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Significance Statement 
 

Congenital prosopagnosia (CP; ‘face blindness’), a developmental deficit in face 
recognition, is thought to affect up to 3% of the population. Understanding its neural 
basis is challenging as there is no obvious deficit on conventional structural or 
functional MRI scans. Using an innovative, fMRI-based inter-subject correlation 
approach geared towards tracking inter-regional stimulus-locked brain activation, the 
present study uncovers marked topological differences in a distributed brain network 
of higher-order visual regions in CP relative to controls. Alteration in topology also 
differs as a function of the severity of the deficit. These findings shed new light on the 
neural perturbations underlying CP, and the analytic approach we have adopted may 
have utility in elucidating the neural basis of other neurodevelopmental disorders 
such as dyslexia or amusia.  

 
 
 

Abstract 
  
Using a novel fMRI-based inter-subject functional correlation (ISFC) approach, which 
isolates stimulus-locked inter-regional correlation patterns, we compared the cortical 
topology of the neural circuit for face processing in participants with congenital 
prosopagnosia (CP) and matched controls. Whereas the anterior temporal lobe served 
as the major network hub for face processing in controls, this was not the case for the 
CPs. Instead, this group evinced hyper-connectivity in posterior regions of the visual 
cortex, mostly associated with the lateral occipital and the inferior temporal cortices. 
Moreover, the extent to which the network organization was atypical differed as a 
function of the severity of the face recognition deficit. These results offer new insights 
into the perturbed cortical topology in CP, which may serve as the underlying neural 
basis of the behavioral deficits typical of this disorder. The approach adopted here has 
the potential to uncover altered topologies in other neurodevelopmental disorders, 
as well.  
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Introduction 

Understanding the neural basis of developmental disorders such as congenital 

prosopagnosia (CP) remains a challenge from both a basic science and a translational 

perspective as there are no obvious identifiable deficits on conventional anatomical 

MR brain scans. Furthermore, many studies show that CP individuals evince normal 

fMRI activation in the 'core' face-related posterior patches of the brain (Hasson et al., 

2003; Avidan et al., 2005, 2014; Avidan and Behrmann, 2009) (but see von Kriegstein 

et al., 2008; Dinkelacker et al., 2011; Furl et al., 2011). In contrast, more sensitive 

methods that have been used to map structural changes in CP relative to controls, 

such as diffusion tensor imaging (DTI) have revealed a reduction in long-range white 

matter tracts connecting the ‘core’ face-related posterior patches and the anterior 

temporal lobe face patch (ATL) in CP (Behrmann et al., 2007; Steinbrink et al., 2008; 

Odegard et al., 2009; Thomas et al., 2009).  Other studies have also reported local 

structural and functional atypical alterations in the vicinity of face-selective regions 

(Gomez et al., 2015; Song et al., 2015; Lohse et al., 2016). Using standard functional 

connectivity (FC) analysis, which measures the temporal correlations across different 

brain areas within an individual, we have previously documented impairments in the 

connectivity patterns between the 'core' and 'extended' nodes of the face system 

(Avidan and Behrmann, 2009, 2014; Avidan et al., 2014). 

The pattern of FC within each individual, as utilized in previous studies, is a 

combination of stimulus-induced correlations, intrinsic neural fluctuations, and 

correlations induced by non-neuronal artifacts (such as head motion, respiration). 

Separating these factors is challenging within the framework of standard FC, given the 

strength of the intrinsic neural fluctuations. Hence, group differences in FC may not 

be sufficiently robust to be detected following whole brain statistical correction, and, 

therefore, are less suitable for mapping large-scale changes in network topology.  

In contrast with these previous studies that have examined the neural profile 

of CP based on a subset of brain regions and their connectivity, here, we adopt an 

innovative, large-scale network approach. The primary goal of this approach is to 

elucidate the functional brain topology in individuals with CP (and matched controls) 

as a means of examining alterations in neural circuitry. Because there is consensus 

that multiple regions (face ‘patches’) are implicated in normal face recognition in 
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humans (Haxby et al., 2000; Pyles et al., 2013; Weiner and Grill-Spector, 2013) and in 

non-human primates (Tsao et al., 2006; Hung et al., 2015), elucidating alterations in 

the topology of this distributed cortical circuit is of great interest.  

To that end, in the present study, we have used a novel method, termed "inter-

subject functional correlation" (ISFC), which is designed to isolate stimulus-locked 

functional responses, by correlating the response profile across the brains of multiple 

participants (Simony et al 2016). Importantly, intrinsic neural dynamics during rest and 

task conditions that are not related to the pattern of activation evoked by stimulation, 

as well as non-neuronal artifacts (e.g., respiratory rate, motion), only influence the 

pattern of correlations within each individual brain, but cannot induce correlations 

between subjects. In contrast, neural processes that are locked to the structure of the 

stimulus can be correlated across brains. Thus, the ISFC method allows us to track 

stimulus-locked brain responses within the high-level visual network in control 

subjects and to contrast these correlation patterns with the patterns uncovered in CP 

individuals. Such an approach allows us to explore possible alterations in connectivity 

across large swaths of the cortex in an assumption-free manner rather than focusing 

on a predetermined subset of regions and connections.  

 

Results 

During an fMRI scan, 10 CP and 10 control subjects viewed separate blocks of images 

of emotional faces (angry, fearful), neutral faces, famous faces, unfamiliar faces and 

buildings (Avidan et al., 2014). To define an initial set of unbiased nodes (functional 

regions or clusters comprising the network) with which to explore topology and 

connectivity, face-selective (right FFA) and non-face selective (right LOC) seed regions 

were defined based on BOLD data from a separate group of 16 control subjects (see 

Methods). Using these seed regions, within each individual, two correlation maps 

were derived and a binary mask was constructed for each. These masks were then 

separately sub-divided into small, spatially constrained clusters with each cluster 

serving as a node for the network analyses.  This procedure resulted in large swaths 

of cortex sub-divided into nodes, each of which preserved the original "functional 

tagging" from the seed correlation analysis (i.e., face-selective voxels, orange color, 
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object-selective voxels, green color, or voxels that were common to both maps, blue 

color; see Methods for details on node definition, see Figure 1). 

 
Inter-subject functional correlation (ISFC) analysis  

To detect stimulus-locked changes in functional responses to faces in CP relative to 

controls, we used the inter-subject functional correlation (ISFC; see Methods), which 

calculates the inter-regional correlations in the brains of different individuals who 

viewed the same stimuli (Simony et al 2016). Simony et al. (2016) demonstrated that 

the ISFC method substantially increases the signal-to-noise (SNR) ratio in detecting 

shared stimulus-locked network correlation patterns by filtering out idiosyncratic 

intrinsic neural dynamics and non-neuronal artifacts (e.g., respiratory rate; motion) 

that can influence FC patterns within a brain but that are uncorrelated across the 

brains of different participants. Capitalizing on the high SNR of the ISFC procedure 

permits the construction of a fine-grained functional brain network even with a 

relatively small sample size as is the case in the present study and potentially in other 

situations of relatively rare disorders (see Figure 5 and Methods for ISFC workflow).  

