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ABSTRACT 
 

Nerve tissue contains a high density of chemical synapses, about 1 per µm3 in the 

mammalian cerebral cortex. Thus, even for small blocks of nerve tissue, dense 

connectomic mapping requires the identification of millions to billions of synapses, of 

which about 80-90% are excitatory synapses. While the focus of connectomic data 

analysis has been on neurite reconstruction, synapse detection becomes limiting 

when datasets grow in size and dense mapping is required. Here, we report SynEM, 

a method for automated detection of excitatory synapses from conventionally en-bloc 

stained 3D electron microscopy image stacks. The approach is based on a 

segmentation of the image data and focuses on classifying borders between 

neuronal processes as synaptic or non-synaptic. SynEM yields 98% precision and 

recall in binary excitatory cortical connectomes with no user interaction. It scales to 

large volumes of cortical neuropil, plausibly even whole-brain datasets. SynEM 

removes the burden of manual synapse annotation for large densely mapped 

connectomes. 
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INTRODUCTION 
 

The ambition to map neuronal circuits in their entirety has spurred substantial 

methodological developments in large-scale 3-dimensional microscopy (Denk & 

Horstmann, 2004, Hayworth et al., 2006, Knott et al., 2008, Eberle et al., 2015), 

making the acquisition of datasets as large as 1 cubic millimeter of brain tissue or 

even entire brains of small animals at least plausible (Mikula et al., 2012, Mikula & 

Denk, 2015). Data analysis, however, is lagging far behind (Helmstaedter, 2013). 

One cubic millimeter of gray matter in the mouse cerebral cortex, spanning the entire 

depth of the gray matter and comprising several presumed cortical columns (Fig. 1a), 

for example, contains at least 4 kilometers of axons, about 1 kilometer of dendritic 

shafts, about 1 billion spines (contributing an additional 2-3 kilometers of spine neck 

path length) and about 1 billion synapses (Fig. 1b). Initially, neurite reconstruction 

was so slow, that synapse annotation comparably paled as a challenge (Fig. 1c): 

when comparing the contouring of neurites (proceeding at 200-400 work hours per 

millimeter neurite path length) with synapse annotation by manually searching the 

volumetric data for synaptic junctions (Fig. 1d, proceeding at about 0.1 hour per 

µm3), synapse annotation consumed at least 20-fold less annotation time than 

neurite reconstruction (Fig. 1c). An alternative strategy for manual synapse detection 

is to follow reconstructed axons (Fig. 1e) and annotate sites of vesicle accumulation 

and postsynaptic partners. This axon-focused synapse annotation reduces synapse 

annotation time by about 8-fold for dense reconstructions (proceeding at about 1 min 

per potential contact indicated by a vesicle accumulation, which occurs every about 

4-10 µm along axons in mouse cortex, Fig. 1e). Since in the mammalian cerebral 

cortex, 80-90% of synapses are excitatory, the detection of inhibitory synapses is 

about an order of magnitude less time consuming. 

With the development of substantially faster annotation strategies for neurite 

reconstruction, however, the relative contribution of synapse annotation time to the 

total reconstruction time has substantially changed. Skeleton reconstruction 

(Helmstaedter et al., 2011) together with automated volume segmentations 

(Helmstaedter et al., 2013, Berning et al., 2015), allow to proceed at about 7-10 

hours per mm path length (mouse retina, Helmstaedter et al., 2013) or 4-7 hours per 

mm (mouse cortex, Berning et al., 2015), thus about 50-fold faster than manual 

contouring. Recent improvements in online data delivery and visualization 
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(webKnossos, Boergens, Berning et al., in revision) further reduce this by about 5-10 

fold. Thus, synapse detection has become a limiting step in dense large-scale 

connectomics. Importantly, any further improvements in neurite reconstruction 

efficiency would be bounded by the time it takes to annotate synapses. Therefore, 

automated synapse detection for large-scale 3D EM data is critical. 

High-resolution EM micrographs are the gold standard for synapse detection (Gray, 

1959, Colonnier, 1968). Images acquired at about 2-4 nm in-plane resolution have 

been used to confirm chemical synapses using the characteristic intense heavy 

metal staining at the postsynaptic membrane, thought to be caused by the 

accumulated postsynaptic proteins (“postsynaptic density”, PSD), and an 

agglomeration of synaptic vesicles at the membrane of the presynaptic terminal. 

While synapses can be unequivocally identified in 2-dimensional images when cut 

perpendicularly to the synaptic cleft (Fig. 1f), synapses at oblique orientations or with 

a synaptic cleft in-plane to the EM imaging are hard or impossible to identify. 

Therefore, the usage of 3D EM imaging with a high resolution of 4-8 nm also in the 

cutting dimension (FIB/SEM, Knott et al., 2008) is ideal for synapse detection. For 

such data, automated synapse detection is available and successful (Kreshuk et al., 

2011, Becker et al., 2012, 2013). However, FIB-SEM currently does not scale to 

large volumes required for connectomics of the mammalian cerebral cortex. Serial 

Blockface EM (Denk & Horstmann, 2004) scales to such mm3 -sized volumes. 

However, SBEM provides a resolution just sufficient to follow all axons in dense 

neuropil and to identify synapses across multiple sequential images, independent of 

synapse orientation (the resolution typically is about 10x10x30 nm3; Fig. 1g). In this 

setting, synapse detection methods developed for high-in plane resolution data do 

not provide the accuracy required for fully automated synapse detection (see below). 

Here we report SynEM, an automated excitatory synapse detection method based on 

an automated segmentation of large-scale 3D EM data (using SegEM, Berning et al., 

2015) from mouse cortex obtained using SBEM. SynEM is aimed at providing fully 

automated excitatory connectomes from large-scale EM data in which manual 

annotation or proof reading of synapses is not feasible. SynEM achieves precision 

and recall for single-synapse detection of 94% and 89%, and for binary neuron-to-

neuron connectomes of 98% and 98% without any human interaction, essentially 

removing the synapse annotation challenge for large-scale excitatory mammalian 

connectomes. 
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RESULTS 
 

Interface classification 
 

We consider synapse detection as a classification of interfaces between neuronal 

processes as synaptic or non-synaptic (Fig. 1j; see also Mishchenko et al., 2010, 

Kreshuk et al., 2015, Huang et al., 2016). This approach relies on a volume 

segmentation of the neuropil sufficient to provide locally continuous neurite pieces 

(such as provided by SegEM, Berning et al., 2015, for SBEM data of mammalian 

cortex), for which the contact interfaces can be evaluated.  

