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Abstract

Archaeogenomic research has proven to be a valuable tool to trace migrations of historic
and prehistoric individuals and groups, whereas relationships within a group or burial
site have not been investigated to a large extent. Knowing the genetic kinship of
historic and prehistoric individuals would give important insights into social structures
of ancient and historic cultures. Most archaeogenetic research concerning kinship has
been restricted to uniparental markers, while studies using genome-wide information
were mainly focused on comparisons between populations. Applications which infer the
degree of relationship based on modern-day DNA information typically require diploid
genotype data. Low concentration of endogenous DNA, fragmentation and other
post-mortem damage to ancient DNA (aDNA) makes the application of such tools
unfeasible for most archaeological samples. To infer family relationships for degraded
samples, we developed the software READ (Relationship Estimation from Ancient
DNA). We show that our heuristic approach can successfully infer up to second degree
relationships with as little as 0.1x shotgun coverage per genome for pairs of individuals.
We uncover previously unknown relationships among prehistoric individuals by applying
READ to published aDNA data from several human remains excavated from different
cultural contexts. In particular, we find a group of five closely related males from the
same Corded Ware culture site in modern-day Germany, suggesting patrilocality, which
highlights the possibility to uncover social structures of ancient populations by applying
READ to genome-wide aDNA data.

Introduction 1

An individual’s genome is a mosaic of different segments inherited from our various 2

direct ancestors. These segments, shared between individuals, can be referred to as 3

identical by descent (IBD). Knowledge about IBD segments has been used for haplotype 4

phasing [1, 2], heritability estimation [3, 4], population history [5], inference of natural 5

selection [6] and to estimate the degree of biological relationship among individuals [7]. 6

A number of methods have been developed to estimate the degree of biological 7

relationship by inferring IBD from SNP genotype or whole genome sequencing data. 8

The methods for estimating relationship levels implemented in PLINK [8], SNPduo [9], 9

ERSA [10,11], KING [12], REAP [13] and GRAB [14] greatly benefit from genome wide 10

diploid data, information about phase, recombination maps and population allele 11
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frequency, and are sometimes able to successfully infer relationships up to 11th 12

degree [11]. 13

Knowing whether a pair of individuals is directly related or not, and estimating the 14

degree of relationship is of interest in various fields: Genome-wide association studies 15

and population genetic analyses often try to exclude related individuals since they do 16

not represent statistically independent samples; in forensics, archaeology and genealogy, 17

individuals and their relatives can be identified based on DNA extracted from human 18

remains [15, 16]; Breeders and conservation biologists are interested in the relatedness of 19

mating individuals [17,18]. Current methods present significant limitations for the 20

analysis of degraded samples as they rely on diploid genotype calls, low proportions of 21

missing data and sometimes even phase information. Especially in the fields of forensics 22

and archaeology, postmortem damage results in incomplete data due to low 23

concentrations and fragmentation of endogenous DNA in the sample [19–21]. In 24

archaeology, the analysis of IBD has the potential to provide an independent means to 25

test kinship behavior and social organization [22], but current methods would be 26

restricted to exceptionally well-preserved samples. In forensic science and practice, the 27

dominant approach has been to type several short tandem repeat (STR) markers, which 28

in most cases provide sufficient information for relatedness assessment, but the STRs 29

might be hard to type in degraded samples [23]. In addition to nuclear STRs, 30

mitochondrial and Y-chromosome haplogroups have been widely used to infer family 31

relationships (e.g. [15, 16,24,25]), although they can only exclude certain direct 32

relationships since most mitochondrial and Y-chromosome haplogroups are relatively 33

common among unrelated individuals. These uniparental markers can be typed from 34

degraded samples, and can be used to exclude maternal or paternal relationships, but 35

not to infer the actual degree of relationship. Genome-wide data, however, can be 36

obtained from degraded samples at a higher success rate than STRs and it can be used 37

to confidently identify individuals [26]. 38

Single Nucleotide Polymorphism (SNP) data can be obtained from genotyping 39

experiments (e.g. SNP arrays or RAD sequencing), targeted capture [27], and 40

whole-genome shotgun sequencing (e.g. [28, 29]). The field of ancient DNA has 41

developed rapidly over the last few years and allowed pivotal studies of the population 42

history of Europe [27–37] and the peopling of the Americas [36,38,39]. However, both 43

whole-genome shotgun sequencing (e.g. [29, 31,32]) and genome-wide SNP capture 44