We calculated the ISFC within the CP and the control groups using BOLD data 

activated in response to faces and buildings (see below). For comparison, we also ran 

the same analysis using a standard FC procedure. In the FC analysis, the response 

profile in each ROI was correlated with the response profile of all other ROIs within an 

individual. The analysis was repeated for each individual in each group and statistical 

significance for each edge was determined using t-test followed by FDR correction. 

We return to these results below. ISFC is similar in logic to FC, with one critical 

difference: instead of correlating the response profile within the brain of each 

individual, we calculated the correlation patterns across brains. Each experimental 

group (controls and CPs) was randomly split into 2 halves 1000 times (see split-group 

ISFC procedure in Materials and Methods) and the average non-thresholded networks 

for each group are presented in Figure 1a,b for visualization purposes. 

As is evident, the raw mean networks over the split-group ISFC of each group 

are visually similar. To evaluate the statistical differences of the network structure 

across the two groups, the networks were directly compared using a permutation test 

(see Materials and Methods for details). This resulted in a difference network in which 
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the edges indicate the significant difference between the two groups (either 

controls>CPs or CPs>controls). Non-significant edges were eliminated (see details of 

statistical analysis in Methods ISFC Formulation section and Figure 5).  

 The control>CP difference network revealed that control participants, but not 

CP, exhibited increased ISFC patterns from nodes in the vicinity of the ATL both to face 

and non-face selective nodes located throughout the visual cortex. This effect was 

substantial and apparent at all thresholds (see specific pattern of ATL ISFC in Table 2). 

(Figure 1 c, d). The group differences were further quantified using a measure of 'node 

degree', which quantifies the number of edges connecting to a node (Rubinov and 

Sporns, 2010). The degree scores of all nodes in the network were ranked in a 

descending order, and, of interest, the three nodes located in the ATL were ranked as 

the top 3 for the control subjects (see Figure 1c,d and Table 3a). Note that the ATL 

served as a hub connecting both face and non-face selective nodes (see Table 2). The 

node rankings confirm the centrality of the ATL in the face network of controls in 

contrast with that of CP, whose top 3 rankings include the right inferior temporal gyrus 

and the left lateral occipital cortex. 

 

The network obtained from the CPs>controls comparison revealed that, at a 

low-edge threshold, significant edges were located throughout the visual cortex, but, 

as the threshold was increased, edges from anterior regions were eliminated and the 

remaining significant edges were located only in posterior parts of the visual cortex 

(Figure 2 b). To further quantify this effect, the Y coordinates of the 3D MNI space 

were ranked in an ascending order and binned into 21 equally sized bins measuring 

distance parallel to the posterior-anterior commissure axis (the number of bins was 

chosen to be maximal with a constraint that each bin contains at least one node). The 

significance level of the posterior to anterior pattern was then quantified using the 

Spearman correlation between the Y coordinate bins and the nodes' degree. The 

degree value, at an edge difference threshold of 0, was then calculated for these bins. 

The results indicate that the lower Y coordinates (more posterior regions along the 

anterior posterior axis) were associated with higher degree values (rs = −0.63, P < 

0.005; Figure 2b), validating the greater posterior ISFC in CP versus controls. Examining 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 15, 2017. ; https://doi.org/10.1101/100479doi: bioRxiv preprint 

https://doi.org/10.1101/100479
http://creativecommons.org/licenses/by-nc/4.0/


the controls>CPs contrast revealed an opposite pattern, with greater anterior 

compared to posterior ISFC (rs = 0.73, P < 0.005; Figure 2a).  

Additionally, this analysis revealed face-specific dominance, such that the 

nodes that had the highest degree were face-selective. Specifically, higher ISFC 

patterns in the control group, compared to the CP group, were associated with face 

selective nodes. For this comparison, nine out of the top ten nodes (90%) were face-

related (ranked in descending order by degree score) (Table 3a), compared to an 

overall face node base rate of 35% (number of face nodes divided by overall number 

of nodes). The difference between the face-selective node rate in the control>CP 

contrast and the overall face nodes base rate was statistically significant χ²(1, 

n=20)=13.2, p<.001. Thus, the face network of the controls was associated with a 

higher number of face-tagged nodes compared with the face network of the CPs. 

When comparing the opposite contrast (CP>controls), no statistically significant 

difference was found in the face-selectivity of the nodes χ²(1, n=20)=2.74, p=n.s. In 

fact, four of the top ten nodes, of which only one was face specific, belonged to the 

lateral occipital cortex (one in the left hemisphere and three in the right) and six nodes 

belonged to the adjacent right inferior temporal cortex. 

Finally, given the known dominance of the right hemisphere in face processing 

(Haxby et al., 2000; Jonas et al., 2012; Parvizi et al., 2012; Rossion, 2014), we compared 

the network characterization across the two hemispheres by applying a Mann-

Whitney test on the node degree measure obtained from the controls>CP and 

CP>controls contrasts. While no significant difference was found for the controls>CP 

contrast in face-tagged nodes (Median = 36, Median =45.5 in right vs. left hemisphere 

U = 3702, p = n.s), examining the CP>controls contrast revealed that the degree values 

were greater for the right (Median = 23.5) than left hemisphere (Median = 2) in face-

tagged nodes, U = 2275, p = 0.0005, r =0.28. This indicates that, in the CP>controls, 

but not in the controls>CP contrast, greater ISFC was evident in the right versus left 

hemisphere in face-tagged nodes. This finding implies that the altered topological 

organization was more pronounced in the right than left hemisphere of the CPs in 

face-tagged nodes. 
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Figure 1 – Networks obtained using the ISFC approach 
 

 
a. Mean network obtained from the control group b. Mean network obtained 
from the CP group. These mean networks are shown for visualization purposes. 
For each group, networks are projected on three views of the brain (left and 
right lateral views and a ventral view). The colors of the nodes reflect their 
functional selectivity (face-selective, non-face selective, and nodes which are 
not selective to either of these stimuli). The size of the nodes is proportional 
to their degree (the larger the node, the greater its ISFC). The color of the edges 
reflects the weight of the connections such that darker connections have 
higher values. The same conventions are used in all figures. c. The difference 
network of controls>CPs. This comparison is presented using 0.3 edge 
threshold, which reflects the difference between the correlation coefficient 
values of the controls compared to the CP individuals. The ATL and the inferior 
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frontal gyrus are marked.  As is graphically depicted, the ATL serves as the main 
hub across thresholds for controls but not for CP. Three nodes, which comprise 
the ATL, were ranked in the top 10 ranks of degree scores (1-3; see Table 3a). 
d. Difference networks obtained from the comparison of CPs > controls. CPs 
evince hyper-ISFC in posterior visual regions. This is evident by the elimination 
of edges as the threshold increases and by the color spectrum of the anterior 
vs. posterior edges reflecting their weight.  

