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Abstract	

Genomic	loci	with	regulatory	potential	can	be	identified	and	annotated	with	various	

labels.	 For	 example,	 sites	 may	 be	 annotated	 as	 being	 bound	 or	 unbound	 by	 a	

transcription	factor	(TF)	under	particular	cellular	conditions,	or	as	being	proximal	

or	 distal	 to	 known	 transcription	 start	 sites.	 Given	 such	 a	 collection	 of	 labeled	

genomic	sites,	 it	 is	natural	to	ask	what	sequence	features	are	associated	with	each	

annotation	label.	However,	discovering	such	label-specific	sequence	features	is	often	

confounded	 by	 uneven	 overlaps	 between	 annotation	 labels.	 In	 order	 to	meet	 this	

challenge,	 we	 developed	 SeqUnwinder,	 a	 principled	 approach	 to	 deconvolving	

interpretable	 discriminative	 sequence	 features	 associated	 with	 overlapping	

annotation	labels.	We	demonstrate	the	novel	analysis	abilities	of	SeqUnwinder	using	

three	 examples.	 Firstly,	 we	 show	 SeqUnwinder’s	 ability	 to	 unravel	 sequence	

features	associated	with	the	dynamic	binding	behavior	of	TFs	during	motor	neuron	

programming	from	features	associated	with	chromatin	state	in	the	initial	embryonic	

stem	 cells.	 Secondly,	 we	 demonstrate	 that	 multi-condition	 TF	 binding	 sites	 are	

typically	 characterized	 by	 better	 quality	 instances	 of	 the	 TF’s	 cognate	 binding	

motifs.	 Finally,	 we	 demonstrate	 the	 scalability	 of	 SeqUnwinder	 to	 discover	 cell-

specific	 sequence	 features	 from	 over	 one	 hundred	 thousand	 genomic	 loci	 that	

display	DNase	I	hypersensitivity	in	one	or	more	ENCODE	cell	lines.	

	

Availability:		https://github.com/seqcode/sequnwinder	
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Introduction	

Regulatory	genomics	analyses	often	 focus	on	 finding	 sequence	 features	associated	

with	genomic	sites	 that	share	some	property	or	annotation	“label”.	Such	problems	

are	 typically	 phrased	 in	 terms	 of	 a	 two-class	 classification.	 For	 example,	 we	may	

wish	to	find	sequence	features	that	discriminate	between	sites	bound	by	a	particular	

transcription	 factor	 (TF)	 and	 unbound	 sites,	 or	 between	 sites	 that	 are	 associated	

with	gene	activation	and	repression.	With	the	increased	availability	of	genome-wide	

epigenomic	 datasets	 such	 as	 those	 generated	 by	 the	 ENCODE	 and	 ROADMAP	

projects	(ENCODE	Project	Consortium,	2012;	Roadmap	Epigenomics	Consortium	et	

al,	2015),	it	is	now	possible	to	provide	a	more	detailed	annotation	of	regulatory	sites	

beyond	binary	 labels	such	as	 “bound”	and	“unbound”.	For	example,	a	TF’s	binding	

sites	maybe	sub-categorized	according	to	which	cell	types	or	conditions	it	is	bound	

in,	or	according	to	whether	those	sites	display	coincident	ChIP-enrichment	of	other	

proteins	 or	 histone	modifications.	 Genome	 segmentation	methods	 (Ernst	&	Kellis,	

2012;	Hoffman	et	al,	2012;	Zhang	et	al,	2016)	provide	an	automated	annotation	of	

promoters,	enhancers,	and	various	other	chromatin	states	that	can	also	be	overlaid	

on	 a	 TF’s	 binding	 sites.	 As	 regulatory	 region	 annotations	 become	more	 complex,	

there	is	a	growing	need	for	computational	methods	that	can	find	sequence	features	

specific	to	each	of	several	regulatory	region	subtypes.		

Several	 classification	 methods	 have	 been	 used	 to	 characterize	 discriminative	

sequence	 features	 in	 two-class	 scenarios	 (Bailey,	 2011;	 Alipanahi	 et	 al,	 2015),	

including	 support	 vector	 machines	 (SVM)	 with	 various	 k-mer	 based	 sequence	

kernels	 (Arvey	 et	al,	 2012;	 Ghandi	 et	al,	 2014;	 Lee	 et	al,	 2011)	 and	 convolutional	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2017. ; https://doi.org/10.1101/100511doi: bioRxiv preprint 

https://doi.org/10.1101/100511
http://creativecommons.org/licenses/by/4.0/


	 4	

neural	networks	(Alipanahi	et	al,	2015).		Some	current	methods	also	allow	a	limited	

analysis	of	datasets	where	annotation	labels	partially	overlap.	For	example,	(Arvey	

et	al,	 2012)	used	a	multi-task	SVM	classifier	 to	 learn	 cell-type	 specific	 and	 shared	

binding	 preferences	 of	 TF	 binding	 sites	 in	 two	 cell-types.	 SeqGL	 (Setty	 &	 Leslie,	

2015),	a	group	 lasso	based	 logistic	 regression	classifier,	also	 implements	a	similar	

multi-task	 framework.	 However,	 these	 approaches	 were	 designed	 for	 essentially	

two-class	classification	problems	where	the	multi-task	framework	enables	modeling	

of	the	“common”	task	in	addition	to	the	two	classes.		

No	existing	discriminative	feature	discovery	methods	expand	beyond	two-class	

problems	 to	 scenarios	 where	 a	 set	 of	 genomic	 sites	 contains	multiple	 annotation	

labels	with	arbitrary	rates	of	overlap	between	them.	In	cases	where	all	annotation	

labels	 are	mutually	 exclusive,	 the	 problem	 of	 determining	 label-specific	 sequence	

features	 could	be	 straightforwardly	 cast	 as	 a	multi-class	 classification	problem.	 In	

more	 general	 and	 realistic	 scenarios,	 however,	 we	 may	 wish	 to	 find	 sequence	

features	 associated	 with	 several	 types	 of	 annotation	 labels,	 each	 of	 which	 may	

overlap	and	possibly	confound	the	others.		

To	gain	insight	into	the	problems	faced	by	analysis	methods	in	the	general	multi-

label	problem,	 consider	 the	hypothetical	 scenario	presented	 in	Figure	1a,	where	a	

given	TF’s	binding	sites	have	been	labeled	as	being	bound	in	cell	types	A,	B,	or	C.	The	

sites	 are	 further	 characterized	 as	 being	 proximal	 or	 distal	 to	 TSSs	 (Pr	 and	 Di,	

respectively),	where	the	latter	labels	unevenly	overlap	the	cell	type	labels	(e.g.	let’s	

suppose	that	cell	type	A’s	sites	are	more	likely	to	be	promoter	proximal	than	sites	in	

other	 cell	 types).	 In	 such	 a	 scenario,	 simple	multi-class	 classification	 frameworks	
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will	be	limited	to	either	ignoring	certain	labels	or	characterizing	sequence	features	

associated	with	each	observed	subclass	 (i.e.	 a	particular	combination	of	 labels).	 In	

either	 case,	 it	may	 not	 be	 possible	 to	 unambiguously	 assign	 discovered	 sequence	

features	 to	 specific	 annotation	 labels;	 continuing	 the	 Figure	 1a	 example,	 features	

discovered	 to	 be	 enriched	 in	 cell	 type	 A	 sites	may	 actually	 be	 due	 to	 the	 distinct	

properties	 of	 promoter	 proximal	 sites.	 We	 therefore	 require	 a	 structured	

classification	 framework	 that	 can	 deconvolve	 sequence	 features	 associated	 with	

overlapping	annotation	labels.	

