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ABSTRACT 

Simultaneous EEG-fMRI has been vastly used to investigate functional networks of brain combining 

high spatial resolution (millimeter) of fMRI with high temporal resolution (millisecond) of EEG. 

However, to extract the most relevant information from the acquired data, it is necessary to develop 

analysis methods with less ad hoc assumptions. To this end, brain rhythms are often used which are the 

specific frequency-bands of EEG signal and assumed to represent diverse sub-second cognitive 

processes at different parts of the cortex. Furthermore, single-trial analysis of EEG is believed to show 

more realistic picture of ongoing and event-related activities of brain. Here, we present a nonparametric 

multiple change-point detection and estimation method for the single-trial analysis of simultaneous 

EEG-fMRI experiment recorded during auditory and visual oddball tasks. In a simple attention task like 

oddball, the frontal cortex of brain is responsible to distinguish and respond appropriately to target 

versus standard events. By using EEG signal at the frontal cortex, we show that the α-band activity 

changes according to “inhibition timing” hypothesis and the β-band activity is in line with “maintaining 

the status quo” hypothesis. Furthermore, using these activities to build regressors in the GLM analysis of 

fMRI, we localize active brain regions with high spatial and temporal resolutions and elaborate further 

on the coordination of attentional networks across brain. 

KEYWORDS: Simultaneous EEG-fMRI, Auditory/Visual Oddball Task, Single-trial Analysis, Change-

point Analysis, (α, β)-band Powers, Frontal Cortex. 

INTRODUCTION 

Ongoing brain activity alternates in response to endogenous states and exogenous events. 

Electroencephalography (EEG) is one of the foremost tools to explore non-invasively this activity in 

human brain. Most notably, it is suitable for measuring the activity over the superficial layer of the scalp 

- cerebral cortex - with millisecond resolution. On the other hand, functional magnetic resonance 

imaging (fMRI) - another non-invasive neuroimaging technique - is able to localize active brain regions 

with unprecedented spatial resolution - millimeter - in the deep sub-cortical layers [1]-[3]. Simultaneous 

EEG-fMRI has been developed to utilize the complementary advantages of EEG and fMRI techniques 

and to decipher the coordination of functional networks across brain with high spatial and temporal 

resolutions [1] [3]. While the hardware design and data acquisition methods for these kinds of 

experiments have been already developed and in-use, there is not any universally standard approach for 

data analysis [4]-[6]. Some of these analysis methods use biophysical neurogenerative models to relate 

the hemodynamic events to EEG currents utilizing neurovascular coupling equations and parameters [3]. 

These models usually have many ad hoc assumptions and are computationally intensive. There are other 

kinds of methods, which use active brain regions obtained from fMRI as priors in the EEG source 

reconstruction [4]. These methods use parameterized forward head models and inverse modeling which 

are also computationally intensive. On the other hand, there are more data-driven approaches which 

combine symmetrically or asymmetrically EEG and fMRI data to find co-variation maps of them [1] 

[4]-[6]. One of such methods is EEG-informed fMRI regression which uses some features of 
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multivariate EEG signal as regressors in the generalized linear model (GLM) to capture and isolate 

correlated patterns of fMRI signal of active brain regions [1] [4] [6]. 

The cerebral cortex plays a major role in all higher cognitive processes like attention, perception, 

decision-making, and planning. In a simple attention task like auditory/visual oddball, the most relevant 

part of brain which distinguishes target events from standard ones and plans desired actions, is frontal 

cortex. While traditional event-related potential can capture the average brain activity reliably, single-

trial analysis of EEG signal recently has gained interest due to its ability to measure realistically the 

endogenous wax and wane of brain activity inherent to each trial [1]. Furthermore, it is believed that the 

frequency-band components of EEG signal have important implications on different cognitive processes. 

EEG is usually divided to five frequency-bands: δ-band (0.5-4 Hz), θ-band (4-8 Hz) α-band (8-14 Hz), 

β-band (14-30 Hz), and γ-band (30-100 Hz) [7]. Both amplitudes (powers) and phases of these 

frequency-band components carry information about cognitive processes inside brain [8]-[26]. As an 

instance, the α-band power, which is the most prominent EEG component particularly over the posterior 

part, is generally thought to correlate with inhibiting and idling state of the cortex and suppress task-

irrelevant networks of brain [27] [28]. Based on “inhibition timing” hypothesis, the α-band activity 

represents suppression and selection, two important aspects of attention [29]. On the other hand, based 

on another hypothesis, the β-band activity, which its magnitude is more prominent in the sensorimotor 

cortex, is believed to signal “maintaining the status quo” in different parts of the cortex [30]. 