(e.g. [27, 33]) usually achieve coverages <1x per informative site for most individuals 45

which makes diploid genotype calls at all sites virtually impossible. Methods to infer 46

relationships, however, rely on such ideal data to identify IBD blocks which is a major 47

limitation for applying these methods to ancient DNA data. 48

However, even low coverage data contain information about the degree of 49

relationship. To utilize this information, we developed READ (Relationship Estimation 50

from Ancient DNA), a heuristic method to infer family relationships up to second 51

degree from samples with extremely low coverage. The method is tested on publicly 52

available data with known relationship, which we sub-sample to resemble the properties 53

of degraded samples. We also apply our method to a number of ancient samples from 54

the literature and confidently classify individual pairs as being related. 55

Results 56

Method Outline 57

The input for READ are a set of TPED/TFAM files [8] containing genotype calls for a 58

population. The biallelic SNP sites in that file would usually be from some externally 59

ascertained SNP panel (e.g. Human Origins array or 1000 genomes) and all SNPs are 60
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assumed for be pseudo-haploid (i.e. one randomly sampled allele per individual and site) 61

as the low coverage in aDNA studies normally does not allow to call heterozygous 62

genotypes. We then divide the genome into non-overlapping windows of 1 Mbps each 63

and for each pair of individuals calculate the proportion of non-matching alleles inside 64

each window P0. Similar to [40,41], the genome-wide distribution of P0 is then 65

normalized using the average P0 of an unrelated pair of individuals which accounts for 66

effects of SNP ascertainment and population diversity. Depending on the normalized 67

proportion of shared alleles, each pair of individuals is classified as unrelated, 68

second-degree (i.e. nephew/niece-uncle/aunt, grandparent-grandchild or half-siblings), 69

first-degree (parent-offspring or siblings) or identical individuals/identical twins (Fig. 1). 70

As a method with the goal to classify pairs of individuals, READ always outputs the 71

best fitting degree of relationship. To assess the certainty of each categorization, the 72

distance to the classification cutoffs are expressed as multiples of the standard error of 73

the mean (Z). 74

Individual 1 
SNPs 

Individual 2 
SNPs vs

P0 Fraction for 1MB 
windows

Genome-wide 
distribution of P0 

values

Normalization
Average P0 of 
unrelated pair

Normalized average P0 >= 0.9 Unrelated

Second Degree

First Degree

Identical Twins

Normalized average P0 >= 0.8

Normalized average P0 >= 0.65

Normalized average P0 < 0.65

Comparison

Estimation

Classification

Fig 1. Outline of the general READ workflow to estimate the degree of
relationship between two individuals.

Simulations based on modern data with known relationship 75

READ’s performance was tested on 1,326 individuals of 15 different populations from 76

the phase 3 data of the 1000 genomes project [42]. A total of 86,336 pairwise 77

comparisons were tested. The rates of false positives (unrelated individuals classified as 78

related) and false negatives (related individuals classified as unrelated) are highly 79

dependent on the amount of data available for pairwise comparison. READ showed an 80

overall good performance with false negative and false positive rates below four percent 81

for as little as 1,000 overlapping SNPs (Fig. 2A). Fig. 3 shows how these SNP numbers 82

would relate to sequencing coverages of the two individuals compared. The proportion 83
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of related individuals that were classified as related but not to the correct degree 84

(”Wrong degree”) increased with lower numbers of overlapping SNPs. Separating the 85

error rates between first and second degree relatives shows that most of this increase is 86

due to first degree relatives classified as second degree relatives when the number of 87

SNPs is low (Fig. 2B). False positive rates are low for both degrees of relationship and 88

false negative rate is below one percent for first degree relatives (Fig. 2B and C). The 89

rate of false negatives is considerably high for second degree relatives and it increases up 90

to 39% for low numbers of SNPs (Fig. 2C). 91

A B C

Fig 2. Simulation based estimates of error rates for different numbers of
SNPs. The analysis is based on pairs of individuals with known degree of relationship
in the 1000 genomes data. (A) All degrees of relationship, (B) only first degree relatives
and (C) only second degree relatives. Pairs known to be related which are classified as
the wrong degree are shown as ”Wrong degree” (e.g. a pair of first degree relatives is
classified as second degree relatives).

Further complications in the analysis of empirical aDNA data are sequencing and 92

mapping errors, contamination and post-mortem damage. Ultimately, these issues will 93

increase the proportion of wrongly called alleles at SNP sites. To see the effect of such 94

genotyping errors, we repeated the simulations with certain error rates meaning that 95

alleles were randomly changed with a probability corresponding to the defined 96

genotyping error rate. The results of this simulation are shown in Fig. 4. Essentially, 97

wrongly called alleles lead to an overestimation of genetic distance between individuals. 98

As a consequence, pairs of individuals tend to get classified into more distant categories 99

which can be seen by an increase in the proportion of pairs classified as wrong degree 100

and an extremely high false negative rate for higher rates of genotyping error. False 101

positive rates are not affected by wrongly called alleles. Genotype error rates ≤ 5% still 102

seem to produce acceptable false negative rates showing how important it is to keep 103

such errors low in empirical studies. Illumina sequencing has error rates of less than 104