In	 this	 work,	 we	 present	 SeqUnwinder,	 a	 novel	 classification	 framework	 for	

characterizing	 interpretable	sequence	 features	associated	with	overlapping	sets	of	

genomic	annotation	labels.	SeqUnwinder	begins	by	defining	genomic	site	subclasses	

based	on	 the	 combinations	of	 labels	 annotated	at	 these	 sites	 (Figure	1b).	The	 site	

subclasses	are	 treated	as	distinct	classes	 for	a	multiclass	 logistic	regression	model	

that	uses	k-mer	frequencies	in	a	fixed	window	around	sites	as	predictors.	However,	

SeqUnwinder	also	models	each	individual	label’s	specific	features	by	incorporating	

them	 in	 an	 L1	 regularization	 term	 (see	 Methods).	 Regularization	 encourages	

consistent	features	to	be	shared	across	subclasses	that	are	spanned	by	a	label,	thus	

implicitly	 enabling	 label-specific	 features	 to	 be	 learned	 (Figure	 1b).	 The	 trained	

classifier	 encapsulates	 weighted	 k-mer	 models	 specific	 to	 each	 label	 and	 each	

subclass	(i.e.	combination	of	 labels).	The	 label-	or	subclass-specific	k-mer	model	 is	

scanned	 across	 the	 original	 genomic	 sites	 to	 identify	 focused	 regions	 (which	 we	

term	“hills”)	that	contain	discriminative	sequence	signals	(Figure	1c).	Finally,	to	aid	
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interpretability,	 SeqUnwinder	 identifies	 over-represented	 motifs	 in	 the	 hills	 and	

scores	them	using	label-	and	subclass-specific	k-mer	models	(Figure	1d).		

We	 demonstrate	 the	 unique	 abilities	 of	 SeqUnwinder	 using	 both	 synthetic	

sequence	datasets	and	collections	of	real	TF	ChIP-seq	and	DNase-seq	experiments.	

In	the	real	datasets,	we	begin	with	a	motivating	example	that	analyzes	transcription	

factor	binding	during	 the	programming	of	embryonic	 stem	(ES)	 cells	 into	 induced	

motor	neurons	(iMNs)	(Mazzoni	et	al,	2013;	Velasco	et	al,	2016).	In	this	example,	we	

categorize	 the	 TF	 binding	 sites	 according	 to	 dynamic	 binding	 behaviors	 observed	

during	 the	 programming	 process.	 These	 binding	 site	 categories	 are	 further	

(unevenly)	 split	 into	 subclasses	 according	 to	 whether	 they	 are	 in	 an	

accessible/active	 chromatin	 state	 in	 the	 initial	 ES	 cells.	 We	 demonstrate	 that	

SeqUnwinder	can	deconvolve	sequence	 features	associated	with	binding	dynamics	

from	 those	 associated	 with	 initial	 chromatin	 state,	 thereby	 providing	 testable	

hypotheses	about	the	binding	mechanisms	driving	each	annotation	label.		

In	 two	 further	 examples	 using	 real	 epigenomic	 datasets,	 we	 characterize	

sequence	 features	 associated	 with	 genomic	 locations	 that	 display	 regulatory	

properties	 across	 multiple	 cell	 types.	 Sites	 that	 are	 bound	 by	 a	 particular	 TF	 in	

multiple	cell	 types	(i.e.	 “shared”	or	multi-condition	sites)	are	often	strongly	biased	

towards	being	located	in	gene	promoter	regions,	in	contrast	to	cell-specific	binding	

sites,	 which	 are	 typically	 distally	 located.	 After	 controlling	 for	 such	 biases	 by	

incorporating	labels	that	annotate	proximal	and	distal	sites,	SeqUnwinder	discovers	

that	shared	TF	binding	sites	are	characterized	by	stronger	instances	of	the	cognate	

binding	 motif	 than	 cell-specific	 sites.	 In	 our	 final	 example,	 we	 demonstrate	 that	
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SeqUnwinder	 scales	 very	 well	 to	 analyses	 of	 over	 one	 hundred	 thousand	 sites	

annotated	 with	 dozens	 of	 label	 combinations.	 To	 show	 this,	 we	 characterize	 the	

sequence	features	at	shared	and	cell-type	specific	DNase	I	hypersensitive	sites	in	six	

different	ENCODE	cell	 lines.	 Interestingly,	we	find	that	motifs	enriched	 in	cell-type	

specific	DNase	I	hypersensitive	sites	are	also	highly	enriched	at	cell-type	specific	TF	

binding	sites	for	a	majority	of	the	examined	TFs.		

	

Results	

SeqUnwinder	deconvolves	sequence	features	associated	with	overlapping	labels	

To	 demonstrate	 the	 properties	 of	 SeqUnwinder,	 we	 simulated	 9,000	 regulatory	

regions	and	annotated	each	of	them	with	 labels	 from	two	overlapping	sets:	A,	B,	C	

and	X,	Y	(Figure	2a).	We	assigned	a	motif	 to	each	 label	and	 inserted	sequences	by	

sampling	from	the	distributions	defined	by	the	position-specific	scoring	matrices	of	

label	 assigned	 motifs	 (Figure	 2a).	 When	 run	 on	 this	 collection	 of	 sequences	 and	

given	knowledge	of	 the	 label	assignments,	SeqUnwinder	correctly	 identifies	motifs	

similar	 to	all	 inserted	motifs	 (Figure	2b).	SeqUnwinder	also	correctly	assigns	each	

motif	to	its	respective	annotation	label	with	high	weight.	Further,	the	label-specific	

scores	of	 the	 identified	motifs	are	not	 confounded	by	overlap	between	annotation	

labels.	 For	 example,	 even	 though	 labels	 X	 and	 A	 highly	 overlap,	 SeqUnwinder	

correctly	assigns	each	motif	to	its	respective	label.		

Next,	 we	 assessed	 the	 performance	 of	 SeqUnwinder	 over	 other	 methods	 at	

different	 levels	of	 label	 overlaps.	We	 simulated	100	datasets	with	6000	 simulated	

sequences	and	varying	the	degree	of	overlap	between	two	sets	of	labels:	A,	B	and	X,	
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Y	 from	 50%	 to	 99%	 (Figure	 2c).	We	 then	 compared	 SeqUnwinder	with	 a	 simple	

multi-class	classification	approach	(MCC)	where	each	label	was	treated	in	isolation.	

In	MCC	training,	therefore,	each	regulatory	site	is	included	in	two	separate	training	

sets	 in	accordance	with	its	annotated	labels.	We	also	compared	SeqUnwinder	with	

DREME	(Bailey,	2011),	a	popular	discriminative	motif	discovery	tool.	Since	DREME	

takes	only	two	classes	as	input:	a	foreground	set	and	a	background	set,	we	ran	four	

different	 DREME	 runs	 for	 each	 of	 the	 four	 labels.	We	 calculated	 the	 true	 positive	

(discovered	motif	correctly	assigned	to	a	label)	and	false	positive	(discovered	motif	

incorrectly	 assigned	 to	 a	 label)	 rates	 based	 on	 the	 true	 (simulated)	 label	

assignments	(Figure	1e	and	1f).	We	used	these	measures	 to	calculate	 the	F1	score	

(harmonic	mean	of	precision	and	recall)	at	different	overlapping	levels	(Figure	2d).		

Figure	2d	demonstrates	the	range	of	 label	overlap	rates	in	which	SeqUnwinder	

outperforms	the	alternative	approaches.	When	the	labels	are	uncorrelated	(i.e.	low	

or	 random	 overlap),	 the	 sequence	 features	 associated	 with	 each	 label	 do	 not	

confound	one	another	and	thus	all	methods	perform	similarly	well	in	characterizing	

label-specific	motifs.	On	 the	other	hand,	when	 the	 labels	are	highly	correlated	(i.e.	

high	overlap),	 it	 becomes	 impossible	 for	 any	method	 to	 correctly	 assign	 sequence	

features	 to	 the	 correct	 labels.	 However,	 SeqUnwinder	 performs	 better	 than	 the	

other	 approaches	 in	 the	 intermediate	 range	 of	 label	 overlaps,	 and	 accurately	

characterizes	 label-specific	 sequence	 features	 even	 when	 the	 simulated	 labels	

overlap	 at	 90%	 of	 sites.	 More	 specifically,	 SeqUnwinder	 consistently	 has	 a	 false	

positive	rate	(incorrectly	assigning	motifs	to	labels)	of	zero	at	the	cost	of	a	modest	
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decrease	in	true	positive	rates	(recovering	all	motifs	assigned	to	a	label)	(Figure	2e	

and	2f)	

Taken	together,	 the	synthetic	data	experiments	demonstrate	that	SeqUnwinder	

provides	the	ability	to	discover	sequence	features	associated	with	overlapping	sets	

of	genomic	site	labels.		

