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The structural organisation of the brain can be characterised as a hierarchical ensemble of 
segregated modules linked by densely interconnected hub regions that facilitate distributed 
functional interactions. Disturbances to this network may be an important marker of abnormal 
development. Recently, several neurodevelopmental disorders, including autism spectrum 
disorder (ASD), have been framed as disorders of connectivity but the full nature and timing of 
these disturbances remain unclear.  

In this study, we use non-negative matrix factorisation, a data-driven, multivariate approach, to 
model the structural network architecture of the brain as a set of superposed subnetworks, or 
network components. 

In an openly available dataset of 196 subjects scanned between 5 to 85 years we identify a set of 
robust and reliable subnetworks that develop in tandem with age and reflect both anatomically 
local and long-range, network hub connections. In a second experiment, we compare network 
components in a cohort of 51 high-functioning ASD adolescents to a group of age-matched 
controls. We identify a specific subnetwork representing an increase in local connection 
strength in the cingulate cortex in ASD (t=3.44, p<0.001). 

This work highlights possible long-term implications of alterations to the developmental 
trajectories of specific cortical subnetworks. 
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Introduction 
Diffusion MRI allows the non-invasive inference of white matter pathways in the human brain. At a 

millimetre-scale, the structural connections between brain regions can be conceptualised as a 

complex network and interrogated with graph theoretical approaches (Bullmore and Sporns 2009). 

This has led to the broad characterisation of the macroscale organisation of the mammalian brain as 

a near-decomposable system built on multiple, parallel and partially segregated modules (Simon 

1962; Meunier et al. 2010). Network modules are organised hierarchically (Bassett et al. 2011) and 

linked by a set of overarching, densely interconnected hub regions that facilitate distributed 

interactions across the network (Sporns et al. 2005; van den Heuvel and Sporns 2011; Bullmore and 

Sporns 2012).  

This view is supported by evidence that cerebral regions can be clustered together based on the 

extent of their shared connections into communities, or modules (Hilgetag et al. 2000; Bullmore and 

Sporns 2012). Anatomical connectivity between regions reflects a shared functional specialisation 

(Hilgetag et al. 2000; Honey et al. 2009), and connected regions tend to have similar metabolic 

demands, and gene expression profiles (Vaishnavi et al. 2010; French and Pavlidis 2011; Collin et al. 

2013; Fulcher and Fornito 2016). Furthermore, anatomically connected regions tend to mature in 

tandem across development (Raznahan et al. 2011), resulting in common patterns of cortical growth 

and functional coordination over the lifespan (Hagmann et al. 2010; Zielinski et al. 2010; Alexander-

Bloch et al. 2013). Taken together, this evidence suggests that connections within complex brain 

networks can be decomposed, or clustered, into subnetworks that link modules with distinct roles 

and developmental trajectories. 

Long-distance cortico-cortical connections are established during gestation, and complex network 

architecture is evident at birth (Ball et al. 2014). The effects of cerebral maturation on increasingly 

distributed connectivity is marked in the first years of life (Yap et al. 2011), after which the large-scale 

topological organisation of the structural connectome remains relatively stable (Dennis et al. 2013; 

Baker et al. 2015). Over the full lifespan, measures of network efficiency and modularity follow a 

distinct inverted U trajectory, peaking in the third decade and mirrored by microstructural markers 

of the underlying white matter (Imperati et al. 2011; Kochunov et al. 2012; Zhao et al. 2015). In elderly 

individuals, although network topology remains relatively consistent with younger adults, 

simulations suggest a preference for local communication compared to long-range hub-to-hub 

connectivity, correspondent to evidence from functional analyses (Cao et al. 2014; Perry et al. 2015).  

The early establishment of structural connectivity and long-term stability of structural networks 

suggests that disturbances to network organisation may be an important marker of abnormal 

cerebral development. A number of neurodevelopmental disorders, including autism spectrum 

disorder (ASD) and attention deficit hyperactivity disorder (ADHD), have been linked to alterations 

in the development of structural and functional brain connectivity (Konrad and Eickhoff 2010; 

Tomasi and Volkow 2012; Ecker et al. 2015). ASD is a complex, multifactorial disorder characterised 

by social, behavioural and language impairments evident from an early age. Although the aetiology 

of ASD remains unknown, neuropathological studies have identified cortical alterations including 

laminar and columnar disorganisation and increased neuronal density in frontal, temporal and 
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cingulate cortices (Bailey et al. 1998; Casanova et al. 2002; Stoner et al. 2014; Uppal et al. 2014). Early 

evidence from MRI studies suggested that head growth is accelerated in ASD during infancy but 

differences appear to dissipate with age (Courchesne et al. 2001; Ecker et al. 2015). More recently, 

ASD has been framed as a disorder of connectivity (Belmonte et al. 2004; Vissers et al. 2012), based 

on accumulating evidence of disruptions to both functional and structural networks in autistic 

populations (Rudie et al. 2012; Mueller et al. 2013; Supekar et al. 2013; Di Martino et al. 2014). 