The unique features of excitatory synapses are distributed asymmetrically around the 

synaptic interface: presynaptically, large vesicle pools extend into the presynaptic 

terminal over at least 100-200 nm; postsynaptically, the PSD has a width of about 

20-30 nm. To account for this surround information our classifier considers the 

subvolumes adjacent to the neurite interface explicitly and separately, unlike 

previous approaches (Kreshuk et al., 2015, Huang et al., 2016), up to distances of 

40, 80, and 160 nm from the interface, restricted to the two segments in question 

(Fig. 1k; the interface itself was considered as an additional subvolume). We then 

compute a set of 11 texture features (Table 1, this includes the raw data as one 

feature), and derive 9 simple aggregate statistics over the texture features within the 

7 subvolumes. In addition to previously used texture features (Kreshuk et al., 2011, 

Table 1), we use the local standard deviation, an intensity-variance filter and local 

entropy to account for the low-variance (“empty”) postsynaptic spine volume and 

presynaptic vesicle clouds, respectively (see Fig. 1l for filter output examples and 

Fig. 1m for filter distributions at an example synaptic and non-synaptic interface). The 

“sphere average” feature was intended to provide information about mitochondria, 

which often impose as false positive synaptic interfaces when adjacent to a plasma 

membrane. Furthermore, we employ 5 shape features calculated for the border 

subvolume and the two subvolumes extending 160 nm into the pre- and postsynaptic 

processes, respectively. Together, the feature vector for classification had 3224 

entries for each interface (Table 1).  
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SynEM workflow and training data 
 

We developed and tested SynEM on a dataset from layer 4 (L4) of mouse primary 

somatosensory cortex (S1) acquired using SBEM (dataset ex145_07x2, Boergens et 

al., in prep.; the dataset was also used in developing SegEM, Berning et al., 2015). 

The dataset had a size of 93 x 60 x 93 µm3 imaged at a voxel size of 11.24 x 11.24 x 

28 nm3. The dataset was first volume segmented (SegEM, Berning et al., 2015, Fig. 

1j, see Fig. 1n for a SynEM workflow diagram). Then, all interfaces between all pairs 

of volume segments were determined, and the respective subvolumes were defined. 

Next, the texture features were computed on the entire dataset and aggregated as 

described above. Finally, the shape features were computed. Then, the SynEM 

classifier was implemented to output a synapse score for each interface and each of 

the two possible pre-to-postsynaptic directions (Fig. 2a-c). The SynEM score was 

then thresholded to obtain an automated binary classification of interfaces into 

synaptic / non-synaptic (θ in Fig. 2a). Since the SynEM scores for the two possible 

synaptic directions were rather disjunct in the range of relevant thresholds (Fig. 2b), 

we used the larger of the two scores for classification. By introducing a second 

threshold θ2 on the SynEM score, one can use SynEM instead in a semi-automated 

setting where a range of interfaces (between θ1 and θ2 Suppl. Fig. 1b) is manually 

inspected to further improve precision and recall. In the following, we report results 

on the fully-automated version of SynEM (Fig. 2d,e).  

We obtained labels for SynEM training and validation by presenting raw data 

volumes of (1.6 x 1.6 x 0.7-1.7 ) µm3 that surrounded the segment interfaces to 

trained student annotators (using a custom-made annotation interface in Matlab, 

Suppl. Fig. 1a). The raw data was rotated such that the interface was most vertically 

oriented in the image plane presented to the annotators; the two interfacing neurite 

segments were colored transparently for identification (this could be switched off by 

the annotators when inspecting the synapse, see Methods for details). Annotators 

were asked to categorize the presented interface as either non-synaptic, pre-to-

postsynaptic, or post-to-presynaptic (Fig. 2a, Suppl. Fig. 1a). The synaptic labels 

were then verified by an expert neuroscientist. A total of 75,383 interfaces (1,858 

synaptic, 73,525 non-synaptic) were annotated in image volumes drawn from 40 

locations within the entire EM dataset. About 80% of the labels (1467 synaptic, 

61,619 non-synaptic) were used for training, the remaining were used for validation.  
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Initially, we interpreted the annotator’s labels in a binary fashion: irrespective of 

synapse direction, the label was interpreted as synaptic (and non-synaptic otherwise, 

Fig. 2c, “binary”). We then augmented the training data by including mirror-reflected 

copies of the originally presented synapses, maintaining the labels as synaptic 

(irrespective of synapse direction) and non-synaptic (Fig. 2c, “augmented”). Finally, 

we changed the labels of the augmented training data to reflect the direction of 

synaptic contact: only synapses in one direction were labeled as synaptic, and non-

synaptic in the inverse direction (Fig. 2c “directed”). 

Fig. 2d shows the effect of the choice of features, aggregate statistics, classifier 

parameters and label types on SynEM precision and recall. Our initial classifier used 

the texture features from Kreshuk et al., 2011 with minor modifications and in 

addition the number of voxels of the interface and the two interfacing neurite 

segmentation objects (restricted to 160 nm distance from the interface) as a first 

shape feature (Table 1). This classifier provided only about 70% precision and recall 

(Fig. 2d). We then extended the feature space by adding more texture features 

capturing local image statistics (Table 1) and shape features. In particular, we added 

filters capturing local image variance in an attempt to represent the “empty” 

appearance of postsynaptic spines, and the presynaptic vesicle clouds imposing as 

high-frequency high-variance features in the EM images. Also, we added more 

subvolumes over which features were aggregated (see Fig. 1k), increasing the 

dimension of the feature space from 603 to 3224. Together with additional aggregate 

statistics, the classifier reached about 75% precision and recall. A substantial 

improvement was obtained by switching from an ensemble of decision-stumps (one-

level decision tree)  trained by AdaBoostM1 (Freund & Schapire, 1997) as classifier 

to decision stumps trained by LogitBoost (Friedman et al., 2000). In addition, the 

directed label set proved to be superior. Together, these improvements yielded a 

precision and recall of 87% and 86% on the validation set (Fig. 2d).  

We then evaluated the best classifier from the validation set (Fig. 2d, ‘Direct & Logit’) 

on a separate test set. This test set was a dense volume annotation of all synapses 

in a randomly positioned region containing dense neuropil of size 5.8 x 5.8 x 7.2 µm3 

from the L4 mouse cortex dataset. All synapses were identified by 2 experts, which 

included the reconstruction of all local axons, and validated once more by another 

expert on a subset of synapses. In addition we marked all shaft (to a large majority 

inhibitory) synapses in the test set and evaluated our approach for all 235 synapses 

in the test set and for 204 spine (to a large majority excitatory) synapses only (Fig. 

2e). We compared SynEM to the synapse detection algorithms from Kreshuk et al., 
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2011, Becker et al., 2012 and Kreshuk et al., 2014 on the test set (Fig. 2e, only best 

result from Becker et al., 2012 shown, see Methods for training details). Especially in 

the high recall regime SynEM was able to significantly outperform previous 

approaches on the SBEM dataset with its lower resolution (see also Suppl. Table 1 

for a comparison of detection methods). SynEM achieves precision and recall rates 

for single excitatory synapse detection of 94% and 89%, respectively (at SynEM 

score threshold θs, black circle in Fig. 2e). 

Fig. 2f shows examples of correct and incorrect SynEM classification results 

(evaluated at θs). Typical sources of errors are vesicle clouds close to membranes 

that target nearby neurites (Fig. 2f, FP), Mitochondria in the pre- and/or postsynaptic 

process, very small vesicle clouds and/or small PSDs (Fig. 2f, FN), and remaining 

SegEM segmentation errors (see Suppl. Material for 3-dimensional image sequences 

of TP, FP, TN, FN calssifications). 