	

SeqUnwinder	 uncovers	 co-factor	 driven	 TF	 binding	 dynamics	 during	 iMN	

programming	

To	demonstrate	its	unique	abilities	in	a	real	analysis	problem,	we	use	SeqUnwinder	

to	 study	 TF	 binding	 during	 induced	 motor	 neuron	 (iMN)	 programming.	 Ectopic	

expression	of	Ngn2,	Isl1,	and	Lhx3	in	mouse	ES	cells	efficiently	converts	the	resident	

ES	 cells	 into	 functional	 spinal	motor	 neurons	 (Mazzoni	 et	 al,	 2013;	 Velasco	 et	 al,	

2016).	We	 recently	 characterized	 the	dynamics	of	motor	neuron	programming	by	

studying	TF	binding,	 chromatin	dynamics,	 and	gene	expression	over	 the	course	of	

the	 48hr	 programming	 process	 (Velasco	 et	 al,	 2016).	 We	 found	 that	 two	 of	 the	

ectopically	 expressed	TFs,	 Isl1	&	Lhx3,	 bind	 together	 at	 the	 vast	majority	 of	 their	

targets	during	the	programming	process.	We	also	found	that	this	cooperative	pair	of	

TFs	 shifted	 their	 binding	 targets	 during	 programming.	 We	 therefore	 used	 three	

mutually	exclusive	 labels	–	early,	 shared,	and	 late	–	 to	annotate	 Isl1/Lhx3	binding	

sites	 according	 to	 their	 observed	 dynamic	 occupancy	 patterns.	 Early	 sites	 were	

bound	by	 Isl1/Lhx3	only	during	 earlier	 stages	of	programming,	 shared	 sites	were	

constantly	bound	over	the	entire	48h	programming	process,	and	late	sites	were	only	

bound	during	the	final	stage	of	programming.	
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In	 our	 previous	work,	we	 used	 standard	de	novo	motif	 finders	 to	 characterize	

sequence	 features	 associated	 with	 each	 of	 the	 three	 dynamic	 binding	 categories	

(Velasco	 et	 al,	 2016).	We	 discovered	motifs	 similar	 to	 the	 binding	 preferences	 of	

Oct4	and	Zfp281	at	early	sites,	while	Onecut	TF	family	motifs	were	enriched	at	late	

sites.	 However,	 it	 is	 possible	 that	 these	 sequence	 features	 are	 not	 specifically	

associated	with	binding	dynamics,	but	rather	reflect	on	coincident	properties	of	the	

underlying	genomic	sites.	For	example,	Oct4	and	Zfp281	are	both	known	regulators	

of	 pluripotency	 (Nichols	 et	 al,	 1998;	 Pesce	 &	 Schöler,	 2000;	 Wang	 et	 al,	 2008;	

Fidalgo	 et	 al,	 2011);	 the	 presence	 of	 related	 motifs	 at	 early	 Isl1/Lhx3	 sites	 may	

merely	 be	 a	 secondary	 effect	 of	 a	 strong	 overlap	 between	 early-bound	 sites	 and	

regulatory	regions	that	are	active	in	ES	cells.		

In	 order	 to	 assess	 the	 potential	 confounding	 effects	 of	 ES	 regulatory	 sites,	we	

trained	 a	 random	 forest	 classifier	 to	 further	 categorize	 all	 Isl1/Lhx3	 bound	 sites	

using	 two	 additional	 labels:	 “ES-active	 and	 “ES-inactive”	 (see	 methods	 for	 more	

details).	 Annotating	 Isl1/Lhx3	 sites	 using	 both	 sets	 of	 labels	 (Isl1/Lhx3	 binding	

dynamics	and	ES	activity)	results	in	six	different	subclasses	(Figure	3a).	The	labels	

annotating	binding	dynamics	at	Isl1/Lhx3	sites	overlap	to	varying	degrees	with	the	

pre-existing	activity	status	of	these	sites	in	ES	cells.	As	can	be	seen	from	Figure	3a,	

early	sites	have	a	higher	propensity	to	also	be	active	prior	to	ectopic	TF	expression	

in	the	starting	ES	cells.	Conversely,	the	late	sites	were	more	likely	to	be	inactive	in	

ES	cells.		

Using	SeqUnwinder,	we	deconvolved	several	motif	features	associated	with	the	

various	 Isl1/Lhx3	 binding	 site	 labels	 (Figure	 3b).	 SeqUnwinder	 discovers	 motifs	
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similar	 to	 those	 bound	 by	 Oct4	 and	 Zfp281.	 As	 suspected,	 SeqUnwinder	 finds	 an	

association	 between	 the	 Zfp281	 motif	 and	 the	 ES-active	 label,	 while	 the	 Zfp281	

motif	is	not	associated	with	the	early	Isl1/Lhx3	binding	label.	Surprisingly,	the	Oct4	

motif	was	highly	associated	with	the	early	binding	label,	suggesting	that	Isl1/Lhx3	

cooperates	or	 competes	with	Oct4	binding	at	 the	early	binding	 targets.	To	 further	

test	 the	 association	 between	 Oct4	 sites	 and	 early	 Isl1/Lhx3	 binding	 activity,	 we	

profiled	the	binding	of	Oct4	in	ES	cells	and	at	12	hours	after	NIL	induction.	As	shown	

in	Figure	3c,	Oct4	shows	a	preferential	enrichment	at	early	 Isl1/Lhx3	sites,	 in	 line	

with	 SeqUnwinder’s	 prediction.	 Therefore,	 by	 carefully	 labeling	 the	 sites	 with	

multiple	sets	of	relevant	annotations	and	using	SeqUnwinder,	we	can	assign	Oct4	as	

a	feature	of	early	Isl1/Lhx3	binding	sites	and	Zpf281	as	a	feature	of	ES-active	sites.	

SeqUnwinder	 also	 identifies	 a	 motif	 similar	 to	 that	 bound	 by	 the	 Onecut	 TF	

family	as	being	highly	associated	with	late	binding	but	not	with	ES-inactive	sites.	As	

previously	described	 in	our	 earlier	work,	we	 characterized	Onecut2	binding	 to	be	

highly	 enriched	 at	 late	 Isl1/Lhx3	 sites	 during	 iMN	 programming	 (Velasco	 et	 al,	

2016)	 (Figure	 3c).	We	 also	 found	 that	 late	 sites	 are	 not	 bound	by	 Isl1/Lhx3	 (and	

iMN	programming	does	not	proceed)	in	cellular	conditions	under	which	Onecut	TFs	

are	not	expressed	(Velasco	et	al,	2016),	supporting	a	model	in	which	late	Isl1/Lhx3	

binding	is	dependent	on	Onecut	TFs.		

Our	 analysis	 of	 Isl1/Lhx3	 binding	 during	 iMN	 programming	 serves	 as	 an	

example	analysis	scenario	 in	which	we	are	trying	to	 find	motif	 features	associated	

with	 multiple	 overlapping	 annotation	 labels.	 As	 demonstrated,	 SeqUnwinder	

identifies	 motif	 features	 associated	 with	 the	 various	 labels,	 which	 can	 lead	 to	
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testable	 hypotheses	 about	 co-factors	 that	 serve	 mechanistic	 roles	 at	 subsets	 of	

binding	sites.	 Interestingly,	the	motif	 features	that	are	most	highly	associated	with	

shared	 binding	 sites	 all	 correspond	 to	 homeobox	 motifs	 of	 the	 type	 bound	 by	

Isl1/Lhx3.	 One	 possible	 explanation	 is	 that	 there	 are	 stronger	 or	 more	 frequent	

cognate	motif	instances	at	sites	bound	by	a	given	TF	across	multiple	timepoints,	or	

indeed	across	multiple	unrelated	cell	types.	We	further	assess	this	hypothesis	in	the	

following	section.		

	

Multi-condition	TF	binding	sites	are	characterized	by	stronger	cognate	motif	instances	

To	demonstrate	the	general	applicability	of	SeqUnwinder	to	a	broader	range	of	TFs,	

we	 set	 out	 to	 characterize	 the	 sequence	 properties	 of	 sites	 that	 are	 bound	 by	

particular	TFs	across	multiple	conditions.	The	sequence	properties	of	tissue-specific	

TF	binding	sites	have	been	extensively	studied	(Heinz	et	al,	2010;	Arvey	et	al,	2012;	

Setty	&	Leslie,	2015).	As	might	be	expected,	 sites	 that	are	bound	by	a	given	TF	 in	

only	one	cell	 type	are	often	enriched	for	motifs	of	other	TFs	expressed	 in	that	cell	

type.	 Therefore,	 a	 given	 TF’s	 cell-specific	 binding	 activity	 is	 likely	 determined	 by	

context-specific	interactions	with	other	expressed	regulators.		