In this study, we develop a nonparametric method for single-trial analysis of EEG in the general 

framework of change-point analysis [31] [32]. While change-point analysis is a well-established method 

in signal processing; it has rarely used for EEG single-trial analysis. Moreover, our method is best suited 

for multidimensional data with unknown number and location of change-points by using minimum 

distribution assumptions. The estimation of change-points is based on U-statistics and hierarchical 

clustering with bisection approach for its computational efficiency [32]. We use this method to divide 

the multidimensional EEG signal of the electrodes of frontal cortex to distinct temporal windows and 

then calculate the single-trial relative powers of α and β-band components of these temporal windows. 

Our results provide support for α-band “inhibition timing” and β-band “maintaining the status quo” 

hypotheses. For single-trial analysis of simultaneous EEG-fMRI, we use α and β-band relative powers as 

regressors in the statistical parametric mapping of fMRI [33]-[35]. The results show the co-variation 

map of EEG and fMRI signals and they shed light on the spatial and temporal coordination of attentional 

networks in auditory and visual oddball tasks [36]-[38]. 

MATERIALS AND METHODS 

The EEG-fMRI data we use is from the simultaneous EEG-fMRI data collection described in [39]-[41], 

but we reproduce much of the relevant information here for ease of reading and refer the reader to those 

previous studies for further details. This data was obtained from the OpenfMRI database and its 

accession number is ds000116 (https://openfmri.org/dataset/ds000116). 
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Auditory and Visual Oddball Paradigms 

Seventeen subjects (six females; mean age of 27.7 years; age range of 20–40 years) participated in three 

runs of each of the auditory and visual oddball paradigms. The 375 (125 per run) total stimuli per task 

were presented for 200 ms each with a 2–3 s uniformly distributed variable inter-trial interval (ITI) and 

target probability of 0.2. The first two stimuli of each run were restricted to be standards. For the visual 

task, the target was a large red circle (3.45° visual angle) and the standard was a small green circle 

(1.15° visual angle), both of them on iso-luminant gray backgrounds. For the auditory task, the target 

sound was a broadband “laser gun” and the standard stimulus was a 390 Hz pure tone. Because our 

study is about task-related cognitive states, subjects were asked to respond to the target stimuli, using a 

button press with the right index finger on a button response pad. 

Simultaneous EEG-fMRI Data Acquisition 

A 3 T Philips Achieva MRI scanner (Philips Medical Systems) was used to collect functional echo-

planar image (EPI) data with 3 mm in-plane resolution and 4 mm slice thickness. It covered entire brain 

by obtaining 32 slices of 64*64 voxels using a 2000 ms repetition time (TR) and 25 ms echo time (TE). 

Also, high-resolution single-volumes of a 2*2*2 mm EPI image and a 1*1*1 mm spoiled gradient 

recalled image (SPGR) were obtained for each subject for the purpose of registration. 

Simultaneously and continuously, EEG was recorded using a custom-built MR-compatible EEG system 

with differential amplifier and bipolar EEG cap. The caps were consisted of 36 Ag/AgCl electrodes 

including left and right mastoids, arranged as 43 bipolar pairs. Bipolar pair leads were twisted to 

minimize inductive pickup from the magnetic gradient pulses and subject head motion in the main 

magnetic field. This oversampling of the electrodes ensured that the data forms a complete set of 

electrodes even when there is a need to discard noisy channels. Due to the existence of magnetic field, 

the EEG signal is contaminated with gradient and Ballistocardiogram (BCG) artifacts. To enable 

removal of the gradient artifacts in our offline preprocessing, the 1-kHz-sampled EEG signal was 

synchronized with the MR-scanner clock at the start of each of 170 functional image acquisitions. A 

comprehensive description of the hardware and data acquisition can be found in [39]-[42]. 