Although the nature and extent of these alterations remain unclear with a number of conflicting 

observations, previous studies have described complex patterns of disrupted white matter 

organisation in ASD that appear to be dependent on age and mirrored by evidence of both hypo- 

and hyper-connectivity between functional networks and differences in electrophysiological 

recordings (for review, see Vissers et al. 2012)..  

In this study, we apply an unsupervised and data-driven approach to model complex networks 

derived from whole-brain tractography as a set of components, or subnetworks, that vary together 

across the population. We first demonstrate that network components can be robustly and reliably 

identified in a large cohort, before exploring the developmental trajectories of each component 

across the human lifespan. In a second experiment we test the hypothesis that ASD is associated 

with increased structural connectivity. By identifying a set of network components in a group of 

adolescents with high-functioning ASD and age-matched, typically-developing controls, we find a 

specific cortical subnetwork with significantly increased connection strength in the autistic 

population.  

 

Methods 

Data 

Preprocessed connectivity data were downloaded from the USC Multimodal Connectivity database 

(http://umcd.humanconnectomeproject.org) (Brown et al. 2012). Full MRI acquisition and image 

processing details are given elsewhere (Brown et al. 2012; Rudie et al. 2012) but are reported in brief 

below. 

NKI-Rockland lifespan sample 

In total, connectivity matrices from 196 healthy participants (114 male; age range: 4-85y) were 

available, collected as part of the NKI/Rockland lifespan study (Nooner et al. 2012). Diffusion MRI 

was acquired at 3 T with 64 gradient directions and the following parameters: TR, 10000 ms; TE, 91 

ms; voxel size, 2 mm3; b-value, 1000 s/mm2. After correction for motion and eddy current distortions 

using linear registration, diffusion tensors were modelled and tractography performed using fibre 

assignment by continuous tracking (FACT) with an angular threshold of 45° (Mori et al. 1999). 

To construct each connectivity matrix, 188 regions-of-interest (ROI) were defined using a group-

based functional MRI (fMRI) parcellation (Craddock et al. 2012), and structural connectivity was 

calculated as the total number of streamlines connecting any two ROI (Brown et al. 2012). Prior to 
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analysis, ROI in the brainstem were removed and fibre counts were log-transformed resulting in a 

182 × 182 connectivity matrix for each participant. 

UCLA autism sample 

Connectivity data from a total of 43 typically developing children and adolescents (36 male; age 

range: 8.9-17.9y) and 51 with high-functioning ASD (45 male; age range: 8.4–18.2 y) were available for 

analysis (Rudie et al. 2012).  3 T DTI data were acquired with: 32 gradient directions; TR, 9500 ms; 

TE, 87 ms; voxel size, 2 mm3; b-value, 1000 s/mm2. Motion and eddy current correction, diffusion 

tensor modelling and tractography were performed as above but with an angular threshold of 50°.  

ROI were defined as 10 mm radius spheres placed at 264 coordinates in MNI space and transformed 

to individual diffusion data (Power et al. 2011) and connectivity was defined as streamline count 

between connected ROI. As above, fibre counts were log-transformed before analysis, resulting in a 

264 × 264 connectivity matrix for each participant. 

Non-negative matrix factorisation 

Non-negative matrix factorisation (NMF) is an unsupervised, multivariate decomposition technique 

that models an !!×!! data matrix, !, as the product of two non-negative matrices: ! and !: 

! ≈ !" 
!"#$%&'!!"!! ≥ 0,! ≥ 0 

where !  is the number of features and !  is the number of samples and !  and !  have the 

dimensions !!×!! and !!×!! respectively, where ! is the number of network components or basis 

images (Figure 1). The optimal solution is sought by iteratively updating ! and ! to minimise the 

(Euclidean) distance between the original and reconstructed matrices, subject to non-negativity 

constraints: 

min
!!!,!!!

! = !12 !!" − (!")!"
!

!"
 

Generally,!! < min !, ! , thus !" represents a low-rank approximation of the original data in ! 

(Lee and Seung 1999). NMF offers a natural setting for exploration of data that is inherently non-

negative and, as such, is particularly well–suited to neuroimage analysis allowing an intuitive 

understanding of image-derived, non-negative features including e.g.: tissue volume, image 

intensity, cortical thickness, fractional anisotropy and structural connectivity (Sotiras et al. 2015). 

In a recently introduced variant, projective NMF (PNMF), the subject loading matrix, ! is replaced 

with !!! such that: 

!! ≈ !!!! 

PNMF confers a number of benefits over standard NMF including fewer learned parameters, and 

increased sparsity and orthogonality of the resulting component matrix ! (Yang and Oja 2010).  

In terms of a network analysis, PNMF results in a set of highly orthogonal network components, 

each comprising a sparse set of (topologically) localised connections (i.e.: the edge structure of 
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different components does not overlap) and a corresponding subject-specific weighting (Figure 1). 

Together, these elements can then be combined to approximately reconstruct the full connectivity 

network of any given subject. 