We then asked which features had highest classification power, and whether the 

newly introduced texture and shape features contributed to classification. Boosted 

decision-stump classifiers allow the ranking of features according to their 

classification importance (Fig. 2g). 378 out of 3224 features contributed to 

classification (leaving out the remaining features did not reduce accuracy, thus 

allowing us to reduce computation time). The 10 features with highest discriminative 

power (Table 2) in fact contained two of the added texture filters (int-var and local 

entropy) and a shape feature. The three most distinctive subvolumes (Fig. 2g) were 

the large presynaptic subvolume,  the border and the small postsynaptic subvolume. 

This suggests that the asymmetry in pre- vs. postsynaptic aggregation volumes in 

fact contributed to classification performance, with a focus on the presynaptic vesicle 

cloud and the postsynaptic density. 

 

SynEM for connectomes 
 

We so far evaluated SynEM on the basis of the detection performance of single 

synaptic interfaces. Since we are interested in measuring the connectivity matrices of 

mammalian cortical circuits (connectomes) we obtained a statistical estimate of 

connectome error rates based on synapse detection error rates. We assume that the 

goal is a binary connectome containing the information whether pairs of neurons are 

connected or not. Automated synapse detection provides us with weighted 
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connectomes reporting the number of synapses between neurons, from which we 

can obtain binary connectomes by considering all neuron pairs with at least γnn 

synapses as connected (Fig. 3a). Synaptic connections between neurons in the 

mammalian cerebral cortex have been found to be established via multiple synapses 

per neuron pair (Fig. 3b, Feldmeyer et al., 1999, Feldmeyer et al., 2002, Feldmeyer 

et al., 2006, Frick et al., 2008, Markram et al., 1997, ranges 1-8 synapses per 

connection, mean 4.3 ± 1.4). The effect of synapse recall Rs on recall of neuron-to-

neuron connectivity Rnn can be estimated (Fig. 3c) for each threshold γnn given the 

distribution of the number of synapses per connected neuron pair nsyn. For 

connectomes in which neuron pairs with at least one detected synapse are 

considered as connected (γnn = 1), a neuron-to-neuron connectivity recall Rnn of 98% 

can be achieved with a synapse detection recall Rs of 70.6% (Fig. 3c, black arrow) if 

synapse detection is independent between multiple synapses of the same neuron 

pair. SynEM achieves 99.3% synapse detection precision Ps at this recall (Fig. 2e).  

The resulting precision of neuron-to-neuron connectivity Pnn then follows from the 

total number of synapses in the connectome Nsyn = N2*cr*<nsyn>, with cr the pairwise 

connectivity rate, about 20% for local connections in cortex (Feldmeyer et al., 1999), 

<nsyn> the mean number of synapses per connection  (4.3 ± 1.4, Fig. 3b), and N2 the 

size of the connectome. A fraction Rs of these synapses is detected (true positive 

detections, TPs). The number of false positive (FP) synapse detections was deduced 

from TP and the synapse precision Ps as FP=TP*(1-Ps)/Ps, yielding Rs*Nsyn*(1-Ps)/Ps 

false positive synapse detections. These we assumed to be distributed randomly on 

the connectome and estimated how often at least γnn synapses fell into a previously 

empty connectome entry. These we considered as false positive connectome entries, 

whose rate yields the binary connectome precision Pnn (see Methods for details of 

the calculation). At Rnn of 98%, SynEM yields a neuron-to-neuron connection 

precision Pnn of 98% (Fig. 3d, black arrow, Fig. 3e). Error rates of 2% for missed 

connections and for wrongly detected connections are well below the noise of 

synaptic connectivity so far found in real biological circuits (e.g., Helmstaedter et al., 

2013, Bartol et al., 2015), and thus likely sufficient for a large range of studies 

involving the mapping of cortical connectomes.  

In summary, SynEM provides fully automated synapse detection for binary 

mammalian connectomes up to 98% precision and recall, a range which was 

previously prohibitively expensive to attain by existing methods (Fig. 3f). 
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Local cortical connectome 
 

We applied SynEM to a local cortical connectome between 100 axons and 100 

postsynaptic processes in the dataset from L4 of mouse cortex (Fig. 4a, b). We first 

detected all contacts and calculated the total contact area between each pair of pre- 

and postsynaptic processes (“contactome”, Fig. 4c). We then classified all contacts 

using SynEM (at the classification threshold θnn (Table 3) yielding 98% neuron-to-

neuron precision and recall) followed by binarization at γnn = 1 to obtain the binary 

connectome Cbin (Fig. 4d).  

In order to obtain an improved weighted connectome Cw (Fig. 4e), we finally applied 

SynEM to those contacts belonging to neurite pairs indicated as connected in the 

binary connectome. Here we used SynEM at the classification threshold θs yielding 

89% single synapse recall and 94% single synapse precision. The detected 

synapses were clustered when they were closer than 1500 nm for a given neurite 

pair. This allowed us to concatenate large synapses with multiple active zones or 

multiple contributing SegEM segments into one (Suppl. Fig. 1d).  

The resulting connectome contained 608 synapses distributed over 474 connections 

(Fig. 4e,f). We finally determined whether total contact area was predictive of 

synaptic connectivity for these connections in cortex (Fig. 4g). Note that while in the 

retina (Fig. 3e in Helmstaedter et al., 2013), total contact of more than about 1 µm2 

was highly predictive of synaptic contact, in cortex such prediction is not possible 

(see also Mishchenko et al., 2010, Bock et al., 2011, Kasthuri et al., 2015, Lee et al., 

2016). 

 

DISCUSSION 
 

We report SynEM, a toolset for automated synapse detection in connectomics. The 

particular achievement is that the synapse detection for densely mapped excitatory 

connectomes from the mammalian cerebral cortex is fully automated yielding below 

2% residual error in the connectome. With this, synapse detection is removed as a 

bottleneck in large-scale mammalian connectomics. 

 

Evidently, synapse detection is facilitated in high-resolution EM data, and becomes 

most feasible in FIB-SEM data at a resolution of about 4-8 nm isotropic (Kreshuk et 

al., 2011). Yet, only by compromising resolution for speed (and thus volume) of 
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imaging, the mapping of large, potentially even whole-brain connectomes is 

becoming plausible. Therefore it was essential to obtain automated synapse 

detection for EM data that is of lower resolution, but actually is scalable to such 

volumes.  

 

In addition to high image resolution, synapse detection is substantially simplified for 

human annotators when employing recently proposed special fixation procedures 

that enhance the extracellular space in 3D EM data (Pallotto et al., 2015). In such 

data, direct touch between neurites has a very high predictive power for the 

existence of a (chemical or electrical) synapse, since otherwise neurite boundaries 

are separated by extracellular space. Thus, it is expected that such data substantially 

simplifies automated synapse detection. The advantage of SynEM is that it achieves 

fully automated excitatory synapse detection in conventionally stained and fixated 3D 

EM data, in which neurite contact is frequent. Such data is widely used, and 

acquiring such data does not require special fixation protocols. 