 

 

Figure 2 –ISFC correlation between degree and node location along posterior-
anterior axis 

a. Linear regression fit with a 95% confidence interval band between the degree 
measure of the controls>CPs network nodes, at minimum threshold, and the Y 
coordinate ascending rank order of each node binned into 21 equally sized bins (rs = 
0.73, P < 0.005). The x-axis of the graph denotes the Y coordinates of the 3D MNI space 
ranked in ascending order, the y-axis of the graph marks the degree value of each 
node.  As is evident, the higher the y-coordinate (more anterior), the higher the degree 
value. b. Linear regression fit with a 95% confidence interval band between the degree 
measure of the CPs>controls network nodes, at minimum threshold, and the Y 
coordinate ascending rank order of each node binned into 21 equally sized bins (rs = 
−0.63, P < 0.005). As is evident, the relationship is negative: the higher the y-
coordinate (more anterior), the lower the degree value. 

 

 

Functional correlation analysis 

We next compared the results obtained using ISFC to the results obtained using 

standard functional connectivity (FC) analysis. The difference in FC patterns between 

CP and the control subjects was small relative to the ISFC analysis. In accordance with 

our prediction, when comparing the controls to CPs, we observed the expected 

greater connectivity between the ATL and posterior regions. However, this effect was 

weak and was not evident following the application of the FDR multiple comparisons 

procedure (see Figure 3a, controls>CPs). Similar to the ISFC, the opposite contrast of 
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CPs>controls revealed hyper connectivity in posterior visual regions with a main hub 

in the vicinity of the LOC and inferior temporal cortex, although this was weaker. 

Critically, this effect was also evident following FDR correction (see Figure 3b, CPs> 

controls).  
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Figure 3 – Networks obtained using the FC approach  
 

 
a. The FC difference network of controls>CPs. This comparison reflects the difference 
between the FC correlation coefficient values of the controls compared to the group 
of CP individuals. The maps are presented following the application of the FDR 
correction (q<0.05). Note that the ATL related edges are not statistically significant 
after FDR correction. b. Difference networks obtained from the comparison of FC in 
CPs > controls.  
 

 

Severity of face recognition deficits and network topology in CP 

Thus far, the findings reveal that, relative to controls, the CPs exhibited atypical 

network topology with reduced ISFC to the ATL hub and increased ISFC more 

posteriorly, specifically to the LOC and inferior temporal cortex. To assess whether 
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these topological changes are functionally related to the severity of the 

prosopagnosia, we split the CP group into more mildly and more severely affected 

sub-groups, based on the behavioral scores on the CFMT (see Table 1) and repeated 

the analyses used above. Compared to controls, both the severe and mild CP sub-

groups had reduced ISFC patterns with the ATL at all thresholds (Table 5a and 6a). 

Unsurprisingly, the rankings of the ATL confirmed its centrality in the face network of 

the controls in contrast with each of the CP subgroups: also, comparisons of 

controls>severe CP and controls>mild CP contrast revealed greater anterior compared 

to posterior ISFC (rs = 0.88, P < 0.005 and rs = 0.85, P < 0.005 respectively). Contrasting 

each of the two CP groups against the controls indicates that more posterior regions 

along the anterior posterior axis are associated with higher degree values [CP 

severe>controls (rs = −0.48, P < 0.05); CP mild>controls (rs = −0.5, P < 0.05)]. Thus, we 

replicated the effect in both the severe and mild sub-groups and, similar to the 

comparison of the entire CP group to the controls, a posterior to anterior pattern 

emerged such that the more posterior a node, the higher its degree.   

A direct comparison of the mild versus the severe CPs revealed similar patterns 

of ISFC along the anterior to posterior axis (mild > severe rs = −0.38, p = 0.08, ns; Figure 

4a; severe > mild rs = 0.36,  p=0.1, n.s., Figure 4b). Also, although not statistically 

significant, the patterns of results are similar to those obtained for the controls vs. the 

entire CPs.  Specifically, the severe CPs>mild CPs contrast revealed face-specific 

dominance and, in the severe>mild CP group, higher ISFC patterns were associated 

with face-selective nodes (although it is worth noting that this is so even though the 

obtained network did not include the ATL). The percentage of face nodes out of the 

top 10 nodes (ranked in descending order by degree score) was 90% (Table 4b), 

compared to 35% overall (number of face nodes divided by overall number of nodes). 

This difference was statistically significant, χ²(1, n=20)=13.2, p<.001. Thus, greater 

severity of CP was associated with a higher number of face tagged nodes (Figure 4c). 

When comparing the opposite contrast (mild<severe CP), there was no statistical 

significance in the number of face tagged nodes, χ²(1, n=20)=9.89, p=n.s. 

Finally, to examine the right hemispheric dominance of the face tagged nodes, 

we applied a Mann-Whitney test on the node degree measure for each hemisphere 

obtained from contrasting the two groups and found a significant difference both for 
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the severe>mild CPs contrast (Median = 10, Median = 5 in right vs. left hemisphere U 

= 1333, p <0.05, r = 0.17) and the mild> severe CP contrast (Median = 180, Median 

=107 in right vs. left hemisphere U = 1377, p = 0.05, r = 0.16) in face tagged nodes. 

This finding suggests that the differences in the network organization between the 

two subgroups of the CP individuals are more prominent in the right compared to the 

left hemisphere in face tagged nodes.  

In sum, a direct comparison of the two CP subgroups revealed right 

hemispheric dominance of face-selective nodes in both cases but the two groups 

showed different topologies. Specifically, the mild CP group exhibited a trend towards 

a non-selective higher posterior ISFC pattern than the severe group and the severe CP 

group exhibited stronger face-related ISFC than the mild group. Importantly, in both 

contrasts, the obtained networks did not include the ATL. 
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Figure 4- Network topology in CP is related to severity 

 

a. The difference network obtained from the comparison of mild CPs > 
severe CPs. Conventions as in Figure 1. The mild CP group shows higher 
posterior ISFC compared to the severe CP group. b. Correlation between the 
degree measure of the mild CPs > severe CPs network nodes (rs = -0.38 
, p=0.08). c. The difference network from severe CPs > mild CPs. As is 
evident, higher connectivity patterns in the severe CP group, compared to 
the mild CP group, are associated with face selective nodes (severe CPs 
>mild CPs). Importantly, however, this network does not include the ATL. d. 
Correlation between the degree measure of the severe CPs > mild CPs 
network nodes (rs = 0.36 , p=0.1).  
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Estimation of the Signal to Noise Ratio of nodes 

To rule out the possibility that any differences in signal to noise ratio (SNR) across 

groups might account for differences in network topology, a SNR analysis was 

conducted on the mean preprocessed raw time series of the two localizer runs in each 

node separately for each group. The mean of the time series was divided by the raw 

time series standard deviation, such that each node was characterized by a single SNR 

value. For each node, an independent sample t-test was conducted to compare the 

differences between the SNR values of the CP and control groups while correcting for 

multiple comparisons using an FDR correction. Critically, no significant differences in 

the SNR values were obtained between CP and matched controls in any of the nodes 

thus excluding this potential confound. 