EEG Data Preprocessing 

We followed closely the standard offline preprocessing of EEG described in [39]-[44] using MATLAB 

(MathWorks). First, we removed the gradient artifacts by subtracting the mean EEG signal across all 

functional volume acquisitions from the initial EEG signal. We then applied a 10 ms median filter to 

remove any residual spike artifacts [44]. Secondly, we used the following digital Butterworth filters in 

the form of a linear-phase finite impulse response (FIR): a 1 Hz high pass filter to remove direct current 

drift, 60 and 120 Hz notch filters to remove electrical line noise and its first harmonic, and a 100 Hz low 

pass filter to remove high-frequency artifacts not associated with neurophysiological processes. BCG 

artifacts share frequency content with EEG activity and existing BCG removal algorithms cause loss of 

signal power in the EEG. Therefore, we performed single-trial analysis on the event-related potential 
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based on the change-point analysis method before BCG artifacts removal. However, to isolate the N100, 

P200, and P300 components (Fig. 1) and compute the scalp topographies (Figs. 2-5), BCG artifacts were 

removed from the EEG data using a principal components analysis method [42] [43]. First, the data were 

low pass filtered at 4 Hz to extract the signal within the frequency range in which BCG artifacts are 

observed and then the first two principal components were calculated. The projection of channel 

weightings corresponding to those components subtracted out from the broadband data. These BCG-free 

data were then re-referenced from the 43 bipolar channels to the 34 electrodes space to isolate the N100, 

P200, and P300 components (Fig. 1) and compute the scalp topographies (Figs. 2-5). By visual 

inspection, trials containing motion or blink artifacts and also those with incorrect responses, were 

discarded from both auditory and visual datasets. 

EEG Change-point Analysis 

We defined the stimulus-locked -1000 ms to 1000 ms EEG epoch as a trial. We chose this interval 

because it ensures no overlap between adjacent trials due to ITI and also provides us with pre-stimulus 

potential for subsequent frequency-band analysis. We combined all target trials across three runs of each 

one of the auditory and visual tasks for each subject (at most 75 trials for each subject and task). We did 

the same for the standard trials (at most 300 trials for each subject and task). 

We are interested in task-related EEG response which is the brain activity for distinguishing target from 

standard events and subsequent appropriate action. The EEG signal of the electrodes at the frontal cortex 

is believed to indicate this activity. As a result, we used the referencing matrix of each subject to transfer 

the EEG signal from the 43 bipolar channels to the 34 electrodes space and then chose 7 frontal cortex 

electrodes (Fp1, Fp2, AF3, AF4, F3, Fz, F4 in international 10-20 system) for change-point analysis. 

We performed change-point analysis on average event-related potential obtained from 7 frontal cortex 

electrodes independently for each subject, task (auditory/visual), and trial type (target/standard). By 

doing this, we increased the signal-to-noise ratio of task-related EEG potential. However, our 

subsequent single-trial analysis based on frequency-band components was rested on individual trials. 

Also, to decrease the computational demand of our change-point analysis, we averaged the EEG signal 

over 10 ms sliding window, so instead of having EEG epochs with 2000-point length (1000 Hz), we had 

epochs with 200-point length (100 Hz) covering stimulus-locked -1000 ms to 1000 ms interval. We 

think this does not change the accuracy of our change-point analysis (particularly considering the low 

signal-to-noise ratio of the EEG datasets obtained in the MR environment), while it substantially 

increases the computational efficiency (Our change-point method runs at O(kT2); k is the number of the 

change-points and T is the sample-length of a signal). 

Our change-point formulation is based on a recently developed nonparametric multiple change-point 

detection and estimation method which has just one assumption behind its applicability; the 

multidimensional signal must have µ-th absolute moment for some µ є (0,2) [32]. By combining it with 
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hierarchical estimation (bisection method) and significance testing (permutation), we efficiently and 

reliably isolated up to 10 change-points from our EEG epochs. 