Most	TFs	also	display	 cell-invariant	binding	activities.	 In	other	words,	 each	TF	

typically	has	a	cohort	of	sites	that	appear	bound	in	all	or	most	cellular	conditions	in	

which	that	TF	is	active.	Despite	the	potential	regulatory	significance	of	such	multi-

condition	binding	sites,	little	is	known	about	the	sequence	properties	that	enable	a	

TF	to	bind	them	regardless	of	cellular	conditions.	Studies	of	individual	TFs	suggest	

that	 binding	 affinity	 to	 cognate	motif	 instances	may	 play	 a	 role	 in	 distinguishing	
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multi-condition	binding	sites	from	tissue-specific	sites	(Gertz	et	al,	2013;	Mahony	et	

al,	2014).		

In	 order	 to	 characterize	 sequence	 discriminants	 of	multi-condition	 TF	 binding	

sites	across	a	wider	range	of	TFs,	we	curated	multi-condition	ChIP-seq	experiments	

from	 the	 ENCODE	 project.	We	 restricted	 our	 analysis	 to	 the	 16	 sequence-specific	

TFs	 profiled	 in	 all	 3	 primary	 ENCODE	 cell-lines	 (K562,	 GM12878,	 and	 H1-hESC).	

Using	 MultiGPS	 (Mahony	 et	 al,	 2014)	 on	 each	 TF’s	 multi-condition	 dataset,	 we	

carefully	curated	sets	of	 tissue-specific	sites	 for	each	cell	 type,	and	a	 further	set	of	

sites	that	are	“shared”	across	all	three	cell	types	(see	Methods).	For	most	examined	

TFs,	the	majority	of	shared	binding	sites	were	located	in	promoter	proximal	regions	

(Figure	 S1).	 Promoter	 proximal	 sites	 are	 known	 to	 have	 distinct	 sequence	 biases,	

which	 could	 confound	 the	 discovery	 of	 sequence	 features	 associated	with	 shared	

sites.	We	therefore	further	labeled	each	TF’s	binding	sites	as	being	located	proximal	

or	 distal	 to	 annotated	 TSSs.	 In	 summary,	 each	 examined	 TF’s	 binding	 sites	 is	

categorized	 into	 8	 subclasses,	 each	 of	 which	 is	 composed	 of	 combinations	 of	 6	

distinct	labels	(Figure	4a).		

We	 applied	 SeqUnwinder	 to	 each	 labeled	 sequence	 collection	 in	 order	 to	

characterize	label-specific	sequence	features.	We	provide	a	detailed	explanation	for	

NRSF	 (REST),	 one	 of	 the	 examined	 TFs.	 Using	 MultiGPS,	 we	 identified	 a	 total	 of	

~14,000	stringent	binding	events	in	NRSF	ChIP-Seq	datasets,	which	we	categorized	

into	 the	 aforementioned	 subclasses	 (Figure	 S2a).	 Running	 SeqUnwinder	 on	 this	

collection	of	NRSF	binding	events,	we	identified	several	de	novo	motifs	(Figure	S2b).	

Interestingly,	a	de	novo	motif	matching	to	the	cognate	NRSF	motif	had	a	high	shared	
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(multi-condition)	 label-specific	 score.	 The	 cell-type	 specific,	 proximal	 and	 distal	

labels	 had	 low	 or	 negative	 scores	 for	 this	 cognate	 motif.	 Note	 here	 that	 a	 non-

positive	label-specific	score	for	a	motif	does	not	necessarily	imply	complete	absence	

of	that	motif.	A	significant	depletion	of	motif	instances	at	sites	annotated	by	a	label	

compared	 to	 other	 labels	 can	 very	 likely	 result	 in	 non-positive	 scores.	 Cell-type	

specific	sites	had	higher	scores	 for	co-factor	motifs.	For	example,	H1-hESC	specific	

sites	were	enriched	 for	TEAD-like	motif	and	K562-specific	 sites	were	enriched	 for	

GATA-like	 motif.	 In	 fact,	 GATA2	 ChIP-Seq	 reads	 in	 K562	 showed	 a	 striking	

enrichment	at	K562-specific	NRSF	binding	sites	(Figure	S2a).			

Similar	 results	were	observed	 for	many	of	 the	examined	 factors.	 SeqUnwinder	

discovers	motifs	that	match	the	TF’s	known	cognate	binding	preference	in	13	of	16	

datasets.	These	cognate	motifs	are	found	to	be	highly	associated	with	shared	(multi-

condition)	 sites	 for	 11	 of	 the	 16	 examined	 TFs	 (Figure	 4b).	 Despite	 significant	

overlaps	between	shared	sites	and	promoter	proximal	sites	(Figure	S1),	the	cognate	

motifs	were	not	 found	 to	 be	predictive	 of	 proximal	 sites	 (Figure	4b).	 Further,	 the	

primary	motif	was	not	 specifically	predictive	of	 cell-type	 specific	binding	 sites	 for	

any	of	the	examined	TFs.		

Next	we	assessed	if	high	SeqUnwinder	scores	at	multi-conditionally	bound	sites	

correspond	 to	 better	 quality	 and	 higher	 frequency	motif	 instances.	 To	 do	 this	we	

scanned	the	de	novo	 identified	cognate	motifs	and	calculated	peak-rate	(fraction	of	

peaks	 that	 have	 significant	motif	match)	 and	 hit-rate	 (total	 number	 of	 significant	

matches	normalized	by	number	of	peaks)	at	all	labels.		As	shown	in	Figures	S3a	and	

S3b,	higher	SeqUnwinder	scores	generally	translate	to	high	motif	hit	and	peak	rates	
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with	few	exceptions.	However,	for	TFs	USF1/2	and	MAX,	the	motif	peak-rates	were	

less	distinguishable	across	labels	(Figure	S3a)	while	the	SeqUnwinder	scores	of	the	

primary	 motif	 clearly	 indicate	 their	 high	 predictive	 power	 of	 the	 shared	 sites	

(Figure	4b).		Specifically,	for	USF1,	the	de	novo	cognate	motif	hit-rates	at	shared	and	

H1-hESC	 specific	 sites	 were	 both	 high	 at	 0.54	 and	 0.41,	 respectively	 (Figure	 4c).	

However,	 the	fraction	of	hits	 in	H1-hESC	that	had	a	central	“CG”	di-nucleotide	was	

much	 less	 than	 that	 at	 shared	 sites	 (Figure	 4c).	 Thus	 due	 to	 the	 position	

independent	nature	of	PWMs,	the	absence	of	the	preferred	“CG”	di-nucleotide	of	the	

de	novo	motif	was	not	translated	completely	 in	the	calculation	of	 the	motif	hit	and	

peak	rates.	By	 taking	 into	account	 these	higher	order	dependencies	using	a	k-mer	

model,	 SeqUnwinder	 identifies	 the	 “CG”-containing	 cognate	 motif	 as	 being	 highly	

predictive	of	shared	sites.		

We	 also	 examined	 co-factor	 motifs	 associated	 with	 cell-type	 specific	 binding	

labels.		Interestingly,	we	found	IRF	and	RUNX	motifs	enriched	at	GM12878-specific	

binding	sites	for	3	and	9	of	the	16	examined	TFs,	respectively.	Similarly,	the	GATA	

motif	was	predictive	of	K562-specific	binding	for	13	out	of	the	16	examined	TFs.	A	

TEAD-like	motif	was	predictive	of	H1-hESC	specific	sites	for	11	of	the	16	TFs	(Figure	

4d).			

In	summary,	our	analyses	demonstrate	the	applicability	of	SeqUnwinder	to	the	

increasingly	common	problem	of	characterizing	sequence	 features	associated	with	

cell-specific	 and	 cell-invariant	 TF	 binding.	 Uniquely,	 SeqUnwinder	 can	 implicitly	

account	 for	 location-dependent	 sequence	 composition	 biases	 by	 incorporating	

knowledge	of	extra	layers	of	annotations.	Our	results	further	support	the	model	that	
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high	 affinity	 cognate	 motif	 instances	 are	 a	 striking	 feature	 of	 multi-conditionally	

bound	sites	across	a	broad	range	of	TFs.	