 

Moreover, that we observed hyper-correlation in CP relative to control subjects in 

posterior occipital cortex (i.e. higher reliability of stimulus locked visual responses 

across subjects as measured by ISFC), rules out the possibility that any differences in 

SNR across groups might account for differences in network topology. Rather, this 

finding indicates that the stimulus-locked activity patterns are reliable in both groups, 

despite the alterations in the network topology across the two groups.  

 

 

Discussion 

The study of individuals with CP is useful from both a basic science and a 

translational perspective. On the one hand, CP individuals provide a unique 

opportunity to examine the underlying network function of normal face processing 

while avoiding some of the pitfalls that arise when studying patients with frank lesions 

(and altered vasculature) to cortex and, on the other hand, characterizing the deficits 

in these individuals relative to controls elucidates the atypical profile of this 

neurodevelopmental disorder. Also, because face recognition appears to be 

accomplished via the coordinated activity of multiple nodes of a distributed neural 

network (Haxby et al., 2000; Fairhall and Ishai, 2007; Davies-Thompson and Andrews, 

2012; Gschwind et al., 2012; Joseph et al., 2012; Phillips et al., 2012; Pyles et al., 2013; 

Zhen et al., 2013), such a study provides the opportunity to determine whether a 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 15, 2017. ; https://doi.org/10.1101/100479doi: bioRxiv preprint 

https://doi.org/10.1101/100479
http://creativecommons.org/licenses/by-nc/4.0/


disrupted function of one or more of the nodes within this network leads to an altered 

organization of the network and, if so, to document the nature and topology of this 

altered organization. 

By isolating stimulus-locked neural responses using a novel ISFC analysis, the 

present study revealed large-scale alterations in the topological structure of the visual 

network in CP vs control subjects.  

We exploited an ISFC approach, which filters out intrinsic neural dynamics and 

non-neuronal artifacts that can influence FC patterns within a brain but are 

uncorrelated across brains of different participants (Hasson et al., 2009; Simony et al., 

2016). We aimed to characterize and contrast the normally functioning face network 

in healthy individuals with the face network of individuals with CP who are markedly 

impaired at face processing. The ISFC analysis revealed a unique pattern of anterior to 

posterior differences in the significance of nodes in the network of CPs vs. controls.  

Specifically, we documented hyper-connectivity in posterior visual areas in CPs vs. 

controls, and hypoconnectivity between the occipital areas and anterior temporal and 

frontal areas. Such alterations in the topology of the correlation patterns held for both 

the more severely and the more mildly affected CP subgroups. Interestingly, the 

milder subgroup evinced a higher number of edges than the severe CP group in the 

posterior aspect of the network, a point we take up for further discussion below. In 

additional, complementary analysis revealed face-specific dominance, reflected as 

higher degree nodes that are face selective (defined by a localizer) in the control group 

compared to the CP group. In fact, in the comparison of CPs>controls, six of the top 

ten nodes belonged to the right inferior temporal gyrus and three nodes belonged to 

the lateral occipital cortex (LOC), of which only a single node was face specific. Finally, 

face selective nodes exhibited greater ISFC in the right versus the left hemisphere in 

the network obtained from contrasting CPs and controls. This pattern may be related 

to the well-documented hemispheric dominance of face processing. Thus, those face 

selective nodes in the right hemisphere, which are known to be critical for normal face 

processing also exhibit greater deviation from normal connectivity when contrasting 

CP and controls. 
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The anterior temporal cortex 

Perhaps the most striking difference in the topology of the face network in the 

controls versus CPs concerns the differences in the connectivity to the anterior 

temporal lobe (ATL). The ATL is implicated in the integration of person-specific 

information (Kriegeskorte et al., 2007b; Simmons et al., 2009; Nestor et al., 2011; Yang 

et al., 2014a) and familiar people recognition (Gainotti et al., 2003; Gainotti, 2007). 

Specifically, damage to the left ATL is more associated with impaired representation 

of semantic information, while damage to the right ATL impedes the visual recognition 

of familiar faces (Gainotti, 2007). Based on both functional activation data, functional 

connectivity data (during task and at rest) and structural volumetric and connectivity 

findings, we have argued previously that an abnormality in the anterior temporal lobe 

and its connectivity may play a critical role in the neural basis of CP (Behrmann et al., 

2007; Avidan and Behrmann, 2009; Avidan et al., 2014). The abnormality of the ATL is 

evident in the current findings as well, and the analysis, conducted in an assumption-

free fashion revealed that the ATL was the most important hub that distinguished the 

network topology of the CPs and controls. Together, these findings point to abnormal 

structure, function and connectivity of this region in CP individuals  (but see Gomez et 

al., 2015; Song et al., 2015; Lohse et al., 2016). 

 

Altered organization of the face network in CPs 

Our findings indicate that the impaired ISFC of the ATL may result in hyper-ISFC 

of the face-selective nodes especially the more posterior nodes, as in the right inferior 

temporal gyrus and the LOC, in CP compared to controls, and to a greater degree in 

the right versus left hemisphere.  These alterations in topology offer a possible 

account for the face recognition deficits exhibited by CP individuals (Avidan et al., 

2011; Tanzer et al., 2013; Yang et al., 2014b). For example, the posterior hyper-

connectivity in CP, which is more evident in the right than left hemisphere in tandem 

with the residual, weak, connectivity with anterior regions may allow for some 

structural encoding of face stimuli derived from the immediate visual input (see 

Behrmann et al., 2005 for relevant behavioral findings). Although insufficient for facial 
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recognition and individuation of identity, this rudimentary processing may partially 

compensate for the failure to utilize the ATL and its connectivity (Yang et al., 2014a).   

Furthermore, in the current study, CP subjects exhibited greater LOC-related 

ISFC compared to normal subjects. Consistent with this finding, it has been 

demonstrated that individuals with autism spectrum disorder (ASD) who have 

selective deficits in face recognition show greater activation of the LOC (Schultz et 

al., 2000; Hubl et al., 2003). Numerous studies have shown that the LOC is associated 

primarily with object perception (Malach et al., 1995; Grill-Spector et al., 2001; Freud 

et al., 2015) and plays a major role in the processing of inverted faces, perhaps 

through object-like and feature-based processing (Rosenthal et al., 2016; Yovel and 

Kanwisher, 2005; Pitcher et al., 2011; Matsuyoshi et al., 2015).  

