-order embedded Runge-Kutta 

formula (Press et al., 2002). Active concentrations of each node were initialized to 0.1 

and allowed to come to steady state before the application of input. 

To enumerate circuit topologies, we allowed each link to be positive, negative, or 

absent. We discarded topologies where the input signal did not reach the output node. 

Circuits with regulations on a non-input, non-output node that did not in turn regulate 

another node were also discarded. For AND logic topologies, we discarded all circuits 

where the node with AND logic did not have two regulatory links of the same sign, 

counting input as a positive regulation. 

In addition to the regulations between nodes A, B, and C, a circuit had additional 

constitutive activators and deactivators as needed such that no node had only activators or 

only deactivators (Fig S1). Constitutive activators and deactivators had constant 

concentration of 0.1. Up to 26 parameters were sampled for each circuit: kcat and Km for 
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each of the nine possible circuit links, three possible constitutive activators and 

deactivators, and the input link. Node concentration was held constant at 1.0 and not 

sampled. All parameter samplings used the Latin hypercube method (Iman et al., 1980) 

with range 0.1 to 10 for kcat and 0.001 to 100 for Km; this range is roughly physiological 

with units of seconds and µM. 10,000 parameter sets were sampled for the enumerative 

search and 100,000 for determining parameter regime restrictions. 

 

Quantification of circuit performance 

Input pulses of duration 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 

70, 80, 90, 100, 200, 300, 400, 500, 600, 800, 1000, 2000, 3000, 5000, 6000, 8000, 

10000, 20000, and 50000 seconds were applied separately to each parameter set of each 

topology. Input amplitude was always 0.1. Maximum output amplitude was measured 

over the period covering both the duration of the input pulse as well as a post-pulse 

recovery period lasting until the system came to steady state. Circuits that failed to reach 

steady state within 86,400 simulation seconds were removed from consideration. 

Inverting circuits whose output decreased with application of input were also discarded. 

Temporal ultrasensitivity was quantified by plotting the circuit’s maximum output 

amplitude for each duration of input and measuring the temporal ultrasensitivity score 

(TU score) of the resulting curve (Fig 1B). TU score was defined as the ratio of input 

duration yielding 10% of maximum response to input duration yielding 90% of maximum 

response, analogous to cooperativity score in classical dose response curves (Goldbeter 

and Koshland, 1981). The 10% and 90% input durations were determined by 

interpolating a linear fit between the simulated input durations bracketing the 10% and 
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90% response amplitudes respectively. The response threshold T was determined by 

linear fit between input durations bracketing 50% output amplitude. 

Maximal response (Rmax) and difference between maximal and minimal 

response (ΔR) were also measured for each circuit. Circuits with Rmax < 0.001 or 

ΔR/Rmax < 0.5 were considered to have insufficient response amplitude and were not 

considered to be kinetic filters. 
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FIGURE LEGENDS 

Figure 1. Kinetic filtering circuits distinguish between transient and sustained 

inputs. (A) Kinetic filtering circuits respond to sustained but not transient stimuli, 

allowing cells to perform time-sensitive functions. (B) Temporal ultrasensitivity score 

quantifies kinetic filtering by measuring steepness of activation over stimulus time, 

defined by taking the ratio of input duration required for 10% activation to input duration 

required for 90% activation. Trigger time, the duration of input yielding 50% activation, 

measures the duration of stimulus necessary to trigger response. (C) To identify kinetic 

filtering architectures, temporal ultrasensitivity score and trigger time were measured 

over an enumerated space of 68,705 circuit topologies and 10,000 sampled parameter sets 

per topology. Parameter sets were considered to show kinetic filtering if temporal 

ultrasensitivity score ≥ 0.5 and trigger time ≥ 1s. A topology’s robustness is defined as 

the fraction of its sampled parameter sets that show kinetic filtering. See Figure S1 for 

details on simulating enzymatic circuits with OR and AND nodes. 