 

Together, SynEM resolves excitatory synapse detection for high-throughput cortical 

connectomics of mammalian brains, making the efficiency of neurite reconstruction 

again the bottleneck for connectomic analysis. 
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METHODS 
 

Annotation time estimates 
 

Neuropil composition (Fig. 1b) was considered as follows: Neuron density of 157,500 

per mm3 (White & Peters, 1993), axon path length density of 4 km per mm3 and 

dendrite path length density of 1 km per mm3 (Braitenberg & Schüz, 1998), spine 

density of about 1 per µm dendritic shaft length, with about 2 µm spine neck length 

per spine (thus twice the dendritic path length), synapse density of 1 synapse per 

µm3 (Merchan-Perez et al., 2014) and bouton density of 0.1 – 0.25 per µm axonal 

path length (Braitenberg & Schüz, 1998). Annotation times were estimated as 200 - 

400 h per mm path length for contouring, 3.7 – 7.2 h/mm path length for 

skeletonization (Helmstaedter et al., 2011, Helmstaedter et al., 2013, Berning et al., 

2015), 0.6 h/mm for flight-mode annotation (Boergens, Berning et al., in revision), 0.1 

h/µm3 for synapse annotation by volume search (estimated form the test set 

annotation) and an effective interaction time of 60 s per identified bouton for axon-

based synapse search. All annotation times refer to single-annotator work hours, 

redundancy may be increased to reduce error rates in neurite and synapse 

annotation in these estimates (see Helmstaedter et al., 2011). 

 

EM image dataset and segmentation 
 

SynEM was developed and tested on a SBEM dataset from layer 4 of mouse primary 

somatosensory cortex (dataset 2012-09-28_ex145_07x2, K.M.B. and M.H., 

unpublished data, see also Berning et al., 2015). Tissue was conventionally en-bloc 

stained (Briggman et al., 2011) with standard chemical fixation yielding compressed 

extracellular space (compare to Pallotto et al., 2015).  

The image dataset was volume segmented using the SegEM algorithm (Berning et 

al., 2015). Briefly, SegEM was run using CNN 20130516T2040408,3  and 

segmentation parameters as follows: rse = 0; θms = 50; θhm = 0.39; (see last column in 

Table 2 in (Berning et al., 2015)). For training data generation, a different voxel 

threshold for watershed marker size θms = 10 was used. For test set and local 

connectome calculation the SegEM parameter set optimized for whole cell 

segmentations was used (rse = 0; θms = 50; θhm = 0.25, see Table 2, Berning et al., 

2015). 
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Neurite interface extraction and subvolume definition 
 

Interfaces between a given pair of segments in the SegEM volume segmentation 

were extracted by collecting all voxels from the one-voxel boundary of the 

segmentation for which that pair of segments was present in the boundary’s 26-

neighborhood. Then, all interface voxels for a given pair of segments were linked by 

connected components, and if multiple connected components were created, these 

were treated as separate interfaces. Interface components with a size of 150 voxels 

or less were discarded.  

To define the subvolumes around an interface used for feature aggregation (Fig. 1k), 

we collected all voxels that were at a maximal distance of 40, 80 and 160 nm from 

any interface voxel and that were within either of the two adjacent segments of the 

interface. The interface itself was also considered as a subvolume yielding a total of 

7 subvolumes for each interface. 

 

Feature calculation 
 

11 3-dimensional image filters with one to 15 instances each (Table 1) were 

calculated as follows and aggregated over the 7 subvolumes of an interface using 9 

summary statistics, yielding 3224 features per directed interface. Image filters were 

applied to cuboids of size 548x548x268 voxels, each, which overlapped by 72,72 

and 24 voxels in x,y and z dimension, respectively, to ensure that all interface 

subvolumes were fully contained in the filter output. 

Gaussian filters were defined by evaluating the unnormalized 3d Gaussian density 

function 

𝑔�𝜎(𝑥, 𝑦, 𝑧) =  exp (−
𝑥2

2𝜎𝑥2
−

𝑦2

2𝜎𝑦2
−

𝑧2

2𝜎𝑧2
) 

at integer coordinates (x, y, z) ∈ U = {-fx,-fx-1, … fx} x {-fy,-fy-1, … fy} x {-fz,-fz-1, … fz} 

for a given standard deviation σ = (σx, σy, σz) and a filter size f = (fx, fy, fz) and 

normalizing the resulting filter by the sum over all its elements 

𝑔𝜎(𝑥, 𝑦, 𝑧) =  𝑔�𝜎(𝑥, 𝑦, 𝑧)/ � 𝑔�𝜎(𝑥′, 𝑦′, 𝑧′).
(𝑥′,𝑦′,𝑧′)∈𝑈

 

First and second order derivatives of Gaussian filters were defined as 
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𝜕
𝜕𝜕

𝑔𝜎(𝑥, 𝑦, 𝑧) = 𝑔𝜎(𝑥, 𝑦, 𝑧)
−𝑥
𝜎𝑥2

, 

𝜕2

𝜕𝑥2
𝑔𝜎(𝑥, 𝑦, 𝑧) = 𝑔𝜎(𝑥, 𝑦, 𝑧) �

𝑥2

𝜎𝑥2
− 1�

1
𝜎𝑥2

, 

𝜕
𝜕𝜕

𝜕
𝜕𝜕

𝑔𝜎(𝑥, 𝑦, 𝑧) = 𝑔𝜎(𝑥, 𝑦, 𝑧)
𝑥𝑥
𝜎𝑥2𝜎𝑦2

. 

and analogously for the other partial derivatives. Normalization of gσ and evaluation 

of derivatives of Gaussian filters was done on U as described above. Filters were 

applied to the raw data I via convolution (denoted by ∗) and we defined the image’s  

Gaussian derivatives as 

𝐼𝑥𝜎(𝑥, 𝑦, 𝑧) = 𝐼 ∗
𝜕𝑔𝜎
𝜕𝜕

(𝑥, 𝑦, 𝑧), 

𝐼𝑥𝑥𝜎 (𝑥, 𝑦, 𝑧) = 𝐼 ∗
𝜕2𝑔𝜎
𝜕𝜕𝜕𝜕

(𝑥, 𝑦, 𝑧) 

and analogously for the other partial derivatives. 

Gaussian smoothing was defined as I∗gσ.  

Difference of Gaussians was defined as (I∗gσ - I∗gkσ), where the standard deviation of 

the second Gaussian filter is multiplied element-wise by the scalar k.  

Gaussian gradient magnitude was defined as 

�𝐼𝑥𝜎(𝑥, 𝑦, 𝑧)2 + 𝐼𝑦𝜎(𝑥, 𝑦, 𝑧)2 + 𝐼𝑧𝜎(𝑥, 𝑦, 𝑧)2. 

Laplacian of Gaussian was defined as  

𝐼𝑥𝑥𝜎 (𝑥, 𝑦, 𝑧) +  𝐼𝑦𝑦𝜎 (𝑥, 𝑦, 𝑧) + 𝐼𝑧𝑧𝜎 (𝑥, 𝑦, 𝑧)  

Structure tensor S was defined as a matrix of products of first order Gaussian 

derivatives, convolved with an additional Gaussian filter (window function) gσw: 

𝑆𝑥𝑥 = �𝐼𝑥
𝜎𝐷𝐼𝑦

𝜎𝐷� ∗ 𝑔𝜎𝑤 

and analogously for the other dimensions, with standard deviation σD of the image’s 

Gauss derivatives. Since S is symmetric, only the diagonal and upper diagonal 
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entries were determined, the eigenvalues were calculated and sorted by increasing 

absolute value. 