 Together, these findings offer a possible account for the fact that most CP 

individuals, despite their severe deficit in recognizing the identity of individual faces, 

are typically able to detect the presence of a face in a scene. Specifically, it is possible 

that the network edges located in posterior visual areas (e.g. LOC) and in the right 

hemisphere allow for the computation of face representations that are largely driven 

by the immediate visual input. This information may be relied on disproportionately 

by the CP individuals and perhaps serves as partial compensation for the failure to 

represent person-selective information which, in the normal brain is supported by the 

anterior temporal cortex and its connectivity (Gainotti, 2007, 2013; Fox et al., 2008). 

The current investigation does not allow us to infer causality, and thus, it remains to 

be determined whether the disconnection between the anterior and the posterior 

regions are the cause or the effect of the altered network organization.  

 

Is CP a heterogeneous disorder? 

A fundamental question in the characterization of CP is whether, within the CP 

population, we can distinguish between subgroups that may account for the variability 

often found across studies (McKone et al., 2007; Russell et al., 2009; Wilmer et al., 

2010). In the present study, we successfully uncovered differences between the 

network topology of the mild and severe subgroups when these were directly 

contrasted. These somewhat different profiles appear to account for the severity of 

the disorder. Specifically, while the network of hyper-connectivity patterns in the 
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more posterior areas of the mild CP group may serve to compensate for the lack of 

connectivity to the ATL, this altered organization is less pronounced in the severe 

group. Furthermore, it appears that the severe group utilizes the face selective nodes 

(but not the ATL) to a greater extent compared to the mild CP group (see Table 4b). 

The use of the face-selective nodes is potentially a less effective strategy for coping 

with the apparent lack of connectivity of the ATL and is perhaps related to the more 

severe behavioral profile. The current results in which network topology and behavior 

are associated, are correlational in nature, and, clearly, additional studies to 

determine casual relations between network topology and behavior are sorely 

needed.  

A final, related unresolved issue is whether the impairment in CP represents 

the lower end of the continuum of the normal distribution of face processing abilities 

or whether it is a separate phenomenon and, hence, a distinct disorder. The findings 

of a qualitatively different network in CPs compared to controls (rather than just a 

quantitatively different network) suggests that CP may indeed be a separate 

phenomenon. Further imaging studies are warranted in order to determine this critical 

issue.   

 

Conclusions 

To the best of our knowledge, these data provide the first demonstration of wide -

scale network topological differences in individuals with CP.  Utilizing the ISFC 

approach, the results validated previous atypical ATL connectivity findings in CP and 

enabled us to gain further insight into the altered network-wise configuration of 

individuals with CP. We propose that investigations of the topology of other 

neurodevelopmental disorders might benefit from the analytic approach developed 

here and that insights into their underlying neural mechanisms might also be gained.    

 

Materials and Methods 

A requirement for network analysis is the initial formulation of components of the 

network as a set of nodes and edges, and there are many ways in which this can be 

accomplished (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). Below we 

detail the specific approach we have taken: 
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Definition of the network edges 

A standard measure which is often used in fMRI studies for characterizing the edges 

in a functional network is the correlation coefficient between pairs of nodes identified 

within each subject (Smith et al., 2011). This approach was applied in the present study 

as well. However, despite its popularity, a major limitation of this measure, which 

captures within-subject synchronous activity, often referred to as functional 

connectivity, is that spontaneous intrinsic neuronal activity cannot be reliably 

separated from the evoked activity associated with the task (Greicius et al., 2003; Fox 

and Raichle, 2007; Simony et al., 2016). Additionally, non-neuronal artifacts such as 

respiratory rate and motion might also affect the results, usually by decreasing the 

signal to noise ratio (SNR). Indeed, in the preset study we were not able to 

demonstrate some of the results following correction for multiple comparison due to 

the limited SNR of the approach. 

A possible partial solution to these limitations, formulated to increase the 

network inference SNR (Simony et al., 2016),  relies on network construction using 

inter-subject functional correlation (ISFC) rather than exploiting the more widely used 

within-subject functional correlations. Briefly, for each pair of preselected regions of 

interest (ROIs) or nodes, correlation coefficients are computed between each 

participant and the mean signal of the remaining group without this particular 

participant (leave-one-out), and then correlations are averaged across all pairwise 

iterations. As the correlations are calculated between different participants, any 

intrinsic activity and artifacts, which are not correlated between participants, are 

cancelled out and, consequently, only the task-induced activity of interest serves as 

the basis of the correlations, resulting in an improved SNR.  

The present study is conducted on individuals with CP, a relatively uncommon 

disorder and, hence, sample size is inherently limited, especially when contrasting the 

group size against the large number of nodes and edges (i.e., the number of variables 

outweighs the number of samples). This situation is typical in investigations of special 

populations and so we used a version of the inter-subject functional correlation (ISFC) 

(Hasson et al., 2009; Simony et al., 2016) modified to meet the constraints of the 

present scenario. 
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ISFC Formulation 

The current variant of ISFC, designed to take a small sample size into account, is 

composed of the following steps: First, each experimental group (e.g. controls and 

CPs) is randomly split into 2 halves and the raw signal for each node is averaged across 

all participants in each split. Second, for each experimental group, correlation 

coefficients are calculated between each pair of independent nodes, such that each 

node is drawn from a complementary split. Third, the correlation coefficients are 

transformed by Fisher z-transformation.  Fourth, the groups’ positive correlation 

coefficients are compared. Fifth, this process is iterated N times using a bootstrap 

analysis to yield the null distribution and hence serves as a benchmark for deviation 

(where N is a large number; in the current study N is 1000). Finally, an empirical 

significant difference is calculated between the groups as the number of times that 

each correlation coefficient was larger for each group for each pair of nodes divided 

by the number of bootstrap iterations, while correcting for multiple comparisons using 

the false discovery rate [qFDR<0.005; (Benjamini and Hochberg, 1995)] procedure (see 

ISFC workflow in Figure 5). 
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Figure 5 – ISFC Analysis workflow 
 

 
a. Each group of individuals (CP and controls) is randomly split into 2 halves 
b.  The raw signal for each node is averaged in each split c. Correlation 
coefficients are calculated for each pair of nodes, such that each pair of 
nodes consists of one node from every split (the correlation coefficients 
are transformed by Fisher z-transformation).  d. The correlation 
coefficients are compared across the groups e.  This process is iterated N 
times using a bootstrap analysis (where N is a large number, in the current 
study 1000). Finally, an empirical significant difference is calculated 
between the groups as the number of times each correlation coefficient 
was larger for each group for each pair of nodes divided by the number of 
bootstrap iterations, while correcting for FDR (nodes that are group 
A>group B and vice versa). 
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A priori localizer for node definition 
Participants 

Sixteen healthy, right-handed individuals (8 females) with normal or corrected-to-

normal vision participated in the experiment (mean age ± SD = 24.5 ± 1.11). The data 

from three additional participants were discarded due to excessive noise. The 

experiment was approved by the Helsinki committee of the Soroka Medical Center, 

Beer Sheva, Israel and all participants signed informed consent. 