1% [44–46] and careful data curation as well as filtering (see Discussion) should be able 105

to minimize the impact of other sources of genotyping errors. 106

Relationships among prehistoric Eurasians 107

To investigate READ’s performance on empirical aDNA data, we analyzed a large 108

published genotype data set of 230 ancient Eurasians from the Mesolithic, Neolithic and 109

Bronze Age periods [33]. In accordance with the original publications [27,29,33], READ 110

inferred RISE507 and RISE508 to be the same individual and all nine known 111

relationships were correctly identified as first degree relatives (Table 1). In addition to 112

those, READ identified one additional pair of first degree relatives as well as six new 113

second degree relationships. All relatives are from the same location and their 114

radiocarbon dates (if available) are overlapping. 115
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Fig 3. Number of overlapping SNPs dependent on the sequencing coverage
for each individual. This figure shows expected number of overlapping SNPs between
two individuals for different combinations of sequencing depths. The contour lines mark
different numbers of SNPs including those used in the simulations (see Fig. 2). The
maximum number of SNPs is set to 1,156,468, identical to what has been used in the
simulations and similar to the 1.2 million SNPs used in the empirical data set [33]. The
calculation assumes a Poisson distribution of sequencing coverage across the
genome [43].

Combining the information obtained from radiocarbon dating, READ, and 116

uniparental haplotypes can help to narrow down the possible form of relationship. For 117

instance, I0111 (female) and I1530 (male) are inferred (using READ) to be first degree 118

relatives, which means they are either full-siblings, mother/son or father/daughter. The 119

shared mitochondrial haplogroup (H3ao) makes father/daughter less likely (but not 120

impossible), and the slightly older radiocarbon date for I0111 (2475-2204 calBCE versus 121

2345-2198 calBCE [33]) makes mother/son more likely than siblings while not excluding 122

the latter. 123

READ identified an unknown pair of first degree relationship between two Srubnaya 124

individuals (I0360 and I0354). Notably, Mathieson et al (2015) [33] have excluded I0354 125

since she was an outlier compared to other Srubnaya individuals. The shared 126

mitochondrial haplogroup (U5a1) and the slightly older age of I0354 make her the 127

putative mother of I0360. The classification of I0360 and I0354 as first degree relatives 128

is probably genuine considering that READ has very low false positive rates. If this 129

prediction was a false positive, it would be very likely that they are at least second 130

degree relatives as the fraction of unrelated individuals wrongly classified as first 131

degrees is extremely low (Fig. 2B). Furthermore, a highly distinct genetic background of 132

one of the individuals should rather cause false negatives and not false positives, which 133

increases the likelihood that the two individuals are in fact related. I0354 could have 134

been a recent migrant to the region who produced offspring (I0360) with a local male, 135
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Fig 4. Effect of genotyping error on READ’s performance. The simulations
are identical to those conducted for Fig. 2 but including a certain proportion of wrongly
called genotypes. The rates of false positives, false negatives and ”Wrong degree” were
calculated accordingly.

which would explain both the relationship between I0354 and I0360 and the genomic 136

dissimilarity between I0354 and other Srubnaya individuals. 137

Particularly interesting is a group of five related males from the Corded Ware site in 138

Esperstedt, Germany (Table 1, Fig. 5). Mathieson et al (2015) [33] described two first 139

degree relationships between I1540 and I1541 as well as between I1541 and I1538. 140

Notably, READ missed the second degree relationship between I1540 and I1538, which 141

is likely to be a false negative as the false negative rate for second degree relatives is 142

known to be substantial with low amounts of data (Fig. 2C) and the value for that pair 143

(0.91) is only 1.2 standard errors above the threshold for second degree relatives (0.9). 144

Identical radiocarbon dates do not help to indicate a chronological order, but based on 145

their Y-chromosomes (all likely R1a, S1 Table), one can suggest that they represent a 146

paternal line of ancestry. I1540 is classified as R1a1, but the Y-chromosomal marker 147

this call is based on (L120) is missing in individuals I1538 and I1541, so they could all 148

carry the same haplotype. In addition to these three individuals, I1534 is a second 149

degree relative of I1538 and I1541, who was carrier of R(xR1b) but a more detailed 150

classification was not possible due to the low coverage. I0104, who is a second degree 151

relative to I1541, might also carry the same Y-chromosome as I1534, I1538, I1540 and 152

I1541, but that cannot be determined due to low coverage in those individuals. 153

Generally, the data would be consistent with all five individuals carrying the same 154

Y-haplotype as there are no contradicting calls for R1a defining markers (S1 Table), 155

which would suggest paternal relationship among them. In total, 13 Corded Ware 156

individuals from Esperstedt were genotyped, nine of them were males. It is notable that 157

all five related Esperstedt individuals discussed here were males and only one pair of 158

related Corded Ware individuals from Esperstedt involved a female (I1539 and I1532; 159