In addition, Yang et al. introduced a method to estimate the rank of the factorising matrix, !, using 

automatic relevance determination (ARD-PNMF; Yang et al. 2010). Here, we employ ARD-PNMF to 

perform an exploratory analysis of network structure and extract a set of effective network 

components for further analysis. 

Network decomposition 

The analysis pipeline is shown in Figure 1. For each study, structural connectivity networks were 

vectorised and collated into an !!×!! matrix before normalising to [0,1]. To reduce computation 

time and remove noisy connections, edges that were present in less than 10% of the study 

population were removed. ARD-PNMF was initialised with non-negative double singular value 

decomposition, a procedure that speeds up NMF convergence compared to a random initialisation 

and ensures consistent results across runs (Boutsidis and Gallopoulos 2008). We chose an initial 

rank estimate of 50 and performed a maximum of 20,000 PNMF iterations, or until the algorithm 

converged. 

Network decomposition was performed in Matlab R2015b using PNMF code available at: 

sites.google.com/site/zhirongyangcs/pnmf and NNDSVD code available at: 

www.boutsidis.org/software.html.  

Figure 1: Projective NMF pipeline. Individual connectivity matrices are concatenated into a large data matrix. 
Projective NMF is used to decompose the data into a set of network components. A map of connections shows 
the topological organisation of each component, or subnetwork, and a subject-specific weighting estimates the 
component’s contribution each individual’s full network.  

 

Simulations 

To demonstrate the application of PNMF to structural connectivity data, we performed a set of 

simulation experiments. We created a set of 150 ‘networks’, each comprising a weighted 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2017. ; https://doi.org/10.1101/100164doi: bioRxiv preprint 

https://doi.org/10.1101/100164
http://creativecommons.org/licenses/by-nc-nd/4.0/


combination of six network components (Figure 2). Each network component was constructed by 

adding binary edges between 10-20 randomly selected nodes in a 100 × 100 empty network. The 

weighted contribution of each component to an individual network was varied according to a set of 

predefined patterns that varied across the population (Figure 2A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Simulating networks for PNMF decomposition. Component weights (A) and spatial maps (B) for 
simulating connectivity networks. Each component was weighted according to the corresponding component 
strength and summed to form a network. Noise was added at four levels to the final network (C). The mean 
correlation between recovered component loadings and the original network weights is shown in D, alongside 
the spatial correlation between recovered maps and the original component maps at each noise level. 

 

For a given network, each of the six components were multiplied by the corresponding component 

weight and linearly summed to create the final network. Additionally, noise was added to each 

network by constructing a symmetric noise matrix with edge density set at 0, 10, 20 or 50%, and edge 

strength drawn from a normal distribution with mean and variance defined by existing network 

edge strengths (Figure 2C).  

The simulated networks (with or without additional noise) were concatenated into data matrix V, 

removing any edges that were empty across all networks. ARD-PNMF was then initialised using 

NNSVD with rank 6 and 2500 iterations. 
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We found that PNMF was able to recover both the spatial maps and pattern of population variation 

(network loadings) of all components even under noisy conditions, achieving an average correlation 

between the original and recovered component maps of 0.996, 0.957, 0.884 and 0.669 (for 0, 10, 20 

and 50% noise respectively) and a correlation between original and recovered component loadings 

of 0.997, 0.992, 0.971 and 0.794 (Figure 2D).  

Split-half reliability 

To investigate if the network components can be robustly and reliability identified across 

population subsamples, we performed a split-half reliability assessment (Groppe et al. 2009; Groves 

et al. 2012). The NKI-Rockland dataset was split into two, randomly selected and equal size samples 

and PNMF performed independently on each. The resulting split-half components were then 

greedily paired with components obtained from the full dataset. Components were matched based 

on the correlation between the component loadings of overlapping subject populations in the half 

and full datasets to produce a triplet, with each original component paired with a single component 

from each half sample. Reliability of the original components was evaluated by measuring the 

edgewise (cosine) similarity between correspondent split-half component maps. Component 

reliability was compared to a null distribution built by randomly permuting edges in corresponding 

split-half pairs before calculating spatial similarity, 1000 permutations were performed for each 

pair. 

Rich club analysis 

In order to further investigate the topological organisation of extracted network components, we 

performed a rich club analysis (van den Heuvel and Sporns 2011). Using the group mean structural 

network, nodes were sorted by degree and low degree nodes incrementally removed in steps. At 

each step, the density of the remaining network connections was compared to a set of 100 

randomised networks of the same size to give a normalised rich club coefficient, !. The rich club 

was defined as nodes with degree > !, where !! = max!(!). Following Collin et al., after identifying 

network nodes comprising the rich club, edges in each network component were defined as either 

‘rich’ if they connected two rich club nodes to each other, ‘local’ if they connected two non-rich club 

nodes, of ‘feeder’ connections if they connected rich club nodes to non-rich club nodes (Collin et al. 

2013). The overall ‘richness’ or ‘locality’ of each component was determined by comparing the 

number of rich or local edges to a set of 1000 equivalent random networks. Network analysis was 

performed with the Brain Connectivity Toolbox (Rubinov and Sporns 2010). 