MRI setup 

Participants were scanned in a 3T Philips Ingenia scanner equipped with a standard 

head coil, located at the Soroka Medical Center, Beer Sheva, Israel. fMRI BOLD 

contrast was acquired using the gradient-echo echo-planner imaging sequence with 

parallel acquisition (SENSE: factor 2.8). Specific scanning parameters were as follows: 

whole brain coverage 35 slices, transverse orientation, 3 mm thickness, no gap, 

TR=2000 ms, TE = 35 ms, flip angle=90°, FOV=256×256 and matrix size 96×96. High-

resolution anatomical volumes were acquired with a T1-weighted 3D pulse sequence 

(1×1×1 mm3, 170 slices).  

Visual stimulation 

Stimuli were presented using the E-prime 2.0 software (Psychology Software Tools, 

Inc., Pittsburgh, PA, USA) and projected onto an LCD screen located in the back of the 

scanner bore behind the subject’s head. Participants viewed the stimuli through a 

tilted mirror mounted above their eyes on the head coil. 

Localizer scan 

A standard blocked-design localizer experiment was used to define face and non-face 

selective regions. Stimuli were presented in 10 sec blocks of famous faces, unfamiliar 

faces, buildings, daily objects, or scrambled objects (1 image was presented twice as 

part of the task) interleaved by 6s rest periods. Within each block there were 9 images. 

Each image was presented for 800 ms followed by 200 ms inter-stimulus interval and 

participants performed a two forced alternative choice task (see detailed description 

of the protocol in (Avidan et al., 2014)). The data from these participants were used 

to identify the nodes or regions to be used in the analysis of the CP individuals. 
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Main experimental scans 

Participants 

All participants had normal or corrected-to-normal vision. The experiment was 

approved by the Institutional Review Boards of Carnegie Mellon University and the 

University of Pittsburgh, and all participants provided informed consent. 

Congenital Prosopagnosia 

Ten healthy [8 right-handed as confirmed by the Edinburgh Handedness inventory 

(Oldfield, 1971)] individuals diagnosed with CP (8 females, 2 males), aged between 18 

and 62 years, participated in this study (mean age ± SD = 40.04 ± 15.03). None of the 

CP individuals had any discernible lesion on conventional MRI scanning, and none had 

a history of any neurological or psychiatric disease by self-report. All CP participants 

reported substantial lifelong difficulties with face processing. The data for 7 of the 10 

CPs have been reported previously (see detailed description in Table 1). Detailed 

behavioral profiles were obtained and only those participants whose performance fell 

below 2 standard deviations of the mean of the control group on at least 2 of the 4 

diagnostic measures were included [Cambridge Face Memory Test (CFMT), Famous 

face questionnaire, Cambridge Face Perception Test (CFPT), and a task measuring 

discrimination of novel upright and inverted faces; see description of the behavioral 

tests and details regarding prior publications for each subject in Table 1]. 

Matched controls 

Ten healthy individuals, aged 25–62 years (mean age ± SD = 39.3 ± 13.4), who did not 

report having any difficulties with face processing participated in the imaging 

experiment. The CP and age-matched controls did not differ in age (p = 0.84). There 

was a significant difference between the control subjects and the CP group on their 

performance in the famous faces questionnaire (t(15) = 6.09, p<0.0005) and CFMT 

(t(15)= 5.54, p <0.0005; see Table 1 for mean performance), confirming the behavioral 

deficit in the CPs included in this study.  

 

Imaging Experiment 

Visual Stimulation 

Visual stimuli were generated using the E-prime IFIS software (Psychology Software 

Tools, Inc., Pittsburgh, PA, USA) (for details see (Avidan et al., 2014)). 
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MRI Setup 

Subjects were scanned either in a 3T Siemens Allegra scanner, equipped with a 

standard head coil (5 CPs, 4 controls) or in a 3T Siemens Verio scanner equipped with 

a standard head coil (5 CPs, 6 controls), using similar scanning parameters. For 

detailed description of the specific scanning parameters and acquisition order during 

the scanning session see (Avidan et al., 2014).  

Visual Stimulation Experiment 

Stimuli consisted of 10 images of emotional faces (angry, fearful), neutral faces, 

famous faces, unfamiliar faces (Avidan and Behrmann 2008) or buildings, presented 

in separate 10 s blocks. Blocks were separated by 6s rest periods and there were 7 

repetitions of each block type. Each image was presented for 800 ms followed by 200 

ms inter-stimulus interval; participants performed a 2 alternative-forced choice task 

during scanning. Detailed description of the stimuli can be found in (Avidan et al., 

2014). 

Data analysis 

Preprocessing of anatomical data  

Anatomical scans were first preprocessed using the FSL anatomical processing script 

(fsl_anat) which includes the reorientation of the images to the standard (MNI) 

orientation (fslreorient2std), automatic cropping of the head from the image 

(robustfov), bias-field correction (RF/B1-inhomogeneity-correction) (FAST), 

registration to standard space (linear and non-linear) (FLIRT and FNIRT), brain-

extraction (FNIRT-based), tissue-type segmentation (FAST) and subcortical structure 

segmentation (FIRST) (Jenkinson et al., 2012). 

Preprocessing of functional data  

Preprocessing was conducted using dedicated Nipype pipeline (Gorgolewski et al., 

2011). We utilized different components from various neuroimaging software 

packages including SPM8 (Penny et al., 2011), FreeSurfer (Fischl, 2012) and  FSL 

(Jenkinson et al., 2012) as well as in-house code written in Python.  

The preprocessing consisted of volume realignment of the functional scans (6 

directions) to the mean EPI using SPM8 (Friston et al., 1996); artifact detection of 

functional scans bounded by GM mask which marked as outliers images with 
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intensities greater than 3 standard errors from the mean intensity and images with 

normed composite motion differences between successive motion volumes of 1 

(Gorgolewski et al., 2011); registration of functional to anatomical scans using FSL's 

BBR registration procedure [epi_reg; (Greve and Fischl, 2009; Jenkinson et al., 2012)]; 

regressing out motion of CSF and WM first 6 components of PCA outliers [compcorr; 

(Behzadi et al., 2007)]; detrending (removal of 2nd order polynomials);  normalization 

to non-linear MNI space using transformation matrices which were obtained from 

FSL's anatomical preprocessing script; and, finally, spatial smoothing (6 mm) using 

SPM8 (Penny et al., 2011). [For related pipeline analyses used in other studies, see 

(Smallwood et al., 2013; Schaefer et al., 2014)].  