In the following formula, µ = 1, T = 200 (the length of our EEG epoch), and Zκ is a point in a 7-

dimensional EEG epoch time-series in which κ є (1, 200). In (1), we vary κ along an EEG epoch and 

then move τ along the resultant temporal window, thus τ є (1, κ). As a result, we have two separate time-

series with two probability distributions: Fx for Xτ and Fy for Yτ(κ). Based on this definition, we 

calculate 
^

E  from (2) and 
^

Q  from (3). According to (4), if τ is a change-point, then Fx is not equal to Fy 

and 
^

Q  must go to infinity. Using (5), by spanning an EEG epoch with κ and τ, we are able to find the 

maximum possible value for 
^

Q  and the corresponding estimated change-point τ. For more complete 

description, please refer to [32]. 
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We performed this estimation hierarchically to find the desired number of significant change-points in 

our EEG epochs based on (6) (see Figs. 6-7 for average results across subjects). Also, to test the 

significance of our change-point detection, we performed permutation test. We permuted the signal 

values on our EEG epoch time-series (length = 200 points) 100 times for each subject, task, and trial 

type separately. Then, we ran the same hierarchical change-point detection and estimation procedure by 

using (6) for each permutation run (see Fig. 8 for average results across subjects). Finally, we compared 
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the distribution of 
max

^

Q  for permuted EEG epochs with the original EEG epochs to verify the 

significance of our detected change-points (see Table I for average results across subjects). 

EEG (α, β)-band Single-trial Analysis 

For single-trial analysis of EEG, we considered EEG α and β-band components due to their relevance to 

our simple paradigm and minimum contamination with BCG artifacts. After calculating the change-

points of average event-related potential for each subject, task, and trial type separately; we returned to 

our target and standard single-trials and divided the stimulus-locked -1000 ms to1000 ms trial interval to 

distinct temporal windows each one of them starts at -1000 ms and ends at a change-point (CP). (We did 

this instead of considering the time-span between two consecutive change-points due to the fact that the 

change-points were close to each other and the time-gaps were not sufficient to let us reliably calculate 

the powers of α and β-band components.) 

Afterward, we calculated average α and β-band powers for the temporal windows of each one of the 

trials, and the average broadband (BB) power (0-100 Hz) of the same trial. We divided the α and β-band 

powers of all temporal windows of a trial to the broadband power of the same trial by using (7) and 

obtained the relative powers of α and β-band components. By using this approach, we simultaneously 

achieved two objectives: 1) we normalized the α and β-band powers of the temporal windows of a trial 

on the same ground. 2) we removed any baseline effects of EEG signal so we were able to combine all 

the relative powers across all the trials for each subject, task, and trial type separately. 
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Furthermore, to have summary statistics of α and β-band relative powers across all temporal windows 

and subjects (but independently for each task and trial type), we divided the 2000-point length stimulus-

locked EEG epoch to 20 equal bins each one has 100-point length. Then we placed the α and β-band 

relative powers of all subjects in one of those bins based on their temporal windows’ end positions. 

Afterward, for each bin, we calculated the mean and standard error of the mean for α and β-band relative 

powers. We presented these results in Figs. 9-12 independently for each task and trial type. 

fMRI Data Preprocessing 

Using SPM8 (Wellcome Department of Imaging Neuroscience, London, UK; see 

http://www.fil.ion.ucl.ac.uk/spm), we performed realignment, un-warping, and slice-timing correction 

on the functional images for each subject, task, and run separately. We later included the realignment 

parameters as confounds of no interest in the subsequent GLM analysis of fMRI. After brain extraction, 
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we co-registered the high resolution SPGR images (1*1*1 mm) to the high resolution EPI images 

(2*2*2 mm) and segmented the co-registered SPGR images to grey matter, white matter, and 

cerebrospinal fluid for each subject. Then, by using the resultant parameters, we normalized the 

realigned, un-warped, and slice-timing corrected functional images to the standard Montreal 

Neurological Institute (MNI) brain template for each subject, task, and run separately (we normalized 

the co-registered SPGR images to the standard MNI brain template for each subject too). Afterward, we 

spatially smoothed the functional images by using 8 mm full-width half-maximum (FWHM) Gaussian 

kernel for each subject, task, and run separately. Finally, for each subject, we checked manually the 

alignment of the smoothed functional images to the normalized SPGR images and we discarded the data 

of subject 13 due to misalignment. 

Traditional fMRI Analysis 

In the traditional analysis of fMRI, we used multiple conditions files to feed target and standard event-

related regressors to the SPM8 for GLM analysis. The event-related regressors comprised of boxcar 

functions with unit amplitude and onset and offset matching that of the stimuli with 200 ms duration. 