	

SeqUnwinder	 identifies	 sequence	 features	 at	 shared	 and	 cell-specific	 DHS	 in	 six	

different	ENCODE	cell-lines	

Finally,	we	aim	 to	demonstrate	 the	utility	of	SeqUnwinder	 in	 identifying	sequence	

features	at	large	numbers	of	genomic	loci	annotated	with	several	labels.	To	do	this,	

we	annotated	a	large	collection	of	DNase	I	hypersensitive	(DHS)	sites	with	six	cell-

line	labels	depending	on	the	enrichment	of	DNase-seq	reads	(Figure	5a).	If	we	used	

analysis	 methods	 that	 rely	 on	 mutually	 exclusive	 categories,	 we	 would	 need	 to	

restrict	analysis	to	~97,000	sites	labeled	as	either	shared	or	exclusive	to	one	of	the	

six	 cell	 types	 (Shen	 et	 al,	 2012).	 Indeed,	 these	 strict	 category	 definitions	 may	

introduce	 sequence	 composition	 biases	 into	 each	 category.	 However,	 by	 taking	

advantage	 of	 SeqUnwinder’s	 unique	 framework	 to	 pool	 information	 from	 all	

subclasses,	we	can	analyze	~140,000	DHS	sites	that	we	annotate	into	22	subclasses	

as	shared	(i.e.	enriched	in	5	or	more	cell	types)	or	specific	to	one	or	two	cell	types	

(Figure	5a).	

SeqUnwinder	identifies	several	interesting	motifs	in	this	large	collection	of	DHS	

sites,	some	of	which	were	previously	associated	with	specific	cell-types	(Figure	5b).	

For	example,	different	parts	of	the	CTCF	motif	were	highly	predictive	of	shared	DHS	

sites.	 This	 result	 is	 consistent	 with	 previous	 finding	 suggesting	 largely	 invariant	

CTCF	binding	across	cellular	contexts	(Cuddapah	et	al,	2009;	Kim	et	al,	2007).	RUNX,	

IRF	and	NF-κB	motifs	were	enriched	at	GM12878	specific	DHS	sites.	These	motifs	
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were	also	discovered	by	SeqGL	at	GM12878	specific	DHS	sites	(Setty	&	Leslie,	2015).	

GATA	 motifs,	 key	 regulators	 of	 Erythroid	 development	 (Han	 et	 al,	 2016),	 were	

enriched	 at	K562	 specific	DHS	 sites.	 SNAI	 and	TEAD	motifs	were	 enriched	 at	H1-

hESC	sites.	TEAD	motifs	were	previously	shown	to	be	enriched	at	ES	specific	DHS	

sites	(Setty	&	Leslie,	2015),	while	SNAI	class	TFs	are	key	regulators	of	epithelial	to	

mesenchymal	transition	(Mistry	et	al,	2014).		JUND	and	FOS	motifs	were	enriched	at	

HeLa-S3-specific	 DHS	 sites.	 HNF4A	 and	 various	 FOX	 motifs,	 which	 are	 known	

master	 regulator	 of	 hepatocytes	 (Alder	 et	al,	 2014;	 DeLaForest	 et	al,	 2011),	were	

enriched	at	HepG2	specific	DHS	sites.	 	Finally,	motifs	belonging	to	the	ETS	class	of	

TFs	were	enriched	at	HUVEC	specific	DHS	sites	(Figure	5b).	ETS	factors	have	been	

shown	to	directly	convert	human	fibroblasts	to	endothelial	cells	(Morita	et	al,	2015).	

Interestingly,	 some	of	 the	motifs	 associated	with	 cell-type	 specific	DHS	 sites	were	

also	 found	 in	our	analyses	of	 cell-type	specific	TF	binding	sites	above	(Figure	4d).	

For	example,	IRF,	GATA,	and	TEAD	motifs	associated	with	GM12878,	K562,	and	H1-

hESC	specific	DHSs	were	also	predictive	of	cell-type	specific	binding	for	a	majority	of	

the	analyzed	TFs.				

These	results	demonstrate	that	SeqUnwinder	scales	effectively	in	characterizing	

sequence	features	at	thousands	of	regulatory	regions	annotated	by	several	different	

overlapping	labels.		

	

	

	

	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2017. ; https://doi.org/10.1101/100511doi: bioRxiv preprint 

https://doi.org/10.1101/100511
http://creativecommons.org/licenses/by/4.0/


	 18	

	

Discussion	

Classification	models	have	shown	great	potential	in	identifying	sequence	features	at	

defined	 genomic	 sites.	 For	 example	 (Lee	 et	al,	 2011),	 trained	 an	 SVM	 classifier	 to	

discriminate	putative	enhancers	from	random	sequences	using	an	unbiased	set	of	k-

mers	 as	predictors.	 The	 choice	 of	 kernel	 function	 is	 key	 to	 the	performance	of	 an	

SVM	 classifier.	 Several	 variants	 of	 the	 basic	 string	 kernel	 (e.g.	 mismatch	 kernel	

(Leslie	 &	 Kuang,	 2004),	 di-mismatch	 kernel	 (Arvey	 et	 al,	 2012),	 wild-card	 kernel	

(Leslie	&	Kuang,	2004;	Setty	&	Leslie,	2015),	and	gkm-kernel	(Ghandi	et	al,	2014))	

have	 been	 proposed	 and	 have	 been	 shown	 to	 substantially	 improve	 the	 classifier	

performance.	 Several	 complementary	 methods	 using	 DNA	 shape	 features	 in	 a	

classification	 framework	 have	 also	 provided	 insight	 on	 the	 role	 of	 subtle	 shape	

features	 that	 distinguish	 bound	 from	 unbound	 sites	 (Zhou	 et	al,	 2015;	 Chiu	 et	al,	

2016;	Mathelier	et	al,	 2016).	More	 recently,	 deep	 learning	models	 have	 also	 been	

harnessed	to	predict	TF	binding	sites	from	unbound	sites	(Alipanahi	et	al,	2015).	

In	this	manuscript,	we	focus	not	on	the	form	of	the	training	features,	but	rather	

on	the	tangential	problem	of	identifying	sequence	features	that	discriminate	several	

annotations	applied	to	a	set	of	genomic	locations.	Most	existing	methods	have	been	

developed	 and	 optimized	 to	 identify	 sequence	 features	 that	 discriminate	 between	

two	 classes	 (e.g.	 bound	 and	 unbound	 sites).	 However,	when	 considering	 different	

sets	 of	 genomic	 annotation	 labels,	 overlaps	between	 them	are	 very	 likely	 and	 can	

confound	 results.	 To	 systematically	 address	 this,	we	 developed	 SeqUnwinder.	We	

have	 shown	 that	 SeqUnwinder	 provides	 a	 unique	 ability	 to	 deconvolve	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2017. ; https://doi.org/10.1101/100511doi: bioRxiv preprint 

https://doi.org/10.1101/100511
http://creativecommons.org/licenses/by/4.0/


	 19	

discriminative	 sequence	 features	 at	 overlapping	 sets	 of	 labels.	 SeqUnwinder	

leverages	 overlaps	 between	 labels	 and	 identifies	 features	 that	 are	 consistently	

shared	across	subclasses	spanned	by	a	label.		SeqUnwinder	is	easy	to	use	and	takes	

as	input	a	list	of	genomic	coordinates	and	corresponding	annotations	and	identifies	

interpretable	sequence	features	that	are	enriched	at	a	given	label	or	at	combinations	

of	 labels	 (subclasses).	 SeqUnwinder	 implements	 a	 multi-threaded	 version	 of	 the	

ADMM	(Boyd	et	al,	 2011)	 framework	 to	 train	 the	model	and	 typically	 runs	 in	 less	

than	 few	 hours	 for	 most	 datasets.	 SeqUnwinder	 can	 also	 be	 easily	 extended	 to	

incorporate	different	kinds	of	kernels	and	shape	features.		

We	 demonstrated	 the	 unique	 analysis	 abilities	 of	 SeqUnwinder	 using	 three	

analysis	scenarios	based	on	real	ChIP-seq	and	DNase-seq	datasets.	Our	applications	

are	chosen	to	demonstrate	that	SeqUnwinder	has	the	ability	to	predict	the	identities	

of	 TFs	 responsible	 for	 particular	 regulatory	 site	 properties,	 while	 accounting	 for	

potential	sources	of	bias.		