 

Figure 2. Enumeration of 1-, 2-, and 3-node networks finds 25 minimal kinetic 

filtering circuits. (A) Distribution of temporal ultrasensitivity scores across all 

topologies and parameter sets. A stringent cutoff of temporal ultrasensitivity score ≥ 0.5 

identifies circuits capable of kinetic filtering. See Figure S2A for distribution of trigger 

times among circuits with temporal ultrasensitivity score ≥ 0.5. (B) Out of 68,705 total 
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topologies, 25% have robustness above a low cutoff of 0.001(at least 10/10,000 

parameter sets satisfy temporal ultrasensitivity score ≥ 0.5 and trigger time ≥ 1s) and 1% 

have robustness above a high cutoff of 0.08 (at least 800/10,000 parameter sets satisfy 

temporal ultrasensitivity score ≥ 0.5 and trigger time ≥ 1s). (C) Number of topologies, 

kinetic filters with robustness ≥ 0.001, and minimal kinetic filters in 1-, 2-, and 3-node 

networks. Minimal kinetic filtering topologies are topologies with robustness ≥ 0.001 

where removal of any link decreases robustness below 0.001 (Figure S2B). Two 2-node 

minimal kinetic filters are topologically identical to 1-node minimal kinetic filters with 

regulatory node B taking the place of the basal regulator. 

 

Figure 3. Minimal kinetic filters of 1, 2, and 3 nodes phenotypically cluster into five 

groups. (A) Metrics used to cluster minimal kinetic filters by phenotypic features. For 

metrics 2-5, a single input pulse of duration 50,000s was applied. Measurements of ON 

dynamics are relative to input ON time, and measurements of OFF dynamics are relative 

to input OFF time. OFF dynamics were not measured for circuits where max output = 

final output. Phenotypic metrics were measured for all parameter sets of minimal kinetic 

filters with temporal ultrasensitivity ≥ 0.5 and trigger time ≥ 1s (total of 2,896 parameter 

sets distributed across 25 topologies in Figure 2D). (B) Location of minimal kinetic filters 

in 3D space of first 3 principal components of 6 phenotypic metrics. See Figure S3 for 

singular values and composition of each principal component. Each sphere is centered at 

the mean principal component value observed over all kinetic filtering parameter sets of 

each minimal kinetic filtering architecture. Sphere size is proportional to radius capturing 

60% of observed phenotypes. (C) Minimal kinetic filters cluster into 5 phenotypic groups 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 15, 2017. ; https://doi.org/10.1101/100651doi: bioRxiv preprint 

https://doi.org/10.1101/100651


  34 

that each share structural features. Archetypal topologies (right column) are the simplest 

topology in each phenotypic group. 

Figure 4. Representative timecourses and preferred parameter regimes of five 

classes of kinetic filters. Each circuit is shown responding to input shorter than trigger 

time, just longer than trigger time, and far longer than trigger time. Distributions of 

parameter values used to identify preferred regimes are shown in Figure S4. See Table S1 

for parameter values used in example timecourses. 

 

Figure 5. All highly robust kinetic filters include Positive Feedback AND and/or 

Double Inhibition motifs. (A) Distribution of robustness across all 68,705 enumerated 

topologies. Topologies with low robustness have robustness between 0.001 and 0.08; 

high robustness topologies have robustness ≥ 0.08. (B) Among the 83 topologies with 

high robustness, all contain either the positive feedback AND or the double inhibition 

motif, and most contain both. A circuit was considered to contain a kinetic filtering motif 

if it contained at least one of the minimal motifs in Figure 3C as a circuit substructure. 