The regressors were already orthogonal to each other so we were able to capture the whole variability of 

each regressor completely [45]. Both regressors were convolved with the canonical hemodynamic 

response function and temporal derivatives were included as confounds of no interest (The other 

confounds of no interest were multiple regressors files of realignment parameters). Also, the functional 

data were high-pass filtered at 100 s and AR(1) was used to model serial correlations. Event-related 

target, standard, and target minus standard t-contrasts were constructed (replicated and scaled) and a 

fixed-effects model was used to model activations across runs for each subject and task separately. The 

one-sample t-test was used to compute the group-level mean activations of these contrasts across 

subjects for each task separately (the data of subject 13 was already removed). The t-maps of these 

group-level statistical images were thresholded at p-value = 0.01 and overlaid on the standard MNI brain 

template. 

EEG-based Single-trial Analysis of fMRI 

For EEG-based single-trial analysis of fMRI, we used multiple conditions files to feed the α and β-band 

relative powers of all temporal windows of each subject and task as parametric modulators in the SPM8 

for GLM analysis. So for each subject and task, we have 20 additional regressors based on 2 frequency-

bands and 10 change-points. These EEG-based regressors were designed with 100 ms duration centered 

on the change-points and their heights were modulated using the α and β-band relative powers of each 

temporal window of each trial and they were orthogonalized with respect to the traditional regressors by 

SPM8 internal capability. These regressors were convolved with the HRF and temporal derivatives were 

included as confounds of no interest (The other confounds of no interest were multiple regressors files of 

realignment parameters). Also, the functional data were high-pass filtered at 100 s and AR(1) was used 

to model serial correlations. For each subject, task, frequency-band, and temporal window, the following 

t-contrasts were constructed: single-trial target, single-trial standard, single-trial target minus traditional 
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target, and single-trial standard minus traditional standard. These contrasts were replicated and scaled 

and a fixed-effects model was used to model the activations across runs for each subject, task, 

frequency-band, and temporal window separately. To have summary statistics of the single-trial effects 

of α and β-band relative powers of the EEG signal on the fMRI data across all temporal windows and 

subjects (but independently for each task), we divided the 2000-point length stimulus-locked EEG epoch 

to 20 equal bins each one has 100-point length and placed the t-contrasts of all subjects in one of those 

bins based on their temporal windows’ end positions. The one-sample t-test was used to compute the 

group-level mean activations of these contrasts for each task, frequency-band, and bin separately across 

subjects (the data of subject 13 was already removed). The t-maps of these group-level statistical images 

were thresholded at p-value = 0.01 and overlaid on the standard MNI brain template. 

RESULTS AND DISCUSSION 

All subjects responded with high accuracy and speed. For the auditory task, 98.3 ± 2.0 % of targets was 

correctly detected with 404.1 ± 58.3 ms reaction time (RT) and for the visual task 98.4 ± 3.1 % of 

targets was correctly detected with 397.2 ± 38.9 ms RT. 

Traditional Event-related Potential 

The average (across all subjects) event-related potential (ERP) which spans stimulus-locked -1000 ms to 

1000 ms interval for Fz and Pz electrodes were displayed in Fig. 1 (independently for each task and trial 

type). P300 component which is an endogenous potential elicited in the process of attention, 

categorization, and decision-making is more prominent in the parietal sites between 300 ms to 500 ms. 

On the other hand, N100 and P200 are more prominent in the frontal sites. They are all visible for 

average ERP of target trials for both tasks in Fig. 1. 

 

 

 

 

 

 

Fig. 1. Traditional average event-related potential of Fz and Pz electrodes. 

Also, the scalp topographies of average ERP across all subjects were shown in Figs. 2-5 in 50 ms 

intervals. In target trials with the right index finger response, we observe contralateral activity in the left 

motor cortex at the posterior parietal sites (Figs. 2 and 4). Also, for the auditory task, we have more 

activation in the right and left temporal sites due to the activity of auditory cortex (Figs 2-3) and for the 

visual task we see more activity in the occipital sites where visual cortex is engaged (Figs. 4-5). 
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Fig. 2. Average scalp topographies of auditory task for target trials. 