 

Definition of nodes  

In order to conduct a network analysis, one needs to define a sufficiently large 

number of nodes that, in themselves, are relatively small. To gain a finer resolution of 

the network while maintaining the functional origin of each node, a seed-based 

correlation mask was constructed based on all voxels activated by seeds in the FFA 

and LOC located in the right hemisphere.  These high-order visual regions were 

selected as seeds due to their well-documented roles in face and non-face processing 

respectively.   

A SPM8 random-effects group analysis was conducted, such that in a first-level 

analysis, contrasts between stimulus categories were calculated and these were then 

used in a second-level analysis with subject as a random factor. The analysis included 

high-pass filtering with a cutoff of 1/128 Hz and a first-order autocorrelation 

correction. Right FFA and right LOC seeds were initially marked based on the contrasts 

of faces>(houses and objects) and (houses and objects)>faces using xjview, an SPM 

add-on tool for defining ROIs, after FDR<0.05 correction (Cui et al., 2011). The selected 

voxels (see below for selection procedure) were later sub-divided into small, spatially 

constrained clusters. This procedure preserved the original functional specificity of 

each voxel with "functional tagging" marking the functional preference of each node.  

Using a custom Python script, voxels obtained from the functional localizer 

scans were limited to a gray matter mask based on the intersection of all the individual 

gray matter masks in MNI space (Abraham et al., 2014). Then, the time course was z-
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scored and a mean time course for all localizer runs averaged across all subjects was 

created. Using the mean time course, two separate seed-based correlation maps 

based on the right FFA and LOC initial seeds were defined and binarized using a 0.5 r 

value threshold. A union between the two maps was created and a clustering analysis 

was performed using the scikit-learn Ward Agglomeration algorithm (Pedregosa et al., 

2011) resulting in nodes which are either face selective, non-face selective, and nodes 

which are equally selective for both of these stimuli (i.e. voxels which showed an 

overlap for both the FFA and LOC seeds at r>0.5).  The upper bound of spatially 

constrained sub-regions was set to 500 and was determined by practical reasons with 

a compromise between the need for a finely grained resolution of nodes, on the one 

hand, and the requirement to avoid regions that are too small and might result in poor 

signal to noise ratio, on the other. Hence, nodes with less than 10 voxels were 

eliminated from the analysis, resulting in 415 nodes for the obtained networks. The 

total number of voxels which were removed due to this threshold of a minimum 

cluster size was 313 voxels out of 13407 (eliminated nodes had 3.86 voxels on average 

with a 2.42 standard deviation, while remaining nodes had 31.55 ± 18.4 voxels on 

average). Of note is that one possible outcome of this unsupervised clustering analysis 

is that more than a single node can reside within the "classical" functional definition 

(contrast based definitions) of a node such as for example, within the LOC or the FFA. 

This will be evident in the Results section when the characteristics of the nodes are 

specifically described. Visualization of networks was done with custom Python script 

utilizing Nilearn library (Abraham et al., 2014). 

 

Definition of edges  

Standard functional connectivity (FC) 

For each subject and localizer run, the time course of each of the nodes was extracted 

after standardization (zero mean and unit variance) and high-pass filtered using a 

cutoff of 1/128 Hz.  Correlation matrices were constructed for each run and each 

subject using pairwise Pearson correlation coefficients between each pair of nodes 

and a Fisher r-to-z-transformation was applied to each edge. Additionally, a z 

normalization was applied across all correlation coefficients for each subject to 

remove any subject level global effects. The two localizer correlation matrices were 
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averaged for each subject. An independent-samples t-test was conducted to compare 

each edge in the CP and control group while correcting for FDR (q<0.05). The outcome 

of this procedure are two networks which capture the significant differences in FC 

between Controls>CPs and the reverse, CPs>controls.   

 

ISFC 

Split Group analysis based to the main experimental scans  

For each subject and localizer run, the time course of each of the nodes defined in the 

separate localizer scan was extracted after standardization (zero mean and unit 

variance) and high-pass filtered using a cutoff of 1/128 Hz. The two localizer scans 

were averaged. Split group analysis (ISFC) was performed on the average time course 

while contrasting the CP and matched controls group.  

 
Construction of difference networks  

Two difference networks which capture the significant difference in ISFC between 

Controls>CPs and CPs>controls were constructed. This was done for each of these 

comparisons separately in the following manner: Using the ISFC procedure, any edge 

that was not empirically significantly different between the two groups across the 

1000 bootstrapped iterations, while correcting for FDR, was removed from the 

analysis and was set to zero. For visualization purposes, all the remaining significantly 

different edges were given a weight that corresponds to the mean value of the 

difference between the different groups (Controls>CPs and CPs>Controls) across all 

1000 iterations of the ISFC (See Figure 1 and Figure 5 for ISFC workflow).  
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Table 1 – CP behavioral scores ordered by severity as indicated by 
performance on the CFMT  

CFMT (total) Famous faces 

questionnaire 

Age Sex  Participant  

  Z- score % corr. 

-4.15 28 -4.88 20 18 F  BL Severe 

CP -3.89 30 -4.92 16 29 F  BQ 

-3.5 33 -0.69 75 49 F  KG 

-3.23 35 -1.77 60.7 48 F  ON  (Avidan 

et al., 2014) 

-3.11 36 -1.64 62.5 50 M  MT 

(Nishimura et 

al., 2010), 

(Avidan et al., 

2011), 

(Behrmann 

and Avidan, 

2005), 

(Thomas et 

al., 2009), 

(Avidan and 

Behrmann, 

2008), 

(Humphreys 

et al., 2007)  , 

(Behrmann 

et al., 2007), 

(Avidan et al., 

2014) 

-2.58 40 -2.91 45.7 23 F  WA 

(Nishimura et 

al., 2010), 

(Avidan et al., 

2014) 

Mild 

CP 

-2.58 40 -3.12 42.9 67 F  KE (Avidan et 

al., 2011), 

(Thomas et 

al., 2009), 

(Avidan et al., 

2014) 
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-2.45 41 -2.85 46.4 38 F  TD 

(Nishimura et 

al., 2010), 

(Avidan et al., 

2011), 

(Avidan et al., 

2014) 

-1 52 -1.77 60.7 50 F  MN 

(Nishimura et 

al., 2010), 

(Avidan et al., 

2014) 

-0.21 58 -2.18 55.3 32 M  BT (Avidan et 

al., 2011), 

(Avidan et al., 

2014) 

 39.3 

± 

9.41 

 48.52 ± 

18.72 

40.4± 

15.03 

  CP 

 Mean ± s.d 

 58.28 

± 

5.87 

 91.57±6.24 39.3 

± 

13.4 

 

  Control 

 Mean ± s.d 

 

The table shows the age and gender of participants and their performance (raw values and z-normalized 

scores relative to a large control group) on the famous face questionnaire and CFMT. Note that 7 of the 10 

CPs have participated in previous behavioral (3 CPs), and imaging (7 CPs) studies; additional behavioral 

measures for the CP individuals can be found in these references. Specific details regarding diagnostic and 

inclusion criteria can be found in the Materials and Methods section and in the related studies. The average 

performance on the famous faces questionnaire and the CFMT of the controls who participated in the 

present study is also provided (t-test comparing performance across the CP and the controls, for famous 

faces questionnaire p < 0.0005 and CFMT p < 0.0005). 