(C) Distribution of robustness across all topologies containing a minimal kinetic filtering 

motif. Each topology was tested for containing each minimal kinetic filtering topology. A 

topology was considered to contain a double inhibition motif if it contained at least one 

double inhibition minimal kinetic filter, and analogously for each of the other kinetic 

filtering classes. All topologies that do not contain motifs in any of the 5 classes have 

robustness < 0.001. 
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Figure 6. Turning off a deactivator more effectively buffers against partial 

activation by subthreshold length inputs. (A) Histogram of observed trigger times 

minimal kinetic filtering circuits. Parameter sets of minimal double inhibition topologies 

(#4, #21-24 in Figure 3C, total 798 parameter sets) and the coherent feed forward loop 

topology (#25 in Figure 3C, total 88 parameter sets) satisfying temporal ultrasensitivity 

score ≥ 0.5 and trigger time ≥ 1s were measured for trigger time.  (B) Steady state output 

changes at a more gradual pace with changing regulator concentration in double 

inhibition circuits compared to double activation circuits. In both circuits, we solved for 

steady state output node concentration as a function of [B] with KmBC = 0.5, kcatBC = 1, 

Km basal activator/deactivator = 0.5, kcat basal activator/deactivator = 1, concentration of 

basal act./deact. = 0.1. (C) Positive feedback AND circuits are better kinetic filters than 

positive feedback OR circuits because they require output to remain low until feedback 

activation rises. Activation rate consists of activation due to input and activation due to 

feedback, which are multiplied in AND circuits and summed in OR circuits. Shaded 

region delineates the zone between 5% and 95% output activation. (D) An archetypal 

architecture for each kinetic filtering motif was sampled for 50,000 parameter sets over 

the same range as the sampling used in the enumerative search (kcat 0.1 to 10, Km 0.001 to 

100, evenly in log space by Latin hypercube). Shown in each plot are the temporal 

ultrasensitivity score and trigger time for each parameter set of the archetypal topology 

that resulted in temporal ultrasensitivity score ≥ 0.3 and trigger time ≥ 10s (DI: 1328 

parameter sets; CFFL: 1078 parameter sets; PFBAND: 2135 parameter sets; PFBOR: 115 

parameter sets). 
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Figure 7. Natural examples of kinetic filters feature both core and combinatorlal 

kinetic filtering motifs. (A) Double inhibition, positive feedback AND and coherent 

feed forward loops form the core set of kinetic filtering motifs. (B) Growth factor 

response in PC-12 cells is governed by a kinetic filter with coherent feed forward AND 

architecture implemented through transcription and phosphorylation. (C) Cell cycle 

transitions are controlled by double inhibition and positive feedback AND architectures 

in both mammalian and yeast cells. T cell activation and pluripotent state exit in 

embryonic stem cells use a double inhibition / positive feedback AND circuit for kinetic 

filtering of short input signals. (D) Core kinetic filtering motifs can be combined to yield 

hybrid phenotypes.  

 

SUPPLEMENTAL INFORMATION 

Figure S1. Modeling enzymatic circuits with OR and AND logic. 

Figure S2. Characterizing kinetic filters. 

Figure S3. Composition and singular values of six principal components of phenotypic 

space. 

Figure S4. Preferred parameter regimes of minimal kinetic filtering circuits. 

Figure S5. Bistable inverters respond by priming, holding, and firing. 

Figure S6. Double inhibition and coherent feed forward kinetic filter mechanisms. 

Figure S7. Double inhibition circuits using an enzymatic/binding mechanism can still 

function as kinetic filters. 