 

 

 

 

 

 

 

Fig. 3. Average scalp topographies of auditory task for standard trials. 

 

 

 

 

 

 

 

Fig. 4. Average scalp topographies of visual task for target trials. 
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Fig. 5. Average scalp topographies of visual task for standard trials. 

EEG Change-point Analysis 

The average locations (across all subjects) of the first 10 change-points in -1000 ms to 1000 ms 

stimulus-locked interval were displayed in Fig. 6 (independently for each task and trial type). The first 

change-point of target trials for both tasks is approximately matched with the behavioral response or RT. 

In Fig. 7, the 
max

^

Q  values of the detected change-points were plotted. The plot has a plain trend starting 

from large values and decreasing gradually. Also, in Fig. 8, the 
max

^

Q  values of the first 10 change-points 

of permuted trials were plotted and, as expected, they have significantly lower 
max

^

Q values compare to 

Fig. 7. 

 

 

 

 

 

 

 

 

Fig. 6. The first 10 change-points and their standard errors. 
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Fig. 7. The 
max

^

Q  values of the first 10 change-points and their standard errors. 

 

 

 

 

 

 

 

Fig. 8. The 
max

^

Q  values of the first 10 change-points of permuted trials and their standard errors. 

We brought the summary of change-point analysis averaged across all subjects in Table I. For each 

combination of task and trial type, we have three columns: CP of stimulus-locked epochs in millisecond, 

max

^

Q  values for the detected change-points, and p
Qmax

^

 values for the permuted trials. The results clearly 

show that the detected change-points are significant for both tasks (auditory/visual) and both trial types 

(target/standard). 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2017. ; https://doi.org/10.1101/100487doi: bioRxiv preprint 

https://doi.org/10.1101/100487
http://creativecommons.org/licenses/by-nc/4.0/


13 

 

TABLE I: The summary of change-point analysis averaged across all subjects for each combination of task and trial type. 

Change-

points 

Number 

(order of 

significance) 

Auditory Target Auditory Standard Visual Target Visual Standard 

CP 
max

^

Q  
p

Qmax

^

 CP 
max

^

Q  
p

Qmax

^

 CP 
max

^

Q  
p

Qmax

^

 CP 
max

^

Q  
p

Qmax

^

 

1 426 566 60 105 197 26 363 613 70 387 712 57 

2 474 374 64 267 179 28 380 392 75 659 382 60 

3 309 223 47 194 93 20 409 275 53 104 181 40 

4 161 163 47 -18 79 20 219 193 54 219 91 41 

5 148 136 40 146 60 17 87 157 45 -34 66 32 

6 107 109 38 -131 51 16 -142 117 44 -15 59 32 

7 256 95 35 229 41 15 -16 114 40 244 56 27 

8 136 80 33 -135 39 14 66 93 37 116 49 27 

9 -83 73 31 51 36 13 -145 82 35 117 43 24 

10 -79 73 29 -43 32 12 180 80 32 -145 37 23 

 

EEG (α, β)-band Single-trial Analysis 

We summarized the average results across all temporal windows and all subjects (the data of subject 13 

was already removed) but independently for each task, trial type, and frequency-band component in 

Figs. 9-12. 

In Figs. 9 and 11, for auditory and visual target trials respectively, the α-band activity is higher at the 

beginning and gradually decreases as the change-point moves to the right in the stimulus-locked EEG 

epoch. This is in accordance with the “inhibition timing” hypothesis [29] which states that the α-band 

power is negatively correlated with brain activity; it is higher at the pre-stimulus interval but it decreases 

as the frontal cortex gets engaged with task-related decision-making regarding the response to the target 

trials. The β-band activity is also in agreement with the “maintaining the status quo” hypothesis [30] 

which states that the β-band power is lower when we expect some cognitive processes happen which 

change the status quo. Here, in response to the target trials, the frontal cortex, which is the center of 

executive functions in brain, gets active to coordinate the proper action. 

On the other hand, for auditory and visual standard trials in Figs. 10 and 12 respectively, we observe the 

opposite trend. Although, they start with relatively high pre-stimulus α and β-band activity, they 

decrease and again increase around 200 ms to 400 ms post-stimulus which is the time when brain is 
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already processed the stimulus and the appropriate decision is made. This is again in line with the 

“inhibition timing” hypothesis for the α-band and the “maintaining the status quo” hypothesis for the β-

band; in the standard trials, the frontal cortex is not involved in the coordination of any action and it just 

needs to keep the status quo which is the situation without any behavioral response. 