Statistical analysis 

For extracted components in the NKI-Rockland sample, component strength over the lifespan was 

modelled using polynomial regression (up to power 3) with age as a covariate and sex as an 

additional factor. The Akaike Information Criterion (AIC) was used to select the best model for each 

component (i.e.: linear, quadratic, or cubic; with or without sex). Statistical analysis was performed 

with the lm package in R 3.31. 
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In the UCLA autism cohort, component strength was compared between groups using an 

independent samples t-test. Analysis was performed in JASP 0.7.5.6. 

Data visualisation 

The edge structure of network components were visualised with Circos (Krzywinski et al. 2009), 

graph nodes were ordered according to cerebral lobe and the x, y, z coordinates of the central voxel 

of each cerebral ROI supplied with the connectivity matrices.  

In addition, to visualise the anatomical location of connected ROI in each network component, we 

calculated node degree (i.e.: the total number of connections of each ROI) and projected the values 

onto standard space masks of the cortical grey matter, basal ganglia and cerebellum. Mask voxels 

were assigned an ROI membership based on Euclidean distance to the nearest ROI centre and 

assigned the corresponding nodal degree value. Node degree images were then smoothed with a 

Gaussian kernel of FWHM 5mm and projected onto a 3D representation of the smoothed cortical 

surface using Surf Ice (www.nitrc.org/projects/surfice). 

 

 

Results  

Network components across the lifespan 

Reliability assessment 

In total, 22 network components were identified in the NKI-Rockland dataset. (Figure 4). Reliability 

scores were calculated for each component using a split-half framework (Groppe et al. 2009). 

Network components identified in two independent group samples were matched to the original set 

of components and the spatial similarity between the respective edge structures compared as a 

marker of reliability. In total, 19 components were identified in group one and 21 in group two. Of 

the 19 original components matched with corresponding pairs in the split-half sample, 15 

demonstrated a significantly higher spatial correlation than would be expected between two 

random matrices with the same number of edges (all p<0.001, 1000 permutations; Table 1). The 

mean spatial similarity between matched components was 0.49 (range: 0.14 – 0.96). Network 

components identified in the full dataset are shown in Figure 3 in order of reliability. 
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Table 1: Cosine similarity between paired component maps 

Component Similarity p 

  A 0.960 0.001 

  B 0.696 0.001 

  C 0.650 0.001 

  D 0.645 0.001 

  E 0.631 0.001 

  F 0.553 0.001 

  G 0.470 0.001 

  H 0.469 0.001 

  I 0.446 0.001 

  J 0.442 0.001 

  K 0.429 0.001 

  L 0.412 0.001 

  M 0.293 0.001 

  N 0.159 0.001 

  O 0.136 0.001 

  P 0.043 0.006 

  Q 0.021 0.228 

  R 0.008 0.671 

  S^ - - 

  T^ - - 

  U^ - - 

  V^ - - 

  ^ not paired with a corresponding component in 

at least one split-half subsample  

Developmental trajectories 

The subject loading of each network component (i.e.: the contribution of a given component to the 

individual’s full network) was modelled as a function of age using polynomial regression. Of 22 

components, 16 demonstrated significant age-related variation (all p<0.01; Table 2). Of these, 9 

components followed nonlinear trajectories over the lifespan best described by quadratic models; 6 

increased linearly with age, and 1 decreased. The addition of sex as a factor improved the model fit 

in 4 of the 16 significant components. Table 2 shows the best model selected for each component 

and Figure 4 highlights some of these trends; networks and modelled trajectories for all components 

are shown in Figure 3. 
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Figure 3: Component maps and developmental trajectories for 22 network components. PNMF 
decomposition in the NKI-Rockland sample resulted in 22 network components. Component maps were 
thresholded to retain the top 5% based on strength in the loading matrix and are displayed in circular format 
(see key). The relationship between (normalised) component strength and age was modelled using polynomial 
regression. The best model fit (see Table 2) is shown for each component. Separate model fits indicate when sex 
was included as an additional factor. 
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Table 2: Modelling development trajectories of network components 