For	 example,	 in	 our	 previous	 characterization	 of	 Isl1/Lhx3	 binding	 dynamics	

during	 motor	 neuron	 programming,	 we	 discovered	 motifs	 that	 were	 enriched	 at	

early	and	late	binding	site	subsets	(Velasco	et	al,	2016).	However,	our	analyses	were	

potentially	 confounded	 by	 a	 correlation	 between	 TF	 binding	 dynamics	 and	 the	

chromatin	properties	of	 the	sites	 in	the	pre-existing	ES	cells.	Therefore,	 the	motifs	

that	we	previously	assigned	to	early	or	 late	TF	binding	behaviors	could	have	been	

merely	 associated	 with	 ES-active	 and	 ES-inactive	 sites,	 respectively.	 By	 implicitly	

accounting	 for	 the	 effects	 of	 overlapping	 annotation	 labels,	 SeqUnwinder	 can	

deconvolve	 sequence	 features	 associated	 with	 motor	 neuron	 programming	
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dynamics	 and	 ES	 chromatin	 status.	 Our	 analyses	 support	 an	 association	 between	

Oct4	binding	and	early	Isl1/Lhx3	binding	sites,	along	with	our	previously	confirmed	

association	 between	 Onecut	 TFs	 and	 late	 Isl1/Lhx3	 binding	 sites	 (Velasco	 et	 al,	

2016).		

Our	 analyses	 of	 ENCODE	 ChIP-seq	 and	 DNase-seq	 datasets	 demonstrate	 the	

flexibility	 and	 scalability	 of	 SeqUnwinder.	 In	 analyzing	TF	binding	 across	multiple	

cell	 types,	we	used	SeqUnwinder	 to	account	 for	promoter	proximity	as	a	potential	

confounding	 feature.	Our	results	add	to	 the	growing	evidence	that	multi-condition	

TF	binding	sites	tend	to	be	distinguished	by	better	quality	instances	of	the	primary	

cognate	motif.	For	example,	Gertz	et	al.,	showed	that	ER	(estrogen	receptor)	binding	

sites	bound	in	both	ECC1	and	T4D7,	two	human	cancer	cell	 lines,	had	high	affinity	

instances	 of	 EREs	 (estrogen	 response	 elements)	 compared	 to	 cell-specific	 binding	

sites.	 Indeed,	 even	 the	 “shared”	 binding	 sites	 for	 Isl1/Lhx3	 in	 our	 first	

demonstration	 are	 characterized	 by	 stronger	 instances	 of	 the	 Isl1/Lhx3	 cognate	

binding	 motifs	 (Figure	 3b).	 These	 results	 suggest	 that	 many	 TFs	 have	 a	 set	 of	

binding	sites	that	are	bound	across	a	broad	range	of	cellular	contexts,	and	which	are	

characterized	by	better	quality	cognate	motif	instances.		

Interestingly,	SeqUnwinder	discovers	consistent	motif	 features	to	be	predictive	

of	 cell-specific	 binding	 sites	 across	 several	 examined	 TF	 ChIP-seq	 collections.	 For	

example,	SeqUnwinder	discovers	GATA,	 IRF	and	TEAD	motifs	at	K562-,	GM12878-	

and	 H1hESC-specific	 TF	 binding	 sites,	 respectively.	 These	 same	 motifs	 are	 also	

discovered	 by	 SeqUnwinder	 to	 be	 predictive	 of	 appropriate	 cell-specific	 DNase	 I	

hypersensitivity	 in	 a	 large	 collection	 of	 DHS	 sites	 across	 6	 different	 cell	 types.	
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SeqUnwinder’s	 characterization	 of	 cell-specific	 motif	 features	 in	 collections	 of	

DNase-seq	datasets	may	therefore	serve	as	a	source	of	predictive	features	for	efforts	

that	 aim	 to	 predict	 cell-specific	 TF	 binding	 from	 accessibility	 experimental	 data	

alone	(Pique-Regi	et	al,	2011;	Kähärä	&	Lähdesmäki,	2015;	Mathelier	et	al,	2016).		

In	summary,	SeqUnwinder	provides	a	flexible	framework	for	analyzing	sequence	

features	 in	 collections	 of	 related	 regulatory	 genomic	 experiments,	 and	 uniquely	

enables	 the	 principled	 discovery	 of	 sequence	 motifs	 associated	 with	 multiple	

overlapping	annotation	labels.	

	

Methods		

	SeqUnwinder	model	

The	 core	 of	 SeqUnwinder	 is	 a	 multiclass	 logistic	 regression	 classifier	 trained	 on	

subclasses	 of	 genomic	 sites.	 The	 predictive	 features	 for	 the	 classifier	 are	 k-mer	

frequencies	in	a	fixed	window	around	input	loci,	with	k	usually	ranging	from	4	to	6.	

The	parameters	of	SeqUnwinder	are	k-mer	weights	for	each	subclass	(combination	

of	annotation	labels).	In	addition,	SeqUnwinder	also	models	the	label-specific	k-mer	

weights	by	 incorporating	them	in	the	L1	regularization	term.	Briefly,	 label-specific	

k-mer	weights	are	encouraged	 to	be	similar	 to	k-mer	weights	 in	all	 subclasses	 the	

label	 spans	 by	 regularizing	 on	 the	 differences	 of	 k-mer	 weights.	 The	 overall	

objective	function	of	SeqUnwinder	is:	-	
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−  𝑏!𝑦!" log
!"# !!!!
!"# !!!!!∈!

+ 𝜆 𝑤! − 𝑤! !!∈Π !!∈!!∈!
!
!!! 	 	 (1)	

In	the	above	equation;	 	is	the	total	number	of	genomic	loci	in	all	subclasses,	 	is	

the	set	of	all	subclasses,	 is	the	weight	given	to	the	genomic	site	 ,	 	is	the	k-mer	

weight	vector	 for	subclass	 ,	 	is	a	vector	of	k-mer	counts	 for	the	genomic	site	 ,	

	is	 a	 binary	 indicator	 variable	 denoting	 the	 subclass	 of	 genomic	 site	 ,	𝜆	is	 the	

regularization	co-efficient,	 	is	the	set	of	all	labels	spanning	the	subclass	 ,	and	

	is	 the	k-mer	weight	 vector	 for	 label	 .	 Values	 for	 	are	 chosen	 to	 account	 for	

class	 imbalances.	Hence,	 the	value	of	 	for	a	genomic	site	 i	belonging	 to	class	n	 is	

defined	as	 𝑛!"# / 𝑛 ,	where	 𝑛 	denotes	the	number	of	genomic	sites	in	subclass	n	

and	 𝑛!"# 	denotes	 the	 number	 of	 genomic	 sites	 in	 the	 subclass	 with	 maximum	

sites.	

	

Training	the	SeqUnwinder	model	

The	 	and	 	update	 steps	 separate	 out	 and	 are	 iteratively	 updated	 until	

convergence.	 The	 	update	 step	 has	 a	 simple	 closed	 form	 solution	 given	 by	 the	

equation:	

 𝑤!! = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑐!! ;  𝑤ℎ𝑒𝑟𝑒  𝑐!! = 𝑤!!  | 𝑗 ∈  C(𝑝) 	

Where	𝑤!! 	is	the	kth	 term	of	the	label-p	weight	vector.	𝑐!! 	is	a	set	of	the	kth	 terms	of	

the	weight	vectors	of	all	the	subclasses	the	label	p	spans.		

	

	The	 	update	step	is:	-	

M T

bi i wn

n xi i

yin i

Π(n) n

wp p bi

bi

wn wp

wp

wn
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𝑤! = argmin
!!

− 𝑏!𝑦!"log
exp 𝑤!𝑥!
exp 𝑤!𝑥!!∈!!∈!

!

!!!

+ 𝜆 𝑤! − 𝑤! !
!∈Π(!)!∈!

 

	

The	 above	 equation	 is	 solved	 using	 the	 scaled	 alternating	 direction	 method	 of	

multipliers	 (ADMM)	 framework	 (Boyd	et	al,	 2011).	 Briefly,	 the	ADMM	 framework	

splits	 the	 above	 problem	 into	 2	 smaller	 sub-problems,	 which	 are	much	 easier	 to	

solve.	ADMM	introduces	an	additional	variable	𝑧!"	initialized	as	follows		

𝑧!" = 𝑤! − 𝑤!; 	

𝑤!	and	𝑧!"	are	iteratively	estimated	until	convergence	of	the	ADMM	algorithm.		

Sub-problem	1:		

𝑤!!!! = argmin
!!

− 𝑏!𝑦!"log
exp 𝑤!𝑥!
exp 𝑤!𝑥!!∈!!∈!

!

!!!

+
𝜌
2 𝑤! − 𝑧!"! − 𝑤! + 𝑢!"! !

!

!∈Π(!)!∈!