 

 

 

 

 

 

Fig. 9. α and β-band relative powers of auditory task for target trials. 

 

 

 

 

 

 

 

Fig. 10. α and β-band relative powers of auditory task for standard trials. 

 

 

 

 

 

 

Fig. 11. α and β-band relative powers of visual task for target trials. 
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Fig. 12. α and β-band relative powers of visual task for standard trials. 

To summarize this section, our developed change-point method and single-trial analysis are able to 

provide additional evidences for two relevant hypotheses in the literature related to α and β-band 

activities; they show how the brain rhythms in the task-related region of the cortex coordinate 

temporally with sub-second resolution. 

EEG-based Single-trial Analysis of fMRI 

In this section, we brought a few plots from our single-trial EEG-fMRI analysis using α and β-band 

relative powers as regressors in the GLM and further elaborate on the relevancy of our results. 

 

Fig. 13. Pure effect of α-band relative power of 50 ms temporal window on BOLD responses of auditory target (left) and 

standard (right) trials. 

  

Thalamus 

Auditory Cortex 

Auditory Cortex 

Brainstem 
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Fig. 13 shows the negative correlation of α-band activity of the electrodes of frontal cortex at the 50 ms 

temporal window with the BOLD response in auditory cortex in target trials. Also, the α-band activity of 

the same electrodes at the same temporal window has positive correlation with the BOLD response in 

thalamus and negative correlation with the BOLD response in brainstem in standard trials. These results 

corroborate the role of thalamo-cortical loop in attentional modulation and generation of α-band 

oscillations in cortical regions [20] [24] and “inhibition timing” hypothesis [29]. 

 

Fig. 14. Pure effect of α-band relative power of 150 ms temporal window on BOLD responses of auditory target (left) and 

standard (right) trials. 
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Fig. 15. Pure effect of α-band relative power of 450 ms temporal window on BOLD responses of auditory target (left) and 

standard (right) trials. 

Figs. 14 and 15 again show the positive correlation of α-band activity of the electrodes in frontal cortex 

with the BOLD response in thalamus in standard trials at the 150 ms and 450 ms temporal windows 

respectively. Also, there is a positive correlation between the α-band activity of the electrodes in frontal 

cortex with the BOLD response in cingulate cortex in standard trials at the 450 ms temporal window. 

Cingulate cortex is a part of the default mode network and this positive correlation shows the 

introspective evaluation of decisions in that region [40]. As it is clear from Figs. 13, 14, and 15, the α-

band activity of the electrodes in frontal cortex has positive correlation with the BOLD response in 

thalamus and negative correlation with the BOLD response in brainstem only in standard trials. We 

believe this is due to the fact that there is higher inhibition in cortical regions during standard trials due 

to the lack of behavioral responses [39]-[41]. 

  

Thalamus 

Brainstem 

Cingulate Cortex 
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Fig. 16. Pure effect of β-band relative power of 150 ms temporal window on BOLD responses of auditory target (left) and 

standard (right) trials. 

Fig 16. shows the positive correlation of β-band activity of the electrodes in frontal cortex with the 

BOLD response in prefrontal areas in standard trials at the 150 ms temporal window. This further 

corroborates the role of β-band activity in temporal and spatial dynamics of the accumulation and 

processing of evidence leading to decision [8]. 

 

Fig. 17. Pure effect of α-band relative power of 350 ms temporal window on BOLD responses of visual target (left) and 

standard (right) trials. 
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Fig. 18. Pure effect of α-band relative power of 550 ms temporal window on BOLD responses of visual target (left) and 

standard (right) trials. 

Finally, Figs. 17 and 18 show the positive correlation of α-band activity of the electrodes in frontal 

cortex with the BOLD response in precuneus, a part of the default mode network, in target trials at the 

350 ms and 550 ms temporal windows respectively. This positive correlation could be interpreted as the 

activation of the default mode network during and after behavioral responses and getting involved in the 

reflective self-awareness and introspective evaluation which are functions of precuneus [39]-[41]. 
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