  

  
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Table 2 - Coordinates of the ATL nodes, and the calculated values of the within 
module degree and participation coefficient 

Number 

Of Voxels 

MNI center 

coordinates  

Within 

module 

degree 

Participation 

coefficient 

23 42, -14, -26 5.03 0.62 

13 40, -10, -32 4.40 0.60 

20 40, -12, -28 5.62 0.62 

Voxels 

Sum:  

55 

40, -10, -32 Weighted 

Mean: 

5.09 

Weighted 

Mean: 

0.61 
 

Coordinates of the ATL are in line with (Rajimehr et al., 2009; Pyles et al., 2013). To assess whether the differences 

are specific to face selective nodes, the ratio of face-selective nodes and non-face selective nodes connected to 

the ATL nodes was quantified using within-module degree and participation coefficient. Within- module degree 

measures the ISFC level of a node within its module. In this analysis a module is defined as one of the three types 

of functional tags (faces, non-faces and overlap). Note that this definition is different from the graph theoretical 

modularity measure as used in the first section of the results. The participation coefficient measures the inter-

module diversity of the nodes' connections, meaning how much a node is connected not only within its own 

module but across modules (Guimerà and Nunes Amaral, 2005).   

This resulted in a within module degree weighted average of 5.09 and a participation coefficient weighted average 

of 0.61 (Table 2). Values greater than 2 are considered as a "module hub". Additionally, "module hubs" with a 

participation coefficient between 0.3 and 0.75 are treated as "connector hubs", that is hubs with many connections 

to most of the other modules (Guimerà and Nunes Amaral, 2005). Importantly, based on these standard values, 

the differences between controls and CPs assigned to the ATL are not a priori face specific.  
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Table 3 - Rank of top 10 nodes obtained from the comparisons of CP and the 
control group: 

a. Controls>CPs b. CPs>Controls 

Rank Region Name Rank Region Name 

1,2,3 Anterior temporal Cortex 

(faces) 

1,3,7,8,9,10 Right inferior temporal 

gyrus (non-faces) 

4,8 Left inferior frontal gyrus 

opercular part (faces) 

2 Left lateral occipital cortex 

(non-faces) 

5 Left TOS (non-faces) 4,6 Right lateral occipital 

cortex (non-faces) 

6 Right FFA (faces) 5 Right lateral occipital 

cortex (faces) 

7,10 Right inferior frontal gyrus 

opercular part (faces) 

 

9  Amygdala left (faces) 
 

The 10 nodes with the highest node degree obtained from the Controls>CPs (a.) and CPs>Controls (b.)  

difference networks.  Anatomical locations, which are based on "the atlas of human brain" (Mai et al., 2008) 

and validated by an expert are provided for each node. Note that in the controls>CP network most of the nodes 

were face selective, while in the CP>controls network, only a single node was face selective.  
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Table 4 - Rank of nodes obtained from the comparison mild and severe CP sub-
groups: 

a. Mild>Severe b. Severe>Mild 

Rank Region Name Rank Region Name 

1 Left Fusiform gyrus (faces) 1,2,8 Right inferior frontal gyrus 

opercular part (faces) 

2,3,5 Left Fusiform gyrus (non-

faces) 

3,4,5,6 Right inferior temporal gyrus 

(faces) 

4 Left lateral occipital cortex 

(non-faces) 

7 Right lateral occipital cortex 

(faces) 

6 Right Middle temporal gyrus 

(faces) 

9 Right Occipital Fusiform 

gyrus (faces) 

7 Right lateral occipital cortex, 

inferior division (non-faces) 

10 Left lateral occipital cortex 

(non-faces) 

8 Right TOS (non-faces)  

9 Left TOS (non-faces) 

10 Left lateral occipital cortex 

(non- faces) 
 

The 10 nodes with the highest node degree obtained from the mild>severe (a.) and severe>mild (b.)  CP sub-

groups difference networks.  Anatomical locations, which are based on "the atlas of human brain" (Mai et al., 

2008) and validated by an expert are provided for each node. 
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Table 5 - Rank of nodes obtained from the comparison controls vs mild CP sub-
group: 

a. Controls>Mild b. Mild>Controls 

Rank Region Name Rank Region Name 

1,2,3 Anterior temporal Cortex 

(faces) 

1,2,3,4,5,6,9 Right lateral occipital cortex 

(non-faces) 

4 Right FFA (faces) 7 Right Superior Temporal 

Sulcus  (faces) 

5 Right Fusiform gyrus (non-

faces) 

8 Right lateral occipital cortex 

(faces) 

6,8 Right inferior frontal gyrus 

opercular part (faces) 

10 Left Superior Temporal 

Sulcus  (faces) 

7 Left TOS (non-faces)   

9 Superior parietal lobule (non-

faces) 

 

10 Left Fusiform gyrus (non-

faces) 

  
 

The 10 nodes with the highest node degree obtained from the controls>mild CPs (a.) and mild CPs> controls (b.) 

difference networks.  Anatomical locations, which are based on "the atlas of human brain" (Mai et al., 2008) 

and validated by an expert are provided for each node. 
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Table 6 - Rank of nodes obtained from the comparison controls vs severe CP sub-
group: 

a. Controls>Severe b. Severe >Controls 

Rank Region Name Rank Region Name 

1,2,3 Anterior temporal Cortex 

(faces) 

1 Left lateral occipital cortex 

(non-faces) 

4 Left inferior frontal gyrus 

opercular part (faces) 

2,4,5,6,8 Right inferior temporal gyrus 

(non-faces) 

5 Left Fusiform gyrus (faces) 3 Left Occipital pole (non-

faces) 

6,9 Left Fusiform gyrus (non-

faces) 

7,10 Right lateral occipital cortex 

(faces) 

7 Right Fusiform gyrus (non-

faces) 

9 Right lateral occipital cortex 

(faces) 

8 Right inferior frontal gyrus 

opercular part (faces) 

 

10 Right Fusiform gyrus (faces) 

  
 

The 10 nodes with the highest node degree obtained from the (a.) controls> severe (b.) severe>controls groups 

difference networks.  Anatomical locations, which are based on "the atlas of human brain" (Mai et al., 2008) 

and validated by expert are provided for each node. 
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