The Hessian matrix was defined as the matrix of second order Gaussian derivatives:  

𝐻𝑥𝑥 =  𝐼𝑥𝑥𝜎 , 

and analogously for the other dimensions. Eigenvalues were calculated as described 

for the Structure tensor. 

The local entropy feature was defined as 

− � 𝑝
𝐿∈{0,…,255}

(𝐿) log2 𝑝(𝐿), 

where p(L) is the relative frequency of the voxel intensity in the range {0, …, 255} in a 

given neighborhood U of the voxel of interest (calculated using the entropyfilt function 

in MATLAB). 

Local standard deviation for a voxel at location (x, y, z) was defined by taking the 

maximum of 0 and 

� 1
�𝑈(𝑥,𝑦,𝑧)� − 1

� 𝐼(𝑥′, 𝑦′, 𝑧′)
(𝑥′,𝑦′,𝑧′)∈𝑈(𝑥,𝑦,𝑧)

−  
1

�𝑈(𝑥,𝑦,𝑧)���𝑈(𝑥,𝑦,𝑧)� − 1�
� � 𝐼(𝑥′, 𝑦′, 𝑧′)

(𝑥′,𝑦′,𝑧′)∈𝑈(𝑥,𝑦,𝑧)

�

2

, 

for the neighborhood U(x,y,z) of location (x, y, z) with |U(x,y,z)| number of elements and 

calculated using MATLABs stdfilt function. 

Sphere average was defined as the mean raw data intensity for a spherical 

neighborhood Ur with radius r around the voxel of interest, with   

𝑈𝑟 = {(𝑥, 𝑦, 𝑧)|𝑥2 +  𝑦2 + (2𝑧)2  ≤ 𝑟2} ∩ 𝑍3, 

where Z3 is the 3 dimensional integer grid; x,y,z are voxel indices; z anisotropy was 

approximately corrected. 

The intensity/variance feature for voxel location (x, y, z) was defined as 

� 𝐼(𝑥′, 𝑦′, 𝑧′)2
(𝑥′,𝑦′,𝑧′)∈𝑈(𝑥,𝑦,𝑧)

− � � 𝐼(𝑥′, 𝑦′, 𝑧′)
(𝑥′,𝑦′,𝑧′)∈𝑈(𝑥,𝑦,𝑧)

�

2

 , 

for the neighborhood U(x,y,z) of location (x, y, z). 
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The set of parameters for which filters were calculated is summarized in Table 1.  

11 shape features were calculated for the border subvolume and the two 160 nm-

restricted subvolumes, respectively. For this, the center locations (midpoints) of all 

voxels of a subvolume were considered. Shape features were defined as follows: 

The number of voxel feature was defined as the total number of voxels in the 

subvolumes. The voxel based diameter was defined as the diameter of a sphere with 

the same volume as the number of voxels of the subvolumes. Principal axes lengths 

were defined as the three eigenvalues of the covariance matrix of the respective 

voxel locations.  Principal axes product was defined as the scalar product of the first 

principal components of the voxel locations in the two 160 nm-restricted subvolumes. 

Voxel based convex hull was defined as the number of voxels within the convex hull 

of the respective subvolume voxels (calculated using the convhull function in 

MATLAB). 

 

Generation of training and validation labels 
 

Interfaces were annotated by 3 trained undergraduate students using a custom-

written GUI (in MATLAB, Suppl. Fig. 1a). A total of 40 non-overlapping rectangular 

volumes within the center 86 x 52 x 86 μm3 of the dataset were selected (39 sized 

5.6 x 5.6 x 5.6 μm3 each and one of size 9.6 x 6.8 x 8.3 μm3). Then, all interfaces 

within these volumes were extracted as described above. Interfaces with a center of 

mass less than 1.124 µm from the volume border were not considered. For each 

interface, a raw data volume of size 1.6 x 1.6 x 0.7 μm3, centered on the center of 

mass of the interface voxel locations was presented to the annotator. When the 

center of mass was not part of the interface, the closest interface voxel was used. 

The raw data was rotated such that the second and third principal components of the 

interface voxel locations (restricted to a local surround of 15x15x7 voxels around the 

center of mass of the interface) defined the horizontal and vertical axes of the 

displayed images. First, the image plane located at the center of mass of the 

interface was shown. The two segmentation objects were transparently overlaid 

(Suppl. Fig. 1a) in separate colors (the annotator could switch the labels off for better 

visibility of raw data). The annotator had the option to play a video of the image stack 

or to manually browse through the images. The default video playback started at the 

first image. An additional video playback mode started at the center of mass of the 

interface, briefly transparently highlighted the segmentation objects of the interface, 
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and then played the image stack in reverse order to the first plane and from there to 

the last plane. In most cases, this already yielded a decision. In addition, annotators 

had the option to switch between the 3 orthogonal reslices of the raw data at the 

interface location (Suppl. Fig. 1a). The annotators were asked to label the presented 

interfaces as non-synaptic or synaptic. For the synaptic label, they were asked to 

indicate the direction of the synapse (see Suppl. Fig. 1a). In addition to the 

annotation label interfaces could be marked as “undecided”. Interfaces were 

annotated by one annotator each. The interfaces marked as undecided were 

validated by an expert neuroscientist. In addition, all synapse annotations were 

validated by an expert neuroscientist, and a subset of non-synaptic interfaces was 

cross-checked. Together, 75,383 interfaces (1858 synaptic, 73,525 non-synaptic) 

were labeled this way. Of these, the interfaces from 8 label volumes (391 synaptic 

and 11906 non-synaptic interfaces) were used as validation set; the interfaces from 

the other 32 label volumes were used for training. 

 

SynEM classifier training and validation 
 

The target labels for the binary, augmented and directed label sets were defined as 

described in the Results (Fig. 2c). We used boosted decision stumps (level-one 

decision trees) trained by the AdaBoostM1 (Freund & Schapire, 1997) or LogitBoost 

(Friedman et al., 2000) implementation from the MATLAB Statistical Toolbox 

(fitensemble). In both cases the learning rate was set to 0.1 and the total number of 

weak learners to 1500. Misclassification cost for the synaptic class was set to 100. 

Precision and recall values of classification results were reported with respect to the 

synaptic class. For validation, the binary label set was used, irrespective of the label 

set used in training. If the classifier was trained using the directed label set then the 

thresholded prediction for both orientations were combined by logical OR. 

 

Test set generation and evaluation 
 

To obtain an independent test set disjunct from the data used for training and 

validation, we randomly selected a volume of size 512 x 512 x 256 voxels (5.75 x 

5.75 x 7.17 μm3) from the dataset that contained no soma or dominatingly large 

dendrite. One volume was not used because of unusually severe local image 
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alignment issues which are meanwhile solved for the entire dataset. The test volume 

had the bounding box [3713, 2817, 129, 4224, 3328, 384] in the dataset. First, the 

volume was searched for synapses (see Fig. 1d) in webKnossos (Boergens, Berning 

et al., under review) by an expert neuroscientist. Then, all axons in the volume were 

skeleton-traced using webKnossos. Along the axons, synapses were searched 

(strategy in Fig. 1e) by inspecting vesicle clouds for further potential synapses. 