Table S1. Parameters used for example timecourses in Figure 4. 
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Figure 2. Enumeration of 1-, 2-, and 3-node networks finds 25 minimal kinetic filtering circuits. (A) Distribution of temporal ultrasen-
sitivity scores across all topologies and parameter sets. A stringent cutoff of temporal ultrasensitivity score ≥ 0.5 identifies circuits capable 
of kinetic filtering. See Figure S2A for distribution of trigger times among circuits with temporal ultrasensitivity score ≥ 0.5. (B) Out of 
68,705 total topologies, 25% have robustness above a low cutoff of 0.001(at least 10/10,000 parameter sets satisfy temporal ultrasensitivi-
ty score ≥ 0.5 and trigger time ≥ 1s) and 1% have robustness above a high cutoff of 0.08 (at least 800/10,000 parameter sets satisfy 
temporal ultrasensitivity score ≥ 0.5 and trigger time ≥ 1s). (C) Number of topologies, kinetic filters with robustness ≥ 0.001, and minimal 
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Figure 3. Minimal kinetic filters of 1, 2, and 3 nodes phenotypically cluster into five groups. (A) Metrics used to cluster minimal 
kinetic filters by phenotypic features. For metrics 2-5, a single input pulse of duration 50,000s was applied. Measurements of ON dynamics 
are relative to input ON time, and measurements of OFF dynamics are relative to input OFF time. OFF dynamics were not measured for 
circuits where max output = final output. Phenotypic metrics were measured for all parameter sets of minimal kinetic filters with temporal 
ultrasensitivity ≥ 0.5 and trigger time ≥ 1s (total of 2,896 parameter sets distributed across 25 topologies in Figure 2D). (B) Location of 
minimal kinetic filters in 3D space of first 3 principal components of 6 phenotypic metrics. See Figure S3 for singular values and composi-
tion of each principal component. Each sphere is centered at the mean principal component value observed over all kinetic filtering parame-
ter sets of each minimal kinetic filtering architecture. Sphere size is proportional to radius capturing 60% of observed phenotypes. (C) 
Minimal kinetic filters cluster into 5 phenotypic groups that each share structural features. Archetypal topologies (right column) are the 
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Figure 5. All highly robust kinetic filters include Positive Feedback AND and/or Double Inhibition motifs. (A) Distribution of robustness 
across all 68,705 enumerated topologies. Topologies with low robustness have robustness between 0.001 and 0.08; high robustness topolo-
gies have robustness ≥ 0.08. (B) Among the 83 topologies with high robustness, all contain either the positive feedback AND or the double 
inhibition motif, and most contain both. A circuit was considered to contain a kinetic filtering motif if it contained at least one of the minimal 
motifs in Figure 3C as a circuit substructure. (C) Distribution of robustness across all topologies containing a minimal kinetic filtering motif. 
Each topology was tested for containing each minimal kinetic filtering topology. A topology was considered to contain a double inhibition motif 
if it contained at least one double inhibition minimal kinetic filter, and analogously for each of the other kinetic filtering classes. All topologies 
that do not contain motifs in any of the 5 classes have robustness < 0.001.
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Figure 6. Turning off a deactivator more effectively 
buffers against partial activation by subthreshold 
length inputs. (A) Histogram of observed trigger 
times minimal kinetic filtering circuits. Parameter sets 
of minimal double inhibition topologies (#4, #21-24 in 
Figure 3C, total 798 parameter sets) and the coherent 
feed forward loop topology (#25 in Figure 3C, total 88 
parameter sets) satisfying temporal ultrasensitivity 