          standardised regression coefficients 

Component Best model AIC adjusted R2 p -log10(p) β1 β2 β3 

A* age + age2 + sex 544.28 0.09 <0.01 3.89 2.13 -3.13 -0.15 

B* age + age2 + sex 539.04 0.11 <0.01 4.96 -2.28 -2.63 0.29 

C* age + age2 552.15 0.05 <0.01 2.37 2.71 -1.83 - 

D* age + age2 534.21 0.13 <0.01 6.21 -4.81 -1.93 - 

E* age + age2 533.10 0.13 <0.01 6.45 4.18 -3.21 - 

F* age + age2 544.10 0.08 <0.01 4.09 0.47 -4.23 - 

G* age 520.00 0.19 <0.01 9.75 6.08 - - 

H* age 508.38 0.23 <0.01 12.29 6.79 - - 

I* age + age2 534.87 0.13 <0.01 6.07 4.61 -2.24 - 

J* age + age2 + sex 526.97 0.16 <0.01 7.46 5.01 -1.90 -0.17 

K sex 558.34 0.01 0.09 1.04 - - -0.12 

L* age 545.73 0.07 <0.01 4.04 3.85 - - 

M age + sex 556.79 0.02 0.04 1.37 1.41 - -0.15 

N* age 545.37 0.07 <0.01 4.12 -3.89 - - 

O* age + sex 515.58 0.21 <0.01 10.19 6.10 - -0.17 

P* age 551.21 0.04 <0.01 2.78 3.12 - - 

Q* age 538.22 0.11 <0.01 5.73 4.65 - - 

R age + age2 557.08 0.02 0.05 1.31 1.97 -1.46 - 

S* age + age2 543.80 0.09 <0.01 4.16 4.00 -1.56 - 

T age 555.30 0.02 0.02 1.81 -2.41 - - 

U intercept only 559.23 0.00 - - - - - 

V sex 557.16 0.02 0.05 1.34 - - -0.14 

* model significant at p<0.01 

        

In Figure 4, component A comprises a robust (split-half similarity: 0.96) and relatively dense pattern 

of connectivity including both local, within-lobe, and longer, between-lobe, connections. Inter-

hemispheric connections are apparent between frontal and parietal lobes. Highly connected 

cerebral regions in this component include the cingulate and paracingulate, insular, medial 

temporal, and superior parietal cortices, with dense connectivity also evident within the basal 

ganglia, and between the basal ganglia and higher cerebral cortex. Over the lifespan, connectivity 

between these regions increases rapidly over childhood and adolescence, peaking between 40 and 

50 and declining into older age. Component loading is slightly higher in males than in females 

across the lifespan though follows a steeper decline with old age. Similar trends in connectivity are 

seen in components E, F and J (Fig 3). Components D and N (Fig 4B; 4C) capture bilateral patterns of 

connectivity between subcortical grey matter structures and frontal and parietal cortices, 

respectively. Edges in component D predominantly connect the caudate nucleus and superior, 

medial frontal regions. The strength of this component remains relatively stable until middle age 

before declining. The strength of component N (Fig 4C) monotonically decreases with age with 

edges connecting the thalamus to post-central cortex and superior parietal regions. In contrast, 

component O follows a linearly increasing trend with age (Fig 4D) Connections in this component 

are primarily local, connecting anatomically adjacent cortical regions within the temporal lobe and  
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temporo-occipital junction in both hemispheres. A similar pattern can be seen in component L (Fig 

3).  

 

 

Figure 4: Age-related variation in component strength. Four network components are highlighted as 
examples of age-related variation in subnetwork connectivity (see Fig 4 for all components). For visualisation, 
components maps were thresholded at the 95th percentile and connections are shown in circular format. To 
show the anatomical location of connected regions, node degree was calculated for each cerebral ROI as the 
sum of its connections in the thresholded component and projected onto cortical/subcortical surfaces. The 
relationship between (normalised) component strength and age was modelled using polynomial regression. 
The best model fit is shown for each component. Separate model fits indicate when sex was included as an 
additional factor. Red indicates male; blue, female. Cere=cerebellum, BG=basal ganglia. 

 

Component topology 

Qualitative assessment of the patterns of connectivity within components reveals a generally 

bilateral and symmetric organisation across hemispheres. Unilateral components appear to reflect 

the topology of corresponding components in the opposite hemisphere (e.g; I and S; O and L).  

In order to quantify whether inter-regional connections within individual network components 

revealed a preferential support for connectivity between network hubs over topologically local 

nodes, we performed a rich club analysis. Sixty-five nodes with degree greater than 100 were 

defined as the rich club (maximum ! = 1.09) and included nodes bilaterally in: frontal pole; 

cingulate and paracingulate cortex; insula; hippocampus; precuneus and superior parietal lobule;  

lateral occipital cortex, and basal ganglia structures (caudate, pallidum and thalamus). 
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Component edges were defined as rich, feeder or local connections, and the ‘richness’ or ‘locality’ of 

each component defined as the number of rich or local connections compared to a set of 1000 

random networks (Table 3). Four components were found to contain significantly more rich-club 

connections than expected by chance (A, E, F and I; all p=0.001). These components are shown in 

Figure 5; richness and locality indices for all components are shown in Table 3. All rich components 

show a similar inverted ‘U’ trajectory with age (Table 1, Figure 3). Edge strength distributions in 

Figure 5 show that component richness is associated with both an increased number and strength of 

rich compared to local edges. In contrast, four components were to found to have significantly more 

local connections than expected by chance (Fig 5; M, O, L and J; p=0.001). These components all had 

increased number and strength of local compared to rich connections and increased in strength 

across the lifespan (Table 1, Figure 3). 