Afterwards the expert searched for vesicle clouds not associated with any previously 

traced axon and applied the same procedure as above. In total, that expert found 

335 potential synapses. A second expert neuroscientist used the tracings and 

synapse annotations from the first expert to search for further synapse locations. The 

second expert added 8 potential synapse locations. All 343 resulting potential 

synapses were collected and independently assessed by both experts as synaptic or 

not. The experts labeled 282 potential locations as synaptic, each. Of these, 261 

were in agreement. The 42 disagreement locations (21 from each annotator) were 

re-examined jointly by both experts and validated by a third expert on a subset of all 

synapses. 18 of the 42 locations were confirmed as synaptic, of which one was just 

outside the bounding box. Thus, in total, 278 synapses were identified. The precision 

and recall of the two experts in their independent assessment with respect to this 

final set of synapses was 93.6%, 94.6% (expert 1) and 97.9%, 98.9% (expert 2), 

respectively. 

Afterwards all shaft synapses were labeled by the first expert and proofread by the 

second. Subsequently, the synaptic interfaces were voxel-labeled to be compatible 

with the method by Becker et al. This initial test set comprised 278 synapses, of 

which 36 were labeled as shaft/inhibitory.  

Next, all interfaces between pairs of segmentation objects in the test volume were 

extracted as described above. Then, the synapse labels were assigned to those 

interfaces whose border voxels had any overlap with one of the 278 voxel-labeled 

synaptic interfaces. Afterwards, these interface labels were again proof-read by an 

expert neuroscientist. Finally, interfaces closer than 160 nm from the boundary of the 

test volume were excluded to ensure that interfaces were fully contained in the test 

volume. The final test set comprised 235 synapses out of which 31 were labeled as 

shaft/inhibitory. With this we obtained a high-quality test set providing both voxel-

labeled synapses and synapse labels for interfaces, to allow the comparison of 

different detection methods. 
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For the calculation of precision and recall, a synapse was considered detected if at 

least one interface that had overlap with the synapse was detected by the classifier 

(TPs); a synapse was considered missed if no overlapping interface of a given 

synapse was detected (FNs); and a detection was considered false positive (FP) if 

the corresponding interface did not overlap with any labeled synapse.  

Comparison to previous work 
 

The approach of Becker et al., 2012 was evaluated using the implementation 

provided in Ilastik (Sommer et al., 2011). This approach requires voxel labels of 

synapses. We therefore first created training labels: an expert neuroscientist created 

sparse voxel labels at interfaces between pre- and postsynaptic processes and twice 

as many labels for non-synaptic voxels for five cubes of size 3.4 x 3.4 x 3.4 μm3 that 

were centered in five of the volumes used for training SynEM. Synaptic labels were 

made for 115 synapses (note that the training set in Becker et al., 2012 only 

contained 7-20 synapses). Non-synaptic labels were made for two training cubes 

first. The non-synaptic labels of the remaining cubes were made in an iterative 

fashion by first training the classifier on the already created synaptic and non-

synaptic voxel labels and then adding annotations specifically for misclassified 

locations using Ilastik. Eventually, non-synaptic labels in the first two training cubes 

were extended using the same procedure.  

For voxel classification all features proposed in (Becker et al., 2012) and 200 weak 

learners were used. The classification was done on a tiling of the test set into cubes 

of size 256x256x256 voxels (2.9 x 2.9 x 7.2 μm3) with a border of 280 nm around 

each tile. After classification, the borders were discarded, and tiles were stitched 

together. The classifier output was thresholded and morphologically closed with a 

cubic structuring element of three voxels edge length. Then, connected components 

of the thresholded classifier output with a size of at least 50 voxels were identified. 

Synapse detection precision and recall rates were determined as follows: A ground 

truth synapse (from the final test set) was considered detected (TP) if it had at least a 

single voxel overlap with a predicted component. A ground truth synapse was 

counted as a false negative detection if it did not overlap with any predicted 

component (FN). To determine false positive classifications, we evaluated the center 

of the test volume (shrunk by 160 nm from each side to 484 x 484 x 246 voxels) and 

counted each predicted component that did not overlap with any of the ground truth 
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synapses as false positive detection (FP). For this last step, we used all ground truth 

synapses from the initial test set, in favor of the Becker et al. classifier. 

For comparison with (Kreshuk et al., 2014) the same voxel training data as for 

(Becker et al., 2012) was used. The features provided by Ilastik up to a standard 

deviation of 5 voxels for the voxel classification step were used. For segmentation of 

the voxel probability output map the graph cut segmentation algorithm of Ilastik was 

used with label smoothing ([1, 1, 0.5] voxel standard deviation), a voxel probability 

threshold of 0.5 and graph cut constant of λ = 0.25. Objects were annotated in five 

additional cubes of size 3.4 x 3.4 x 3.4 μm3  that were centered in five of the interface 

training set cubes different from the one used for voxel prediction resulting in 299 

labels (101 synaptic, 198 non-synaptic). All object features provided by Ilastik were 

used for object classification. The evaluation on the test set was done as for (Becker 

et al., 2012).  

 

Pairwise connectivity model 
 

The neuron-to-neuron connection recall was calculated assuming an empirical 

distribution p(n) of the number of synapses n between connected neurons given by 

published studies (see Supp. Table 2, Feldmeyer et al., 1999, Feldmeyer et al., 

2002, Feldmeyer et al., 2006, Frick et al., 2008, Markram et al., 1997). We further 

assumed the number of retrieved synapses given by a binomial model with retrieval 

probability given by the synapse classifier recall Rs on the test set: 

𝑃�𝑘 ≥ γ𝑛𝑛�𝑅𝑠� =  �𝐵𝐵𝐵�𝑘 ≥ γ𝑛𝑛�𝑛, 𝑅𝑠�𝑝(𝑛)
𝑛

, 

Where γnn is the threshold on the number of synapses between a neuron pair to 

consider it as connected (see Fig. 3a). This equates to the neuron-to-neuron recall: 

Rnn = P(k ≥ γnn | Rs). 

To compute the neuron-to-neuron precision, we first calculated the expected number 

of false positive synapse detections (FPs) made by a classifier with precision Ps and 

recall Rs:  

𝐹𝑃𝑠 =  
(1 − 𝑃𝑠)

𝑃𝑠
𝑅𝑠𝑁𝑠𝑠𝑠 
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where Nsyn is the total number of synapses in a dataset calculated from the average 

number of synapses per connected neuron pair <nsyn> times the number of 

connected neuron pairs Ncon and cr is the connectivity ratio given by Ncon/N2 with N 

the number of neurons in the connectome. 

We then assumed that these false positive synapse detections occur randomly and 

therefore are assigned to one out of N2 possible neuron-to-neuron connections with a 

frequency FPs/N2.  

We then used a Poisson distribution to estimate the number of cases in which at 

least γnn FPs synapses would occur in a previously zero entry of the connectome, 

yielding a false positive neuron-to-neuron connection (FPnn). 

𝐹𝑃𝑛𝑛 = 𝑁2(1 − 𝑐𝑟)𝑃𝑃𝑃�𝑥 ≥ γ𝑛𝑛|𝐹𝑃𝑠/𝑁2�. 

Finally, the true positive detections of neuron-to-neuron connections in the 

connectome TPnn are given in terms of the neuron-to-neuron connection recall Rnn by 

𝑇𝑃𝑛𝑛 = 𝑁2 𝑐𝑟𝑅𝑛𝑛. 