Table 1). 160

Normalization in the aDNA data set 161

READ uses the average P0 from an unrelated pair of individuals to normalize the 162

distribution for all test individuals. For our empirical data analysis, we assumed the 163

median of all average P0 across pairs of individuals within a test population to 164

represent unrelated individuals, as high values may be caused by recent migrants and 165

low values by related individuals. Fig. 6 shows the distributions of all average P0 before 166

normalization highlighting that the populations exhibit different degrees of background 167
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I1540
Y: R1a1
mt: J1c5
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Y: R1a

mt: U2e1a1
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Fig 5. Kin-relationship among males at the Corded Ware site in Esperstedt,
Germany. (A) The five individuals, their inferred degree of relationship and their
uniparental haplogroups. The dashed line between I1540 and I1538 shows a second
degree relationship missed by READ. (B) Map of the Corded Ware site (reference site 4)
near Esperstedt, Germany. Blue circles show the locations of Corded Ware Burials. The
approximate burial locations of the individuals with inferred relationships are indicated
by their ID. Map data © OpenStreetMap contributors, CC BY-SA.

diversity. It is also apparent how the pairs of related individuals (see Tab. 1) are outliers 168

with lower pairwise differences. Most groups from similar geographic and cultural 169

groups show similar medians. These include Neolithic groups (except Iberia EN) and 170

Yamnaya, and – to some degree – Late Neolithic and Bronze Age central Europeans. 171

The latter set of populations could almost belong to two subgroups which cluster by 172

data type (shotgun versus capture) instead of archaeological culture (Unetice, Corded 173

Ware and Bell Beaker). This difference was not observed in Yamnaya for which both 174

data types exist as well. The discrepancy highlights a potential risk of batch effects 175

which has its consequences for the application of READ. Overestimating the distance 176

between unrelated individuals could overestimate relationships in the test group and 177

consequently cause false positives while underestimating the distance between unrelated 178

individuals would have the opposite effect. The extent of the misclassification would be 179

proportional to the ratio between true and used normalization value. For example, if 180

the true value was 0.22 (e.g. Motala HG, Fig. 6) but 0.25 was used (e.g. Hungary EN), 181

an unrelated pair of individuals could be classified as second degree relatives 182

(0.22/0.25 = 0.88 < 0.9). Using the shotgun Bell Beaker median (0.245) to normalize 183

the captured Bell Beaker data does not cause any changes in the classifications, whereas 184

using the capture Bell Beaker median (0.257) for the shotgun data would classify 185

RISE563 and RISE564 as second degree relatives. These two individuals might actually 186

be related, but the value used for normalization would be higher than any pairwise 187
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comparison within the shotgun sequenced Bell Beakers. This violates the assumption 188

that the normalization value represents the expectation for a pair of unrelated 189

individuals so this result should be considered a false positive due to a batch effect. 190

Motala_HG (CAP)
Anatolia_Neolithic (CAP)

LBK_EN (CAP)
Hungary_EN (CAP)

Iberia_EN (CAP)
Iberia_Chalcolithic (CAP)

Bell_Beaker_Germany (SG)
Bell_Beaker_Germany (CAP)

Corded_Ware_Germany (CAP)
Unetice_EBA (CAP)

Unetice_EBA (SG)
Yamnaya_Kalmykia (SG)
Yamnaya_Samara (CAP)

Sintashta_MBA (SG)
Afanasievo (SG)
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Vatya (SG)
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Fig 6. Population distributions of average P0 before normalization. The
boxplots show all non-normalized average P0 scores (one per pair of individuals) per
culture. CAP and SG indicate whether the individuals were subject to SNP capture or
shotgun sequencing, respectively. A broader chronological/geographical context is
shown on the left.

Discussion 191

Applying READ to aDNA data Several methods to estimate the degree of 192

relationship between pairs of individuals have been developed. For genome-wide diploid 193

data with low error rates, they successfully infer relationships up to 11th degree [11]. 194

Since such data cannot be obtained from degraded samples, a loss in precision was 195

expected. Estimation of second degree relationships (i.e. niece/nephew-aunt/uncle, 196

grandparent-grandchild, half-siblings) is sufficient to identify individuals belonging to a 197

core family which were buried together. We can show that obtaining as little as 2,500 198

overlapping common SNPs is enough to classify up to second degree relationships from 199

effectively haploid data. The biggest limitations when using such low numbers of SNPs 200

is the high rate of false negatives for second degree relatives. READ can be considered 201

as a conservative tool that avoids false positives by having a relatively high false 202

negative rate which can be decreased substantially with more data. Missing some second 203

degree relationships seems preferable over wrongly inferring relationships for unrelated 204

individuals. A consequent advantage of our method is that it is very unlikely that first 205

degree relatives are classified as unrelated but some second degree relatives might be 206

wrongly classified as unrelated. Shared uniparental haplotypes or a test result close to 207
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the threshold (e.g. less than two standard errors difference) could raise such suspicions 208

and might motivate additional sequencing of the samples in question. The amount of 209

overlapping SNPs depends on the genome coverage of both individuals (Fig. 3; e.g. two 210