Table 3: Rich club analysis of network components 

 

 

 
Component 

Number 
of edges Rich edges Richness^ p Local edges Locality^ p 

A 2549 780 1.34 0.001 * 658 1.00 0.418 

B 788 115 0.64 1.000 223 1.10 0.035 

C 530 61 0.50 1.000 152 1.12 0.059 

D 605 155 1.12 0.049 134 0.87 0.987 

E 1119 434 1.69 0.001 * 158 0.55 1.000 

F 835 238 1.25 0.001 * 169 0.79 1.000 

G 1583 396 1.09 0.015 333 0.82 1.000 

H 757 160 0.92 0.882 211 1.08 0.071 

I 520 155 1.30 0.001 * 119 0.89 0.917 

J 623 73 0.51 1.000 193 1.21 0.001 * 

K 1400 293 0.91 0.967 309 0.86 1.000 

L 628 86 0.60 1.000 210 1.30 0.001 * 

M 576 44 0.33 1.000 254 1.71 0.001 * 

N 535 119 0.97 0.612 103 0.75 1.000 

O 761 93 0.53 1.000 316 1.62 0.001 * 

P 710 161 0.99 0.540 184 1.01 0.446 

Q 498 111 0.98 0.599 153 1.19 0.007 

R 342 70 0.89 0.830 94 1.07 0.236 

S 572 132 1.01 0.425 120 0.82 0.999 

T 599 157 1.15 0.019 132 0.86 0.987 

U 481 41 0.37 1.000 120 0.97 0.648 

V 345 55 0.70 0.999 100 1.13 0.073 

^ number of edges compared to 1000 random networks of the same size 
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Figure 5: Rich club analysis of network com
ponents. Network com

ponents with significantly m
ore rich-club (A) or local (B) edges than in a set of 1000 equivalent random

 networks are 
shown. Thresholded connectivity m

aps are displayed in circular diagram
s as in Fig 4, with rich club nodes highlighted in red. The num

ber and probability distribution of rich, feeder and 
local edges are displayed for each com

ponent.  
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Network components in autism spectrum disorder 

In our second experiment, we applied PNMF to a dataset comprising high-functioning individuals 

with Autism Spectrum Disorder and a set of age- and sex-matched controls. In total, 24 components 

were identified (Table 4). One component was found to have a significantly higher loading in the 

ASD group compared to typically developing individuals (t(1,92)=3.161; p=0.002; p<0.05 after 

Bonferroni correction for multiple comparisons). Additionally controlling for age did not alter this 

relationship (ANCOVA: F(1,91) = 11.05, p<0.001). To control for possible gender effects, we repeated the 

statistical analysis after excluding female participants (n=7 TD; n=6 ASD). The difference in 

component strength remained significant (t(1,79)=3.44; p<0.001). 

 

Figure 6: Structural 
connectivity is 
significantly increased in 
ASD. A single subnetwork 
was found to be 
significantly stronger in 
the ASD cohort. The 
component map is shown 
in A (thresholded at 95th 
percentile), and 
component loadings for 
both groups compared in 
B. The anatomical 
locations of connected 
regions are visualised as 
in Fig 6 and shown in C. 

 

 

 

 

 

 

This component is shown in detail in Figure 6 and comprised a bilateral and symmetric pattern of 

connectivity with edges predominantly linking nodes in the anterior and posterior cingulate cortex, 

paracingulate cortex, supplemental motor areas, and parietal cortex. Both intra- and inter-

hemispheric connections are visible with additional connections between the putamen and parietal 

cortex in both hemispheres. The mean (±S.D.) component loadings were 2.9 ± 0.69 in the ASD group 

and 2.5 ± 0.57 in the typically-developing group (Fig 6B). Rich club analysis revealed that this 

component had significantly more local connections than expected by chance (locality: 1.32, 

p=0.001). 
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As noted above, a threshold was applied to the network data before performing PNMF, limiting the 

analysis to edges shared by at least 10% of participants. We additionally performed PNMF after 

applying two alternate thresholds: 5% and 20%. At both thresholds, a similar pattern was observed  

and found to be significantly different between groups (at 5%: t=2.732, p=0.008; excluding females: 

t=3.16, p=0.002; at 20%: t=2.40, p=0.018; excluding females: t=2.77, p=0.007). The spatial patterns 

associated with this component at each threshold match closely to that described above.  

 

Table 4: Between-group comparison of component loadings 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Discussion 
In this study, we model structural connectivity networks as the combination of separable 

subnetworks, or network components, using a data-driven and multivariate approach. We show 

that network components can be reliably identified across individuals, follow a developmental 

trajectory with age and highlight differences in connectivity in autism spectrum disorder. 