Together, the neuron-to-neuron connection precision Pnn is given by 

𝑃𝑛𝑛 =  
𝑇𝑃𝑛𝑛

𝑇𝑃𝑛𝑛 + 𝐹𝑃𝑛𝑛
=

𝑐𝑟𝑅𝑛𝑛
𝑐𝑟𝑅𝑛𝑛 + (1 − 𝑐𝑟)𝑃𝑃𝑃(𝑥 ≥ γ𝑛𝑛|𝐹𝑃𝑠/𝑁2) 

. 

The connectivity ratio was set to cr = 0.2 (Feldmeyer et al., 1999). 

 

 

 

Local connectome 
 

For determining the local connectome (Fig. 4) between 100 pre- and 100 

postsynaptic processes, we used 100 axonal skeleton tracings (traced at 1 to 5-fold 

redundancy) and 100 dendrite skeleton tracings. All volume objects which 

overlapped with any of the skeleton nodes were detected and concatenated to a 

given neurite volume. Then, all interfaces between pre- and postsynaptic processes 

were classified by SynEM. The area of each interface was calculated as in (Berning 

et al., 2015) and the total area of all contacts between all neurite pairs was calculated 
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(Fig. 4c). To obtain the binary connectome Cbin (Fig. 4d), we applied the SynEM 

score threshold θnn (Fig. 2e, Table 3), and the connectome threshold γnn = 1. To 

obtain a weighted connectome Cw (Fig. 4e), we re-analyzed all interfaces between 

neurites determined to be connected in the binary connectome. This time, the 

SynEM score threshold θs was applied (see Fig. 2e, Table 3). Detected synaptic 

interfaces were clustered using hierarchical clustering (single linkage, distance cutoff 

1,500 nm) if the interfaces were between the same pre- and postsynaptic objects. 

The connection probability as a function of total contact area between neurites (Fig. 4 

g) was calculated as the fraction of neurite-to-neurite connections with at least Ac 

total contact area that was synaptically connected.  
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FIGURE LEGENDS 
 
Figure 1 Synapse detection by classification of neurite interfaces. (a) Sketch of 

mouse primary somatosensory cortex (S1) with circuit modules (“barrels”) in cortical 

layer 4 and minimum required dataset extent for a “barrel” dataset (250 µm 

edge length) and a dataset extending over the whole cortical depth from pia to white 

matter (WM) (1 mm edge length). (b) Number of synapses and neurons, total axonal, 

dendritic and spine path length for the example datasets in (a) (White & Peters, 

1993, Braitenberg & Schüz, 1998, Merchan-Perez et al., 2014). (c) Reconstruction 

time estimates for neurites and synapses; For synapse search strategies see 

sketches in d,e. Dashed arrows: latest skeletonization tools (webKnossos, Boergens 

et al., in prep.) allow for a further speed up of about 5-to-10-fold decreasing 

skeletonization effort below excitatory synapse detection time. (d) Volume search for 

synapses by visually investigating 3d image stacks and keeping track of already 

inspected locations takes about 0.1 h/µm3. (e) Axon-based synapse detection by 

following axonal processes and detecting synapses at boutons consumes about 1 

min per bouton. (f) Examples of synapses imaged at an in-plane voxel size of 6 nm 

and (g) 12 nm in conventionally en-bloc stained and fixated tissue (Briggman et al., 

2011, Hua et al., 2015). Note that synapse detection in high-resolution data is much 

facilitated in the plane of imaging. Large-volume image acquisition is operated at 

lower resolution, requiring better synapse detection algorithms. (h) Synapse with 

arbitrary orientation (shown in orthogonal planes). (j) Definition of interfaces used for 

synapse classification in SynEM. Raw EM data (left) is first volume segmented (using 

SegEM, Berning et al., 2015). Neighboring volume segments are identified (right). (k) 

Definition of perisynaptic subvolumes used for synapse classification in SynEM 

consisting of a border (red) and subvolumes adjacent to the neurite interface 

extending to distances of 40, 80 and 160 nm. (l) Example outputs of two texture 

filters: the difference of Gaussians (DoG) and the intensity/variance filter (int./var.). 

Note the clear signature of postsynaptic spine heads (right). (m) Distributions of 

int/var. texture filter output for image voxels at a synaptic (top) and non-synaptic 

interface (bottom). Medians over subvolumes are indicated (arrows, color scale as in 

k). (n) SynEM flow chart. Scale bars, 500 nm. Scale bar in f applies to g. Scale bar in 

j applies to j-l. 
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Figure 2 SynEM training and evaluation. (a) Histogram of SynEM scores calculated 

on the validation set. Fully automated synapse detection by thresholding the SynEM 

score at threshold θ. (b) SynEM scores for the two possible directions of interfaces. 

Note that SynEM scores are disjunct in a threshold regime used for best single 

synapse performance (θs) and best neuron-to-neuron recall and precision (θnn), see 

Fig. 3, indicating a clear bias towards one of the two possible synaptic directions. (c) 

Strategy for label generation. Based on annotator labels (Ann. Label), three types of 

label sets were generated: Initial label set ignored interface orientation (Binary); 

Augmented label set included mirror-reflected interfaces (Augment.); Directed label 

set used augmented data but considered only one synaptic direction as synaptic 

(Directed). (d) Classification performance for different features, aggregation 

statistics, classifier parameters and label sets. Init: initial classifier used (see Table 

1). The initial classifier was extended by using additional features (Add feat, see 

Table 1, first row), 40 and 80 nm subvolumes for feature aggregation (Add subvol, 

see Fig. 1k) and aggregate statistics (Add stats, see Table 1). Logit: Classifier trained 

on full feature space using LogitBoost. Augment & Logit: Logit classifier trained on 

augmented label set (see Fig. 2c). Direct & Logit: Logit classifier trained on directed 

label set (see Fig. 2c). (e) Test set performance of SynEM (purple) and the synapse 

detection algorithm of (Becker et al., 2012, gray) for spine and shaft synapses and 

for spine synapses, only. Inset shows example test set labels. Threshold values for 

optimal single synapse detection performance (black circle) and an optimal 

connectome reconstruction performance (black square, see Fig. 3). (f) Correct and 

incorrect classification examples obtained from SynEM classification at θs (circle in 

e), 3 image planes spaced by 56 nm are shown (i.e. every second SBEM data slice). 

Note that detection in single or a few images is challenging in data of this resolution. 