score ≥ 0.5 and trigger time ≥ 1s were measured for trigger time.  (B) Steady state output changes at a more gradual pace with changing regulator 
concentration in double inhibition circuits compared to double activation circuits. In both circuits, we solved for steady state output node concentration 
as a function of [B] with KmBC = 0.5, kcatBC = 1, Km basal activator/deactivator = 0.5, kcat basal activator/deactivator = 1, concentration of basal 
act./deact. = 0.1. (C) Positive feedback AND circuits are better kinetic filters than positive feedback OR circuits because they require output to remain 
low until feedback activation rises. Activation rate consists of activation due to input and activation due to feedback, which are multiplied in AND circuits 
and summed in OR circuits. Shaded region delineates the zone between 5% and 95% output activation. (D) An archetypal architecture for each kinetic 
filtering motif was sampled for 50,000 parameter sets over the same range as the sampling used in the enumerative search (kcat 0.1 to 10, Km 0.001 to 
100, evenly in log space by Latin hypercube). Shown in each plot are the temporal ultrasensitivity score and trigger time for each parameter set of the 
archetypal topology that resulted in temporal ultrasensitivity score ≥ 0.3 and trigger time ≥ 10s (DI: 1328 parameter sets; CFFL: 1078 parameter sets; 
PFBAND: 2135 parameter sets; PFBOR: 115 parameter sets).
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Figure 7. Natural examples of kinetic filters feature both core and combinatorlal kinetic filtering motifs. (A) Double inhibition, positive feedback AND 
and coherent feed forward loops form the core set of kinetic filtering motifs. (B) Growth factor response in PC-12 cells is governed by a kinetic filter with 
coherent feed forward AND architecture implemented through transcription and phosphorylation. (C) Cell cycle transitions are controlled by double inhibition 
and positive feedback AND architectures in both mammalian and yeast cells. T cell activation and pluripotent state exit in embryonic stem cells use a double 
inhibition / positive feedback AND circuit for kinetic filtering of short input signals. (D) Core kinetic filtering motifs can be combined to yield hybrid phenotypes.
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F : constitutive enzyme concentration
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Figure S1. Modeling enzymatic circuits with OR and AND logic.
Reactions were modeled with total quasi-steady-state Michaelis-Menten kinetics (tQSS-MM). Nodes were converted 
between active and inactive states according to network linkages, where positive regulations catalyze activations and 
negative regulations catalyze deactivations. The total concentration of each node was held constant at 1, and only the 
active fraction of each node could catalyze other reactions. For nodes operating under OR logic, tQSS-MM expres-
sions for incoming links were added. For nodes operating under AND logic, tQSS-MM expressions for incoming links of 
the same sign were multiplied, and expressions for incoming links of opposite signs are added. 
Basal activators and deactivators were added as needed such that no node had only activators or only deactivators. 
Basal activators and deactivators had constant concentration of 0.1.
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Figure S2. Characterizing kinetic filters.
A. Distribution of trigger times among all parameter sets (from 68,705 topologies) with temporal ultrasen-
sitivity score ≥ 0.5. Parameter sets with trigger time < 1s were discarded to avoid circuits with trivially 
short trigger time.
B. Minimal kinetic filters were identified by removing each link from the set of topologies with robustness 
≥ 0.001 and testing whether link removal resulted in a circuit with robustness < 0.001. Minimal kinetic 
filters are those where removal of any single or combination of links results in decreasing robustness 
below 0.001.
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Singular value 29 26 22 16 15 7

Trigger time 0.169 -0.564 0.298 -0.433 -0.276 0.549

Long-term memory -0.938 -0.165 -0.082 0.117 0.025 0.268

ON timing -0.155 -0.546 0.340 -0.106 0.088 -0.737

ON steepness 0.242 -0.437 0.031 0.703 0.445 0.239

OFF timing -0.017 0.056 -0.067 -0.525 0.840 0.107

OFF steepness 0.093 -0.403 -0.885 -0.133 -0.109 -0.122

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6

Figure S3. Composition and singular values of six principal components of phenotypic space.
The square of the singular value reflects the amount of variation in phenotype explained by each principal compo-
nent. The composition of each principal component is given in terms of relative weight of each phenotypic metric 
(Figure 3A). Primary contributors to each principal component (magnitude of weight > 0.5) are bolded. Principal 
components were identified with the SciPy linalg.svd package over 2,896 measurements of the 6 phenotypic 
metrics.