Component t(1,92) p Cohen's d 

 1 1.769 0.080 0.366 

 2 1.576 0.119 0.326 

 3 0.809 0.421 0.168 

 4 0.308 0.759 0.064 

 5 1.388 0.168 0.287 

 6 -0.735 0.464 -0.152 

 7 -0.342 0.733 -0.071 

 8 -1.180 0.241 -0.244 

 9 0.698 0.487 0.145 

 10 3.161 0.002* 0.654 

 11 0.730 0.467 0.151 

 12 1.421 0.159 0.294 

 13 -0.095 0.925 -0.020 

 14 -0.019 0.985 -0.004 

 15 1.670 0.098 0.346 

 16 -0.376 0.708 -0.078 

 17 0.146 0.884 0.030 

 18 0.328 0.744 0.068 

 19 0.283 0.778 0.059 

 20 0.162 0.872 0.033 

 21 1.459 0.148 0.302 

 22 1.162 0.248 0.241 

 23 0.410 0.683 0.085 

 24 -0.528 0.599 -0.109 

 * significant at p<0.05 after Bonferroni correction for multiple comparisons 
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NMF provides a natural setting for the analysis of neuroimaging data due to the inherent non-

negativity common to many imaging-derived metrics (e.g.: tissue volume, fibre count) (Sotiras et al. 

2015). In image analysis, NMF leads to a parts-based representation of the data, extracting sparse 

image components with localised spatial support (Lee and Seung 1999). In this way, NMF confers a 

relatively simple interpretation of the data, namely that the complex whole can be approximated by 

the summation of the localised parts. We show that decomposing structural connectivity networks 

with NMF results in a soft clustering of connections that co-vary together across the population 

forming relatively sparse subnetworks. We also find that these components are biologically 

relevant, capturing known subsystems (e.g.: subcortical-cortical projections; components C, D, N 

and P), local patterns of connectivity between anatomically or functionally homologous regions 

(e.g.: components L, O and T) and varying with age across the lifespan. 

MR studies have found that both white and grey matter tissue volumes follow an inverted U 

trajectory over the human lifespan, rising rapidly in development, peaking in the second or third 

decade and declining into older age (Giedd et al. 1999; Westlye et al. 2010; Ziegler et al. 2012). 

Markers of microstructural maturation in cerebral white matter also follow similar trends (Westlye 

et al. 2010; Lebel et al. 2012). In the NKI-Rockland cohort, a recent graph theoretical analysis of 

structural connectivity found several network properties, including efficiency, varied along the 

similar polynomial trajectories (Zhao et al. 2015). In contrast, the modularity – or extent to which a 

network could be segregated into regional communities – remained stable over time.  

In this study, using a subsample of the NKI-Rockland dataset, we found that several network 

components followed an inverted U-shaped trajectory. Significant variation in component strength 

with age was found in 16 of 22 components, of which 9 followed a nonlinear trajectory. When 

ordered by reliability across subsamples, age variation in 8 of the top 10 most robust components 

was best described by a polynomial relationship. Of the remaining components, 6 increased linearly 

with age, and 1 decreased. We found that components linking densely-connected network hub 

regions tended to follow a nonlinear trajectory with age, decreasing in strength in later life. In 

contrast, components that increased in strength with age reflected local connectivity patterns 

between neighbouring regions, or between corresponding regions in the opposite hemisphere (e.g. 

components H, L, M, O and Q), compared to more global connectivity patterns (A, E, F, J).  

These observations support evidence of an increasing dependence upon local connectivity in the 

elderly connectome with corresponding decreases in long-range connection strength between 

cortical hubs (Betzel et al. 2014; Cao et al. 2014; Perry et al. 2015; Zhao et al. 2015). Analyses of 

functional connectivity networks have shown that hub connectivity follows a U shaped trajectory 

over the human lifespan alongside a decrease in network modularity, suggesting a less segregated 

network topology in old age (Cao et al. 2014; Chan et al. 2014). Performing a comparative analysis of 

both functional and structural networks, Betzel et al. showed structural connectivity of hub regions 

decreases dramatically with age, while local connectivity is relatively spared. In addition, functional 

connectivity within resting state networks (RSN) decreased with age whereas connectivity between 

RSN increased. This increase in between-network connectivity was subserved by multi-step 

structural connections. Similarly, Perry et al showed that alterations to edge strength in the aging 
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structural connectome likely lead to an increased preference for network communication via 

multiple, non-hub, local pathways (Perry et al. 2015). Taken together, this evidence suggests that the 

decline of long-distance, hub-to-hub connections with a relative sparing of topologically, local 

connections results in less efficient network communication in older age, a process that a may 

underlie progressive cognitive decline (O’Sullivan et al. 2001; Andrews-Hanna et al. 2007) 

In our second experiment, we found a single subnetwork with significantly greater connectivity on 

average in an adolescent ASD cohort. This network was composed primarily of multiple, local 

connections between neighbouring regions in the cingulate and paracingulate cortices, both within 

and between hemispheres, along with connections between supplementary motor areas, parietal 

cortex and the putamen. The cingulum, and in particular the anterior cingulate cortex, has been 

linked to ASD due mainly to its role in social interaction and attention (Mundy 2003). Similarly, 

metabolic (Tebartz van Elst et al. 2014), neuropathological (Simms et al. 2009) and neuroanatomical 

disturbances (Schumann et al. 2010) have also been reported in the cingulate in ASD. In a 

comprehensive diffusion tractography study of the white matter tracts of the limbic system, Pugliese 

et al. found significantly increased tract volume bilaterally in the cingulum bundle (determined by 

streamline count) of adults with Asperger’s syndrome (Pugliese et al. 2009). This observation is 

convergent with post-mortem findings in autistic cases of excessive axonal connectivity between 

neighbouring cortical regions in the cingulate (Zikopoulos and Barbas 2010). This is of particular 

interest, given the putative neurodevelopmental origins of ASD, as the cingulum bundle forms early 

in gestation, followed by short range cortico-cortical connections in the third trimester (Vasung et 

al. 2010; Takahashi et al. 2012) suggesting that any early disruptions to white matter development in 

utero could have significant long-term implications on neurodevelopment. 