Only fully 3-dimensional treatment allows high-accuracy detection. 1: presynaptic; 2: 

postsynaptic; x: non-synaptic (g) Ranked importance of SynEM features for 

classification. All features (top left), relevance of feature quality (bottom left), 

subvolumes (top right) and pooling statistics (bottom right). Note that only 378 

features contribute to classification. See Table 3 for the 10 highest importance 

feature instances, Table 1 for feature name abbreviations, and text for details. Scale 

bars, 500 nm. 
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Figure 3 SynEM for connectomes. (a) Sketch of a weighted connectome (left) 

reporting the number of synapses per neuron-to-neuron connection, transformed into 

a binary connectome (middle) by considering neuron pairs with at least γnn synapses 

as connected. (b) Distribution of synapse number for connected excitatory neuron 

pairs obtained from paired recordings in rodent cerebral cortex (Feldmeyer et al., 

1999, Feldmeyer et al., 2002, Feldmeyer et al., 2006, Frick et al., 2008, Markram et 

al., 1997). Average distribution (cyan) is used for the precision estimates in the 

following (see Suppl. Table 2). (c) Relationship between SynEM recall for single 

interfaces (synapses) Rs and the ensuing neuron-to-neuron connectome recall Rnn 

(recall in Cbin, a) for each of the excitatory cortico-cortical connections (summarized 

in b) and for connectome binarization thresholds of γnn = 1 and γnn = 2 (full and 

dashed, respectively). (d) Relationship between SynEM precision for single 

interfaces (synapses) Ps and the ensuing neuron-to-neuron connectome precision 

Pnn. Colors as in c.  (e) Regime of neuron-to-neuron precision Pnn and recall Rnn that 

can be obtained fully automatically by SynEM (gray). Up to 98% precision Pnn and 

recall Rnn no manual interaction is required. (f) Comparison of fully automated 

classification regime for SynEM (purple) and the best competing method (Becker et 

al., 2012, gray). Note that SynEM shifts the fully automated regime to values which 

typically exceed neuronal wiring noise (below 2% error rates), allowing for fully 

automated synapse detection. 
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Figure 4 SynEM for mapping a local cortical connectome. (a, b) 100 axonal and 

dendritic processes within a volume sized 86 x 52 x 86 µm3 from layer 4 of mouse 

cortex. (c) Contactome reporting total contact area between pre- and postsynaptic 

processes. (d) Binary connectome obtained at the SynEM threshold θnn yielding 

neuron-to-neuron recall and precision of 98% (see Fig 2e, black square). Histograms 

of the number of pre (right)- and postsynaptic (bottom) partners for each process. (e) 

Weighted connectome reporting the number of synapses obtained at the SynEM 

threshold optimal for single synapse detection θs (Fig 2e, black circle); SynEM was 

evaluated only for neuron pairs detected as connected in the binary connectome (d). 

(f) Histogram of the number of synapses between connected neurites shown for the 

single-synapse optimized (θs, blue) SynEM threshold. For comparison, the result 

from the connectome-optimized SynEM threshold is also shown (θnn, red).  (g) Total 

contact area for connected (green) and incidentally touching (blue) neurite pairs. 

Fraction of neurite pairs that were synaptically coupled and exceeded a certain total 

contact area Ac (red; full line for up to 99.5% of connections with non-zero contact 

area, dashed for remaining 0.5%). Note that this fraction does not exceed 50% over 

a wide range of contact areas, unlike in mouse retina (Fig. 3e in Helmstaedter et al., 

2013).  
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Features Kreshuk 
et al., 
2011 

Becker 
et al., 
2012 

Init. 
Class. 

Syn
EM 

Parameters N of 
instances

* 
 

Texture:       

Raw data     - 1 
3 EVs of Structure 
Tensor 

    (σw, σd) = {(s,s), (s,2s), (2s,s), 
(2s,2s), (3s,3s)} 

15 

3 EVs of Hessian     σ = {s, 2s, 3s, 4s} 12 
Gaussian Smoothing     σ = {s, 2s, 3s} 3 

Difference of Gaussians     (σ,k) = {(s, 1.5), (s, 2), (2s, 1.5), 
(2s, 2), (3s, 1.5)} 

5 

Laplacian of Gaussian     σ = {s, 2s, 3s, 4s} 4 

Gauss Gradient Magn.     σ = {s, 2s, 3s, 4s, 5s} 5 

Local standard deviation     U = 15x5x5 1 

Int./var.     U = {13x3x3, 15x5x5} 2 

Local entropy     U = 15x5x5 1 

Sphere average     r = {3, 6} 2 

       

Shape:       

Number of voxels     Bo, 160 3 

Diameter (vx based)     Bo 1 

Lengths of principal axes     Bo 3 

Principal axis product     160 1 

Convex hull (vx based)     Bo, 160 3 

 

Table 1 

Overview of the classifier features used in SynEM, and comparison with existing 

methods. 11 3-dimensional texture filters employed at various filter parameters given in 

units of standard deviation (s) of Gaussian filters (s was 12/11.24 voxels in x and y-

dimension and 12/28 voxels in z-dimension, sizes of filters were set to σ/s*ceil(2*s)). When 

structuring elements were used, 1axbxc refers to a matrix of size a x b x c filled with ones and r 

specifies the semi-principal axes of an ellipsoid of length (r, r, r/2) voxels in x, y and z-

dimension. All texture features are pooled by 9 summary statistics (quantiles (0.25, 0.5, 0.75, 

0, 1), mean, variance, skewness, kurtosis, respectively) over the 7 subvolumes around the 

neurite interface (see Fig. 1k). Shape features were calculated for three of the subvolumes: 

border (Bo) and the 160 nm distant pre- and postsynaptic volumes (160). Init. Class: initial 

SynEM classifier (see Fig. 2d for performance evaluation). N of instances: number of feature 

instances per subvolume (n=7) and aggregate statistic (n=9). *: Total number of employed 

features is 63 times reported instances for texture features.  For shape features, the reported 

number is the total number of instances used, together yielding 3224 features total. 
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Rank Feature Parameters Subvolume Aggregate 
statistic 

1 EVs of Struct. Tensor (largest) σw = 2s, 
σD = s 

160 nm, S1 Median 

2 EVs of Struct. Tensor (smallest) σw = 2s, 
σD = s 

160 nm, S1 Median 

3 Local entropy U = 15x5x5 160 nm, S2 Variance 

4 Difference of Gaussians σ = 3s, 
k = 1.5 

Border 25th perc 

5 Difference of Gaussians σ = 2s, 
k = 1.5 

Border Median 

6 EVs of Struct. Tensor (middle) σw = 2s, 
σD = s 

40 nm, S2 Min 

7 Int./var. U = 13x3x3 Border 75th perc 

8 EVs of Struct. Tensor (largest) σw = 2s, 
σD = s 

80 nm, S1 25th perc 

9 Gauss gradient magnitude σ = s 40 nm, S2 25th perc 

10 Principal axes length (2nd) - Border - 

 

Table 2 

SynEM features ranked by ensemble predictor importance. See Fig. 2g and Methods for 

details. Note that two of the newly introduced features and one of the shape features had 

high classification relevance (Local entropy, Int./var., Principal axes length; cf. Table 1). 
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Threshold 
score 

Single synapse Ps/Rs Neuron-to-neuron 
Pnn/Rnn 

  nn = 1 nn = 2 

θs = -1.23 94.3% / 88.7% 84.6% / 99.7% 99.6% / 95.8% 

θnn =0.03 99.3% / 70.6% 98.3% / 98.1% 100% / 87.4% 

 

Table 3 

SynEM score thresholds and associated precision and recall. SynEM score chosen for 

best single synapse performance (θs)  and a neuron-to-neuron connection recall and 

precision of 98% (θnn) with corresponding single synapse precision and recall rates (Ps, Rs, 

respectively) and estimated neuron-to-neuron precision and recall rates (Pnn, Rnn, 

respectively) for connectome binarization thresholds of nn = 1 and nn = 2. 
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