0.1x individuals will have approximately the same amount of overlapping data as a 211

0.05x and a 0.2x individual or a 0.01x individual and a 1x individual). The number of 212

SNPs required for a positive classification as first degree can be obtained by shotgun 213

sequencing all individuals to an average genome coverage of 0.1x (Fig. 3), which is in 214

reach for most archaeological samples displaying some authentic DNA. More data would 215

be beneficial to avoid false negatives in the case of second degree relatives. Recently 216

developed methods for modern DNA, which use genotype-likelihoods to handle the 217

uncertainty of low to medium coverage data require 1-3x genome coverage to estimate 218

third degree relationships [47–49]. Such approaches are promising for well-preserved 219

samples but these coverages might not be within reach for most aDNA studies. Other 220

methods specifically designed for ancient DNA data either require larger population 221

sample sizes than READ [50], large reference data sets [41,51] or are not directly 222

designed to identify relatives and estimate their degrees [52]. 223

READ does not explicitly model aDNA damage and it only considers one allele at 224

heterozygous sites. This implies that a careful curation of the data is required to avoid 225

errors due to low coverage, short sequence fragments, deamination damage, sequencing 226

errors and potential contamination. We recommend a number of well established 227

filtering steps when working with low coverage aDNA data [27–33,53,54]. To avoid 228

batch effects, all samples should be processed as similar as possible – at least the 229

bioinformatic pipeline should be identical for all samples. Only fragments of 35 bp or 230

longer should be mapped to the human genome as shorter fragments might represent 231

spuriously mapping microbial contamination [55,56]. All downstream analysis should be 232

restricted to reads and bases with mapping and base qualities of 30 or higher to reduce 233

the potential effects of mismapping and sequencing errors [56,57]. To further reduce the 234

effect of sequencing errors, most aDNA studies only consider biallelic SNPs known to be 235

polymorphic in other populations, and call pseudo-haploid genotypes by randomly 236

sampling one read covering that position. Deamination damage can be avoided during 237

the data generation by enzymatic repair of damages [58], or later by computational 238

rescaling of base qualities before SNP calling [59] or by excluding all transition SNPs. 239

For humans, millions of polymorphic transversion sites are known across the 240

genome [42] still leaving substantial amounts of data for analyzing such data sets. 241

Furthermore, a range of methods exist to estimate human contamination of a particular 242

sample [60–64] and the analysis could be restricted to fragments displaying 243

characteristic damage to filter contamination [65, 66]. Finally, each study could simulate 244

data exactly resembling the empirical data analyzed (fragment sizes, damages, 245

contamination) to evaluate how these factors would affect the downstream analysis [56]. 246

An important part of the READ pipeline is the normalization step. This step makes 247

the classification independent of within population diversity, SNP ascertainment and 248

marker density. This property, however, requires at least one additional and unrelated 249

individual from the same population and ideally the same data type to avoid batch 250

effects. The assignment of all individuals to a population can be checked with 251

established methods as principal component analysis (PCA) or outgroup f3 252

statistics [39]. Alternatively, a pair of individuals from a different population with 253

similar expected diversity could be used for normalization. Fig. 6 shows that most (but 254

not all) groups from similar cultural and geographical backgrounds have relatively 255

similar normalization scores, but caution should be taken as strong misspecification of 256

the normalization value can cause false negatives or false positives (see Results section). 257

In practice, the relationships are not known a priori. For our data analysis, we assumed 258

that the median across all pairs of individuals from a population of more than four 259
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samples represents a proxy of an unrelated pair (as the number of pairs is n(n−1)
2 ; e.g. 260

10 pairs for a sample size of 5), which we also set as the default mode for READ. The 261

implementation of READ offers other options as well since the median would not work 262

in cases like parent-child-trios (two first degree relationships, one unrelated), where the 263

maximum of all three comparisons should be used for normalization. Other methods 264

normalize by obtaining allele frequency data for a whole population [47,51], which 265

seems less feasible than obtaining just one unrelated individual (or a pair of unrelated 266

individuals from a surrogate population). Furthermore, prehistoric populations are 267

quite differentiated from modern groups [31,37,53] so using modern populations as 268

references for the allele frequencies might introduce biases. A certain limitation for all 269

kinship estimation methods is if the sampled population itself cannot be considered 270

homogeneous, for example due to varying degrees of admixture. Only quite recent 271

developments in inferring relationships can efficiently deal with such cases for modern 272

data [67]. 273

Kinship in prehistoric populations We successfully applied READ to data 274

obtained from ancient individuals. READ confidently found all known relationships in 275

the dataset. Furthermore, it identified a number of previously unknown relationships, 276

mainly of second degree. The combination of genomic data, uniparental markers and 277

radiocarbon dating allowed us to infer how two individuals were related to each other. 278