 

 

Where 𝑢!" is	 the	 scaled	dual	 variable.	 The	 above	 sub-problem	 is	 solved	using	 the	

LBFGS	 (limited-memory	 Broyden	 Fletcher	 Goldfarb	 Shanno)	 algorithm	 (Liu	 &	

Nocedal,	1989).		

	Sub-problem	2:	

𝑧!"!!! = argmin 
!!"

𝜆 𝑧!" !
+
𝜌
2 𝑤!!!! − 𝑧!" − 𝑤! + 𝑢!"! !

! 	

The	 solution	 to	 the	 above	 equation	 is	 given	 by	 the	 shrinkage	 function	 defined	 as	

follows:	-	
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𝑧!"!!! =  𝛿!!
!
𝑤!!!! + 𝑧!"! − 𝑤! + 𝑢!"! 	

 𝛿! 𝑎 =  
𝑎 − 𝑘,   𝑖𝑓 𝑎 > 𝑘
0,   𝑖𝑓 𝑎 ≤ 𝑘
𝑎 + 𝑘, 𝑖𝑓 𝑎 < −𝑘

	

	

The	update	step	for	the	scaled	dual	variable	𝑢!"	is:	-	

 𝑢!"!!! = 𝑢!"! + 𝑤!!!! − 𝑧!"!!! − 𝑤!	

𝑤!! ,	𝑧!"! ,	 and	𝑢!"! 	are	 iteratively	 estimated	 until	 convergence.	 The	 stopping	 criteria	

for	the	ADMM	algorithm	is:	

 𝜌 𝑧!" −  𝑧!"!"#
! < 𝜖!!" ∗ 𝐾 +  𝜖!"# ∗  𝜌 ∗ 𝑢!"

!	

and	

𝑤! − 𝑧!" − 𝑤!
! < 𝜖!"# ∗ 𝐾 + 𝜖!"# ∗max ( 𝑤! !, 𝑧!"

!, 𝑤!
!)	

Where		𝜖!"#and	𝜖!"# 	are	the	absolute	and	relative	tolerance,	respectively.		Of	note,	to	

speed	up	the	implementation	of	SeqUnwinder,	a	distributed	version	of	ADMM	was	

implemented.	 Intuitively,	 the	𝑤!!!! 	update	 step	 is	 distributed	 across	 multiple	

threads	by	spitting	 the	M	training	examples	 into	smaller	subsets.	The	𝑧!"!!!	and	 the	

 𝑢!"!!!	update	steps	act	as	pooling	steps	where	the	estimates	of	different	threads	are	

averaged.	 To	 further	 speed	 up	 convergence,	 a	 relaxed	 version	 of	 ADMM	 was	

implemented	 as	 described	 in	 (Boyd	 et	 al,	 2011).	 In	 the	 relaxed	 version,	𝑤!!!!	is	

replaced	 by	𝛼𝑤!!!! + (1− 𝛼)𝑧!"! 	for	 the	𝑧!"!!!	and	𝑢!"!!!	update	 steps,	 where	𝛼	is	 the	

over-relaxation	parameter	and	is	set	to	1.9	as	suggested	in	(Boyd	et	al,	2011).	

	

Converting	weighted	k-mer	models	into	interpretable	sequence	features	
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While	SeqUnwinder	models	label-specific	sequence	features	using	high-dimensional	

k-mer	weight	 vectors,	 it	 is	 often	 desirable	 to	 visualize	 these	 sequence	 features	 in	

terms	of	a	collection	of	interpretable	position-specific	scoring	matrices.	To	do	so,	we	

first	 scan	 the	k-mer	models	 learned	during	 the	 training	process	across	 fixed-sized	

sequence	 windows	 around	 the	 input	 genomic	 loci	 to	 identify	 local	 high-scoring	

regions.	 These	 label-specific	 high	 scoring	 regions	 are	 called	 “hills”.	 Label-specific	

hills	 are	 potentially	 enriched	 for	 sequence	 signals	 (e.g.	 TF	 binding	 motifs)	 that	

discriminate	them	from	other	genomic	 loci.	Typically	the	hills	are	around	10-15bp	

in	width.	The	hills	 are	 clustered	based	on	 their	k-mer	 composition	using	K-means	

clustering.	 	 Where	 K	 is	 a	 user-defined	 input	 and	 is	 equivalent	 to	 the	 number	 of	

motifs	 that	 one	 expects	 at	 labeled	 genomic	 sites.	MEME	 (Bailey	&	Elkan,	 1994)	 is	

used	to	identify	motifs	in	different	clusters	resulting	in	label	specific	discriminative	

motifs.	Each	k-mer	model	further	scores	MEME-identified	motifs	as	follows:	

𝑆𝑐𝑜𝑟𝑒!! 𝑚𝑜𝑡𝑖𝑓! =  𝑤!
!

!∈!"#$%!

	

Where	𝑗 ∈  𝑚𝑜𝑡𝑖𝑓!	is	the	set	of	all	k-mers	that	belong	to	motif	“𝑚𝑜𝑡𝑖𝑓!”.		

	

Generation	of	synthetic	datasets	

	To	 test	 SeqUnwinder	 in	 simulated	 settings,	 we	 generated	 various	 synthetic	

datasets.	First,	we	generated	150bp	long	genomic	sites	by	sampling	sequences	from	

a	2nd	order	Markov	model	of	the	human	genome.	We	then	randomly	assigned	labels	

to	these	binding	sites	at	different	frequencies.	The	overlap	between	the	labels	at	the	

binding	sites	was	varied	from	0.5	to	0.99.	Arbitrarily	chosen	TF	binding	motifs	were	
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assigned	 to	 labels.	 A	 motif	 instance	 was	 sampled	 from	 the	 probability	 density	

function	defined	by	the	PWM	of	the	motif.	Sampled	motif	instances	were	inserted	at	

labeled	sites	at	a	frequency	of	0.7.	

	

Processing	iMN	programming	data-sets	

Defining	early,	 shared	and	 late	binding	 labels:	MultiGPS	was	 used	 to	 call	 Isl1/Lhx3	

binding	sites	at	12	and	48hrs	(datasets	were	obtained	from	GSE80321).	 	A	q-value	

cutoff	 <0.001	 was	 used	 to	 call	 binding	 sites.	 All	 sites	 with	 significantly	 greater	

Isl1/Lhx3	ChIP	enrichment	at	12h	compared	to	48h	(q-value	cutoff	of	<0.01)	were	

labeled	as	early.	 Isl1/Lhx3	binding	sites	called	 in	both	12	and	48h	datasets	with	a	

further	 filter	 of	 not	 being	 differentially	 bound	 	 (q-value	 cutoff	 of	 <0.01),	 were	

assigned	as	 shared	sites.	Finally,	 all	 sites	with	significantly	greater	 Isl1/Lhx3	ChIP	

enrichment	at	48h	compared	to	12h	(q-value	cutoff	of	<0.01)	were	labeled	as	late.	

Defining	active	and	 inactive	mES	annotation	 labels:	 A	 random	 forest	 classifier	was	

trained	to	classify	every	 Isl1/Lhx3	binding	site	as	either	being	 in	accessible/active	

or	inaccessible/unmarked	mouse	ES	chromatin.	The	classifier	was	trained	using	95	

mouse	 ES	 ChIP-Seq	 datasets	 with	 windowed	 read-enrichment	 as	 predictors.	 	 A	

union	list	of	1million	500bp	regions	comprising	the	enriched	domains	(see	below)	

of	DNaseI,	H3K4me2,	H3K4me1,	H3K27ac,	and	H3K4me3	was	used	as	the	positive	

set	 for	 training	 the	 classifier.	 An	 equal	 number	 of	 unmarked	 500bp	 regions	were	

randomly	 selected	 and	 used	 as	 the	 negative	 set	 for	 training	 the	 classifier.	 Every	

binding	 site	 that	 was	 predicted	 to	 be	 in	 accessible/active	 ES	 chromatin	 with	 a	
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probability	 of	 greater	 than	 0.6	 was	 placed	 in	 the	 “ES-active”	 class,	 while	 the	

remaining	sites	were	placed	in	the	“ES-inactive”	class.	