Previous structural network analyses in autistic populations have found significantly increased 

structural connectivity, inferred from tractography streamline count, amongst cortical regions 

including anterior and posterior cingulate cortex, superior frontal, superior parietal, and insula 

cortex (Ray et al. 2014). In a subset of the UCLA cohort, Watanabe and Rees found evidence for 

delayed, or immature, hub connectivity in ASD (Watanabe and Rees 2015), whereas Ghanbari et al. 

used a supervised variant of NMF coupled with a graph embedding approach to define 

discriminative network components and found decreased interhemispheric connection strength in 

subcortical subnetworks in ASD (Ghanbari et al. 2014). Similarly, other studies have reported 

decreases in structural connectivity, dependent on measures of white matter microstructure 

(Thakkar et al. 2008; Noriuchi et al. 2010; Lo et al. 2011). These discrepancies may relate, in part, to 

the uncertain correspondence between different measures of structural connectivity. In the original 

study of this cohort, Rudie et al. previously found streamline count was significantly increased in 4 

times as many connections in ASD subjects compared to controls (Rudie et al. 2012). However, a 

concomitant decrease in fractional anisotropy and increase in mean diffusivity was also noted in 

white matter connections on average in ASD. These differences resulted in an atypical age-related 

development of network efficiency in ASD, a factor that related to symptom severity (Rudie et al. 

2012).  
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Non-negative matrix factorisation belongs to a class of multivariate matrix decomposition and 

dimension reduction techniques that include principal component analysis (PCA) and independent 

component analysis (ICA). Recently, exploratory multivariate analysis methods have proven well-

suited to the discovery of complex organisational relationships in the brain (Beckmann and Smith 

2005; Calhoun et al. 2009; McIntosh and Mišić 2013). Previous studies have shown the potential of 

matrix factorisation techniques to isolate topological subnetworks from functional and structural 

connectivity matrices on an individual or group level (Clayden et al. 2013; Ghanbari et al. 2014; Park 

et al. 2014). We performed simulations to demonstrate that PNMF is particularly able to retrieve 

superposed spatial patterns and the corresponding, population-varying component weights from a 

set of noisy connectivity networks.  

Additionally, an important aspect of any dimension reduction task is determining the optimal 

dimensionality of the solution. In this paper, we chose to employ an automatic model selection 

process that iteratively updates model rank, removing components with low spatial variance that do 

not contribute significantly to the final reconstruction (Yang et al. 2010). This resulted in around 20 

effective components selected in both experimental cohorts. Previous studies have shown that, for 

ICA-based decomposition of functional MRI data, higher-dimensional decompositions can reveal 

nested subsystems within functional networks (Kiviniemi et al. 2009; Abou Elseoud et al. 2011; 

Dipasquale et al. 2015). Indeed, in the present study we observed apparently correspondent 

components that were split between opposite hemispheres (e.g.: components I and S), whereas 

others formed bilateral symmetric patterns (components A, U and H) suggesting some hierarchical 

structure within components. PNMF network decomposition at multiple dimensionalities would 

provide a framework to investigate the nested, or hierarchical nature of structural connectivity 

subnetworks (Meunier et al. 2010; Betzel et al. 2013; Betzel and Bassett 2016).  

Study limitations 

The use of (log-transformed) streamline counts to estimate structural connectivity could be 

considered a limitation of this study. Is it important to note that fibre counts do not necessarily 

reflect true anatomical connectivity, and tractography is prone to mapping false positive 

connections due to local accumulation of modelling errors (Jones 2010; Jones et al. 2013). However, 

using available open access datasets, we have shown that PNMF is able to extract subnetworks that 

can provide insight into biological variability, with developmental trajectories that suggest 

streamline count, in part, can reflect maturational processes in the brain. Importantly, PNMF is 

generalisable to any inherently non-negative data. This opens future avenues to explore network 

components derived from modern, probabilistic tractographic algorithms that better reflect true 

anatomical connectivity (Pestilli et al. 2014; Smith et al. 2015).  

Conclusions 

In conclusion, we present a multivariate analysis of structural connectivity in two cohorts. We 

demonstrate that complex networks can be decomposed into robust and reliable subnetworks that 

vary in strength with age. Further, we identify a specific subnetwork with increased connection 

strength in autism spectrum disorder. We propose that this form of network component analysis 

shows good potential for further exploration of the human structural connectome. 
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