Additional information such as osteological data on the age of the samples or 279

stratigraphic information as burial location or depth could further help to assess the 280

direction of a kinship. Of particular interest was a group of five males from Esperstedt 281

in Germany who were associated with the Corded Ware culture – a culture that arose 282

after large scale migrations of males [68] from the east [27, 29]. Around 50 Corded Ware 283

burials (Fig. 5B), six of them stone cists, were excavated near Esperstedt in the context 284

of road constructions in 2005 [27, 69]. Characteristic Corded Ware pottery was found in 285

the graves and all male individuals had been buried on their right hand site [69]. 286

Interestingly, the central individual of the group of related individuals (I1541, Fig. 5A) 287

was buried in a stone cist approximately 700 meters from the graves of the other four 288

individuals which were all close to each other (Fig. 5B) [69]. The close relationship of 289

this group of only male individuals from the same location suggest patrilocality and 290

female exogamy, a pattern which has also been found from Strontium isotopes at 291

another Corded Ware site just 30 kilometers from Esperstedt [15] and suggested for the 292

Corded Ware culture in general [70]. This represents just one example of how the 293

genetic analysis of relationships can be used to uncover and understand social structures 294

in ancient populations. More data from additional sites, cultures and species other than 295

humans will offer various opportunities for the analysis of relationships based on 296

genome-wide data. 297

Materials and Methods 298

Approach to detect related individuals 299

Our approach is based on the methodology used by GRAB [14] which was designed for 300

unphased and diploid genotype or sequencing data. This approach divides the genome 301

into non-overlapping windows of 1 Mbps each and compares for a pair of individuals the 302

alleles inside each window. Each SNP is classified into three different categories: IBS2 303

when the two alleles are shared, IBS1 when only one allele is shared and IBS0 when no 304

allele is shared. The program calculates the fractions for each category (P2, P1 and P0) 305

per window and, based on certain thresholds, uses them for relationship estimation. 306

GRAB can estimate relationships from 1st to 5th degree, but it has not been tested 307
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with data from different SNP panels or populations [14]. 308

We assume that our input data stems from whole genome shotgun sequencing of an 309

ancient sample resulting in low coverage sequencing data. Therefore, we only expect to 310

observe one allele per individual and site which is either shared or not shared between 311

the two individuals. READ does not model aDNA damage, so it is expected that the 312

input is carefully filtered, e.g. by restricting to sites known to be polymorphic, by 313

excluding transition sites or by rescaling base qualities before SNP calling [59]. 314

Analogous to GRAB [14], we partition the genome in non-overlapping windows of 1 315

Mbps and calculate the proportions of haploid mismatches and matches, P0 and P1, for 316

each window. Since P0 + P1 = 1, we can use P0 as a single test statistic. The average 317

P0 is calculated from the genome-wide distribution. To reduce the effect of SNP 318

ascertainment, population diversity and potential batch effects, each individual pair’s 319

average P0 scores are then normalized by dividing all values by the average 320

non-normalized P0 score from an unrelated pair of individuals from the same 321

population ascertained in the same way as for the tested pairs. Such a normalization 322

step is not implemented in GRAB [14] suggesting that GRAB might be sensitive to 323

ascertainment bias and general population diversity. The normalization sets the 324

expected score for an unrelated pair to 1 and we can define classification cutoffs which 325

are independent of the diversity within the particular data set. We define three 326

thresholds to identify pairwise relatedness as unrelated, second-degree (i.e. 327

nephew/niece-uncle/aunt, grandparent-grandchild or half-siblings), first-degree 328

(parent-offspring or siblings) and identical individuals/identical twins. The general work 329

flow and the decision tree used to classify relationships is shown in Fig. 1. There are 330

four possible outcomes when running READ: unrelated (normalized P0≥0.9), second 331

degree (0.9≥normalized P0≥0.8), first degree (0.8≥normalized P0≥0.65) and identical 332

twins/identical individuals (normalized P0<0.65) (Fig. 1). The cutoffs were chosen to 333

maximize precision in the pseudo-haploidized 1000 genomes dataset (see below) before 334

randomly subsampling SNPs. These values are similar to the probabilities of one 335

randomly chosen allele for an individual being IBD to a randomly chosen allele from 336

another individual considering their degree of relationship. The option of classifying two 337

individuals as third degree was not implemented as the few known third degree 338

relationships in the empirical datasets showed values similar to unrelated individuals. 339