Enriched	 domains	 for	 DNaseI,	 H3K4me2,	 H3K4me1,	 H3K27ac,	 and	 H3K4me3	

were	 identified	 using	 the	 DomainFinder	 module	 in	 SeqCode	

(https://github.com/seqcode).	 Contiguous	 50bp	 genomic	 bins	 with	 significantly	

higher	read	enrichment	compared	to	an	input	experiment	were	identified	(binomial	

test,	 p-value	 <	 0.01).	 Further,	 contiguous	 blocks	 within	 200bp	 were	 stitched	

together	to	call	enriched	domains	

	

Processing	ENCODE	datasets	

TF	 ChIP-seq	 datasets:	 We	 analyzed	 16	 TF	 ChIP-Seq	 ENCODE	 datasets	 in	 three	

primary	 cell-lines	 (GM12878,	 K562,	 and	 H1-hESC).	 The	 binding	 profiles	 for	 the	

factors	were	profiled	using	 the	MultiGPS	software	 (Mahony	et	al,	 2014).	All	 called	

binding	 events	 for	 TFs	 were	 required	 to	 have	 significant	 enrichment	 over	

corresponding	 input	 samples	 (q-value	<0.01)	 as	 assessed	using	MultiGPS’	 internal	

binomial	test.	For	a	site	to	be	labeled	as	“shared”,	the	binding	site	was	required	to	be	

called	in	all	the	3	cell-lines.	Further,	binding	sites	showing	significantly	differential	

binding	 in	 any	 of	 the	 possible	 3	 pair-wise	 comparisons	 were	 removed	 from	 the	

shared	set.	Binding	sites	labeled	as	“cell-specific”	were	required	to	be	called	in	only	

one	cell-type.	In	addition,	cell-specific	sites	were	also	required	to	have	significantly	

higher	 ChIP	 enrichment	 compared	 to	 other	 cell-lines.	 All	 TF	 binding	 sites	 within	

5Kbp	of	a	known	TSS	(defined	using	UCSC	hg19	gene	annotations)	were	labeled	as	
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promoter	proximal	while	all	sites	that	were	more	than	5Kbp	from	known	TSSs	were	

labeled	as	distal.		

DNase-seq	datasets:	We	analyzed	the	DHS	sites	at	6	different	 tier	1	and	2	ENCODE	

cell-lines	(GM12878,	K562,	H1-hESC,	HeLa-S3,	HepG2,	HUVEC).	The	DHS	sites	were	

called	 using	 in-house	 scripts.	 Briefly,	 contiguous	 50bp	 genomic	 bins	 with	

significantly	 higher	 read	 enrichment	 compared	 to	 an	 input	 experiment	 were	

identified	(binomial	 test,	p-value	<	0.01).	Further,	contiguous	blocks	within	200bp	

were	 stitched	 together	 to	 call	 enriched	 domains.	 A	 150bp	 window	 around	 the	

maximum	point	of	read	density	at	enriched	domains	was	considered	as	the	DHS.	

		

Annotation	of	de	novo	identified	motifs	

All	 de	novo	motifs	 identified	 using	 SeqUnwinder	were	 annotated	 using	 the	 cis-bp	

database.	Briefly,	de	novo	motifs	were	matched	against	the	cis-bp	database	using	the	

STAMP	software	(Mahony	&	Benos,	2007).		The	best	matching	hit	with	a	p-value	of	

less	than	10e-5	was	used	to	name	the	de	novo	identified	motifs.	
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Figure	Legends	

	

Figure	1.		Overview	of	SeqUnwinder,	which	takes	an	input	list	of	annotated	genomic	

sites	and	identifies	label-specific	discriminative	motifs.			A)	Schematic	showing	a	typical	

input	 instance	 for	 SeqUnwinder:	 a	 list	 of	 genomic	 coordinates	 and	 corresponding	

annotation	 labels.	 B)	 The	 underlying	 classification	 framework	 implemented	 in	

SeqUnwinder.	Subclasses	(combination	of	annotation	labels)	are	treated	as	different	classes	

in	 a	 multi-class	 classification	 framework.	 The	 label-specific	 properties	 are	 implicitly	

modeled	using	L1-regularization.	C)	Weighted	k-mer	models	are	used	 to	 identify	10-15bp	

focus	 regions	 called	 hills.	 MEME	 is	 used	 to	 identify	motifs	 at	 hills.	D)	 De	novo	 identified	

motifs	in	C)	are	scored	using	the	weighted	k-mer	model	to	obtain	label-specific	scores.		

	

Figure	 2.	 Performance	 of	 SeqUnwinder	 on	 simulated	 datasets.	 A)	 9000	 simulated	

genomic	sites	with	corresponding	motif	associations.	B)	Label-specific	scores	for	all	de	novo	

motifs	 identified	 using	 SeqUnwinder	 on	 simulated	 genomic	 sites	 in	 “A”.	 C)	 Schematic	

showing	 100	 genomic	 datasets	 with	 6000	 genomic	 sites	 and	 varying	 degrees	 of	 label	

overlap	 ranging	 from	 0.5	 to	 0.99.	D)	 Performance	 of	MCC	 (multi-class	 logistic	 classifier),	

DREME,	 and	 SeqUnwinder	 on	 simulated	 datasets	 in	 “C”,	measured	 using	 the	 F1-score,	E)	

True	positive	rates	and	F)	false	positive	rates.		

	

Figure	3.	Sequence	feature	analysis	at	Lhx3	binding	classes	during	iMN	programming	

using	 SeqUnwinder.	 A)	Lhx3	binding	sites	 labeled	using	 their	dynamic	binding	behavior	

and	ES	chromatin	activity	statuses.	B)	Label-specific	scores	of	de	novo	motifs	 identified	at	

Lhx3	 binding	 sites	 defined	 in	 “A”.	 C)	 ChIP-Seq	 profiles	 of	 Oct4	 and	 Onecut2	 ordered	

according	to	the	binding	classes	defined	in	A).		
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Figure	 4.	 SeqUnwinder	 analysis	 of	 sequence	 features	 at	multi-condition	TF	 binding	

sites	for	16	ENCODE	TFs.	A)	Subclasses	and	labels	at	binding	sites	of	16	examined	ENCODE	

TFs.	B)	Label	specific	scores	of	top	scoring	de	novo	motifs	at	shared	sites.	For	13	out	of	16	

examined	 TFs	 the	 top	 scoring	 shared	 motifs	 match	 to	 the	 cognate	 motifs	 of	 the	 TF.	 C)	

Comparison	 of	 PWM	 hit-rates	 and	 SeqUnwinder	 scores	 for	 USF1.	 D)	 Co-factor	 motifs	

identified	by	SeqUnwinder	at	cell-type	specific	sites	across	the	16	TFs.		

	

Figure	5.	Discriminative	sequence	feature	analysis	at	DHS	sites	in	6	different	ENCODE	

cell-lines	 using	 SeqUnwinder.	A)	~140K	DHSs	 sites	 annotated	with	 6	 different	 cell-line	

labels	 used	 to	 identify	 cell-line	 specific	 and	 shared	 sequence	 features.	 B)	 Label	 specific	

scores	of	all	the	de	novo	motifs	identified	at	DHSs	sites	in	“A”.		

	

Figure	 S1.	 Distance	 of	 TF	binding	 events	 from	annotated	mRNA	TSS	 for	 all	 16	 examined	

ENCODE	TFs,	stratified	based	on	“shared”	(black)	or	“cell	line-specific”	(yellow)	labels.	The	

X-axis	represents	the	distance	in	“bp”	in	log-scale	(natural	logarithm).	

	

Figure	 S2.	 Demonstration	 of	 SeqUnwinder’s	 discovery	 of	 sequence	 properties	 at	 multi-

conditionally	bound	NRSF	binding	sites.	A)	Heatmaps	showing	the	NRSF	ChIP-Seq	reads	at	

curated	NRSF	binding	sites,	stratified	based	on	binding	across	cell-lines	and	distance	from	

annotated	mRNA	TSS.	The	order	of	subclasses	 is:	Shared	and	Proximal,	Shared	and	Distal,	

K562	and	Proximal,	K562	and	Distal,	GM12878	and	Proximal,	GM12878	and	Distal,	H1-hESC	

and	Proximal,	and	H1-hESC	and	Distal.	B)	De	novo	motifs	and	corresponding	label	specific	

scores	identified	using	SeqUnwinder	at	events	defined	in	A).	
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Figure	 S3.	A)	Rate	of	peaks	that	contain	one	or	more	motif	 instances,	and	B)	 total	rate	of	

motif	 instances	 for	 de	 novo	 identified	 motifs	 matching	 cognate	 binding	 preferences	 at	

labeled	 sites.	 Only	 13	 of	 16	 examined	 TFs,	 for	 which	 the	 de	 novo	 cognate	 motif	 was	

discovered	as	a	discriminative	feature,	are	shown	here.	
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