Principal components

Phenotypic metrics
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Figure S4. Preferred parameter regimes of minimal kinetic filtering circuits.
An archetypal architecture for each kinetic filtering motif was sampled for 100,000 parameter sets over the same range as the 
sampling used in the enumerative search (kcat 0.1 to 10, Km 0.001 to 100, evenly in log space by Latin hypercube). Shown in 
each plot are the temporal ultrasensitivity score and trigger time for each parameter set of the archetypal topology that resulted 
in temporal ultrasensitivity score ≥ 0.5 and trigger time ≥ 1s (Coherent feed forward loop: 518 parameter sets; Positive 
feedback OR: 323 parameter sets; Positive feedback AND: 4391 parameter sets; Double inhibition: 907 parameter sets).
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Figure S5.  Bistable inverters respond by priming, holding, and firing. 
Upon input, bistable inverters begin a priming process during which node B begins to be inactivated. If input 
duration is shorter than the length of time needed for priming, i.e. the length of time needed to completely 
deactivate node B, the bistable inverter circuit does not fire. If input duration is longer than priming time, the 
circuit finishes priming and enters a holding phase during which output remains low. Once input has turned off, 
the circuit exits the holding phase and fires.
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Figure S6.  Double inhibition and coherent feed forward kinetic filter mechanisms.
A. Trigger time and temporal ultrasensitivity score can be simultaneously optimized in DI but not CFFL circuits. For both circuits, a 
parameter set satisfying temporal ultrasensitivity score ≥ 0.5 and trigger time ≥ 1s was used to plot timecourses. For the DI circuit, 
the concentration of the basal activator of the output node C, usually held at 0.1, is tuned from 0.1 to 0.8, and trigger time and 
temporal ultrasensitivity scores of each resulting circuit are measured and plotted against each other. For the CFFL circuit, concen-

tration of the basal deactivator of output node C, usually held at 0.1, is tuned from 0.1 to 1.0 and trigger times and temporal ultrasen-

sitivity scores of the resulting circuits are plotted against each other.

B. Activation and deactivation rates for DI and CFFL circuits (same parameter sets as in Figure 4E and 4A respectively). For the 
CFFL, activation terms of each node activating the output node are shown separately (tall dotted activation: fast arm; low dotted 
activation: slow arm); their product constitutes the overall activation term for output node C. Shaded region delineates the zone 
between 5% and 95% output activation.
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Figure S7. Double inhibition circuits using an enzymatic/binding mechanism can still function as kinetic filters.

A. The yeast G1/S transition is a double inhibition circuit with the first inhibition enzymatically regulated and the second 
inhibition regulated by binding interactions.
B. The Whi5 double inhibition system can be a kinetic filter. A double inhibition system was set up with enzymatic regula-
tion of input activating G1-Cdk, G1-Cdk inactivating Whi5, and constitutive activator of Whi5. Active Whi5 equilibrates 
instantly with unbound SBF to form Whi5-SBF complex. Output measures the amount of unbound SBF. Parameters were 
sampled evenly in log space using Latin hypercube over the ranges 0.1 to 10 for kcats, 0.001 to 100 for Kms, and 0.001 to 
100 for Kd of Whi5-SBF binding. Parameter restrictions required for kinetic filtering behavior are shown as saturated 
regime for Whi5 phosphorylation, linear regime for Whi5 dephosphorylation, and tight binding for the Whi5-SBF interac-
tion. 
C. A representative timecourse is shown here with its temporal dose response curve. Like fully enzymatic double inhibition 
kinetic filters, the enzymatic/binding double inhibition circuit can also be simultaneously optimized for long trigger time and 
steep temporal dose response.
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Table S1: Parameters used for example timecourses in Figure 4. 
 
Circuit Link kcat Km 
Coherent feed 
forward loop (AND) 

Input 1.67109 9.98849 
AB 0.196426 4.98884 
AC 4.75554 0.149796 
BC 2.90402 0.0959401 
A deactivator 0.180053 0.724436 
B deactivator 1.05779 4.43098 
C deactivator 1.61287 0.0110917 

Positive feedback OR Input 2.09411 3.37287 
AA 1.5531 0.06026 
A deactivator 3.24638 0.0415 

Bistable inverter Input 0.565458 0.00248599 
AB 3.85301 15.1705 
AC 0.125314 0.00300608 
BA 1.28529 0.0295801 
BB 0.153957 0.296483 
A deactivator 0.298813 0.168461 
C activator 2.47172 86.3973 

Positive feedback 
AND 

Input 4.33112 0.14962 
AA 0.94493 0.06173 
A deactivator 0.10195 12.7057 

Double inhibition Input 1.71791 25.704 
AB 1.03134 0.00245471 
BC 4.96821 0.00389493 
A deactivator 0.493856 0.0989692 
B activator 0.29964 2.43781 
C activator 7.67361 0.21208 
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