READ is implemented to classify pairs of individuals in certain categories, so it will 340

always output the best fitting degree of relationship. As a measurement of confidence of 341

that classification, we estimate the standard error of the mean of the distribution of 342

normalized P0 scores and calculate the distance to the cutoffs in multiples of the 343

standard error (similar to a Z score). 344

Relationship Estimation from Ancient DNA (READ) was implemented in Python 345

2.7 [71] and GNU R [72]. The input format is TPED/TFAM [8] and READ is publicly 346

available from https://bitbucket.org/tguenther/read 347

Modern data with reported degrees of relationships 348

Autosomal Illumina Omni2.5M chip genotype calls from 1326 individuals from 15 349

different populations were obtained from the 1000 genomes project 350

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/ 351

hd_genotype_chip/) [42]. We used vcftools version 0.1.11 [73] to extract autosomal 352

biallelic SNPs with a minor allele frequency of at least 10% (1,156,468 SNPs in total – 353

similar to the aDNA data set used for the empirical data analysis [33]; see below) and 354

to convert the data to TPED/TFAM files. The data set contains pairs of individuals 355

that were reported as related, 851 of them as first degree relationships and 74 as second 356

degree. We randomly sub-sampled 1000, 2500, 5000 and 50000 SNPs and also randomly 357

picked one allele per site in order to mimic extremely low coverage sequencing of ancient 358
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samples. READ was then applied to these reduced data sets and the median of all 359

average P0s per population was used to normalize scores assuming that this would 360

represent an unrelated pair. Individual pairs with known relationship and their degree 361

of relatedness are shown in S2 Table and S3 Table. Additionaly, we introduced different 362

error rates to the data to assess the possible effects of sequencing and mapping errors, 363

contamination and post-mortem damage. Error rates were introduced by randomly 364

changing alleles to the alternative with probabilities of 5, 10, 15 and 20%. Related 365

individuals classified by READ as unrelated were considered as false negatives, 366

unrelated individuals classified as related were considered as false positives and related 367

individuals classified as related but not on the proper degree were considered as wrong 368

degree. The false negative rate was obtained by dividing the number of false negatives 369

by the total number of true related pairs, the false positive rate by dividing the number 370

of false positives by the total number of unrelated pairs and the wrong degree rate by 371

dividing the number of incorrectly classified related pairs by the total number of true 372

related pairs. 373

Ancient data 374

In addition to the modern data, published ancient data was obtained from the study of 375

Mathieson et al. (2015) [33]. The data set consisted of 230 ancient Europeans from a 376

number of publications [27,29–31,54,74] as well as new individuals from various time 377

periods during the last 8,500 years. The data set consisted of haploid data for up to 378

1,209,114 SNPs per individual. We extracted only autosomal data for all individuals 379

and applied READ to each cultural or geographical group (as defined in the original 380

data set of Mathieson et al (2015) [33]) with more than four individuals separately. 381

Shotgun sequencing data was also analyzed separately from SNP capture data to avoid 382

batch effects. The median of all average P0s per group was used for normalization 383

assuming that this would represent an unrelated pair. Mathieson et al (2015) [33] report 384

nine pairs of related individuals and they infer all of them to be first degree relatives 385

without providing details on how they were classified. Y-chromosome haplotypes of the 386

five individuals shown in Fig. 5A were checked using samtools [75] (applying a minimum 387

mapping and base quality of 30) and marker information for the haplotypes R1a and 388

R1b from the International Society of Genetic Genealogy (http://www.isogg.org, 389

accessed January 16, 2017). The results are shown in S1 Table. 390

Supporting Information 391

S1 Table. Y chromosome calls for haplogroup R defining markers in the 392

five individuals shown in Fig. 5A. 393

S2 Table. Pairs of first degree related individuals in the 1000 genomes 394

data. 395

S3 Table. Pairs of second degree related individuals in the 1000 genomes 396

data. 397
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29. Allentoft ME, Sikora M, Sjögren KG, Rasmussen S, Rasmussen M, Stenderup J,
et al. Population genomics of Bronze Age Eurasia. Nature.
2015;522(7555):167–172. doi:10.1038/nature14507.

30. Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K, et al.
Ancient human genomes suggest three ancestral populations for present-day
Europeans. Nature. 2014;513(7518):409–413. doi:10.1038/nature13673.

31. Skoglund P, Malmström H, Omrak A, Raghavan M, Valdiosera C, Günther T,
et al. Genomic diversity and admixture differs for Stone-Age Scandinavian
foragers and farmers. Science. 2014;344(6185):747–750.
doi:10.1126/science.1253448.

32. Günther T, Valdiosera C, Malmström H, Ureña I, Rodriguez-Varela R,
Sverrisdóttir ÓO, et al. Ancient genomes link early farmers from Atapuerca in
Spain to modern-day Basques. Proc Natl Acad Sci U S A.
2015;112(38):11917–11922. doi:10.1073/pnas.1509851112.

33. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA,
et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature.
2015;528(7583):499–503. doi:10.1038/nature16152.

34. Cassidy LM, Martiniano R, Murphy EM, Teasdale MD, Mallory J, Hartwell B,
et al. Neolithic and Bronze Age migration to Ireland and establishment of the
insular Atlantic genome. Proceedings of the National Academy of Sciences.
2016;113(2):368–373.
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Table 1. Pairs of relatives among the 230 individuals in the aDNA dataset as inferred by READ.

Group Ind1 MT and Y
(Ind1)

C14 date
(Ind1)

Ind2 C14 date
(Ind2)

MT and Y
(Ind2)

Inferred re-
lationship

|Z|$

AfanasievoS RISE507
(female)

U5a1a1 3322-2923
calBCE

RISE508
(female)

3331-2935
calBCE

U5a1a1 identical 17.16

Neolithic
AnatoliaC

I0736
(female)

N1a1a1a 6500-6200
BCE

I0854
(female)

6500-6200
BCE

N1a1a1a 1st 2.31

Neolithic
AnatoliaC

I1097
(male)

W1;
G2a2b2a

6500-6200
BCE

I0744
(male)

6500-6200
BCE

J1c11;
G2a2b2a

2nd* 3.50

Bell
Beaker,
GermanyS

RISE563
(male)

K1c1;
R1b1a2a1a2b

NA RISE564
(male)

NA H; R1b1a2a1 2nd* 0.02

Bell
Beaker,
GermanyC

I0111
(female)

H3ao 2475-2204
calBCE

I1530
(male)

2345-2198
calBCE

H3ao; R1 1st 4.88

Corded
Ware,
GermanyC

I1538
(male)

J1c5; R1a 2500-2050
BCE

I1534
(male)

2500-2050
BCE

K1a1b2a;
R(xR1b)

2nd* 0.23

Corded
Ware,
GermanyC

I1538
(male)

J1c5; R1a 2500-2050
BCE

I1541
(male)

2500-2050
BCE

U2e1a1; R1a 1st 5.51

Corded
Ware,
GermanyC

I1539
(female)

J1c1b1a 2625-2291
calBCE

I1532
(male)

2500-2050
BCE

J1c2e; R1a1a 2nd* 1.08

Corded
Ware,
GermanyC

I1534
(male)

K1a1b2a;
R(xR1b)

2500-2050
BCE

I1541
(male)

2500-2050
BCE

U2e1a1; R1a 2nd* 4.72

Corded
Ware,
GermanyC

I1540
(male)

J1c5; R1a1 2500-2050
BCE

I1541
(male)

2500-2050
BCE

U2e1a1; R1a 1st 5.42

Corded
Ware,
GermanyC

I1541
(male)

U2e1a1; R1a 2500-2050
BCE

I0104
(male)

2559-2296
calBCE

U4b1a1a1;
R1a1a1

2nd* 7.26

Chalcolithic
IberiaC

I1302
(male)

J2b1a3;
G2a2b2b

2880-2630
BCE

I1314
(male)

2880-2630
BCE

J2a1a1; G2a 1st 3.15

Chalcolithic
IberiaC

I1274
(male)

H;3 I2a2 2880-2630
BCE

I1277
(male)

2830-2820
calBCE

H3; I2a2a 1st 6.21

EN IberiaC I0411
(male)

K1a2a; F§ 5295-5067
calBCE

I0410
(male)

5295-5066
calBCE

T2c1d or
T2c1d2;
R1b1

1st 7.03

SrubnayaC I0421
(female)

H3g 1850-1600
BCE

I0430
(male)

1850-1600
BCE

H3g;
R1a1a1b2a2a

1st 6.22

SrubnayaC I0354¶ (fe-
male)

U5a1 2016-1692
calBCE

I0360
(male)

1850-1200
BCE

U5a1; R1a1 1st* 2.99

UneticeC I0117
(female)

I3a 2272-2039
calBCE

I0114
(male)

2138-1952
calBCE

I3a; I2a2 1st 5.47

Radiocarbon dates and mitochondrial haplotypes as reported by [33]; Y-chromosomes for the five individuals shown in
Fig. 5A were checked manually, all other Y-haplotypes are as reported by [33]

S indicates groups that were shotgun sequenced, C indicates SNP capture
$ showing the lower |Z| of both Z scores (one to the upper threshold, one to the lower threshold)

* newly reported relationship
§ potentially haplogroup R, not enough data
¶ excluded as population outlier in [33]
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