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ABSTRACT  1 

Aims: Understanding how biodiversity emerges and varies in space and time is central to 2 

ecology and biogeography. Multiple processes affect biodiversity at different scales and 3 

organizational levels, hence progress in understanding biodiversity dynamics requires the 4 

integration of these underlying processes. Here we present BioGEEM (BioGeographical Eco-5 

Evolutionary Model), a spatially-explicit, process-based model that integrates all processes 6 

hypothesized to be relevant for biodiversity dynamics and that can be used to evaluate their 7 

relative roles.   8 

Location: Hypothetical oceanic islands 9 

Methods: The model is stochastic, grid-based, and integrates ecological (metabolic 10 

constraints, demography, dispersal, and competition), evolutionary (mutation and speciation), 11 

and environmental (geo-climatic dynamics) processes. Plants on oceanic islands served as 12 

model system. We used the full model to test hypotheses about emergent patterns at different 13 

spatio-temporal scales and organizational levels (populations, species, communities, and 14 

assemblages), switching off processes to assess the importance 1) of competition for realistic 15 

population and range dynamics; 2) metabolic constraints for endemism and community 16 

composition; 3) environmental dynamics and 4) speciation for biogeographical patterns.  17 

Results: The full model generated multiple patterns matching empirical and theoretical 18 

expectations. For example, populations were largest on young, species-poor islands. Species, 19 

particularly endemics, were better able to fill their potential range on small, species-poor 20 

islands. Richness gradients peaked at mid-elevations. The proportion of endemics was highest 21 

on old, large, and isolated environments within the islands. Species and trait richness showed 22 

unimodal temporal trends. Switching off selected processes affected these patterns, and we 23 

found most of our hypotheses supported. 24 
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Main conclusions: Integrating ecological, evolutionary, and environmental processes is 1 

essential to simultaneously generate realistic spatio-temporal dynamics at population, species, 2 

community, and assemblage level. Finally, large-scale biodiversity dynamics emerged 3 

directly from biological processes which make this mechanistic model a valuable ‘virtual 4 

long-term field station’ to study the linkages between biogeography and ecology. 5 

 6 

Keywords: demography, dispersal, interspecific competition, island biogeography, 7 

mechanistic simulation model, metabolic theory, plant community, species richness, process-8 

based niche model, speciation. 9 
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INTRODUCTION 1 

Ecologists and biogeographers have a long-standing interest in explaining how species are 2 

distributed in space and time, but disentangling the relative role of various potential 3 

mechanisms for the generation and maintenance of biodiversity remains a challenge (Pennisi, 4 

2005). Considering the complex interlinkage between eco-evolutionary processes and 5 

environmental dynamics indicated to influence biodiversity, it seems crucial to account for 6 

these processes simultaneously (Urban et al., 2016; Cabral et al., 2016). This has been 7 

achieved by complex mechanistic models that simulate macro eco-evolutionary processes 8 

(e.g. colonization, speciation, extinction) directly at the species and/or community ecological 9 

levels to generate the biogeographical patterns of interest (e.g. Gotelli et al., 2009; Colwell & 10 

Rangel, 2010). Other models can simulate processes at lower ecological levels, such as 11 

propagule dispersal, individual survival, or population establishment, to generate colonization 12 

and extinction as emergent processes (e.g. Harfoot et al., 2014; Singer et al., 2016; Urban et 13 

al., 2016). This would provide insights across ecological levels and contribute to integration 14 

of biogeographical and ecological theories (Evans et al., 2013; Rosindell & Harmon, 2013; 15 

Cabral et al., 2016).  16 

The major limitation of biogeographical models that simulate processes at low ecological 17 

levels is high model complexity. Integrating multiple processes increases the number of 18 

parameters and complicates interpretability (Dormann et al., 2012). These issues can be 19 

avoided by investigating multiple emergent patterns at different scales, i.e. pattern-oriented 20 

modelling (Grimm & Railsback, 2012). Pattern-oriented modelling allows distinguishing 21 

different parameter combinations that generate similar patterns at a given scale by evaluating 22 

patterns at other scales. To counter-balance model complexity, a usefully complex model 23 

should thus be able to predict patterns at multiple spatio-temporal scales and at different 24 

levels of ecological organization (e.g. populations, species, communities). Likewise, a useful 25 
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study system should be as simple as possible, but still informative across scales and 1 

ecological levels. Oceanic islands are suitable study systems because they are small and 2 

isolated, have distinct boundaries, occur in large numbers worldwide, and exhibit striking 3 

examples of evolutionary diversification (Losos & Ricklefs, 2010; Warren et al., 2015). 4 

Accordingly, island research has contributed essential information about eco-evolutionary 5 

processes that shape biodiversity (e.g. Ricklefs & Bermingham, 2004; Whittaker & 6 

Fernández-Palacios, 2007).  7 

Different processes have been postulated to be important drivers for insular biodiversity. 8 

The seminal equilibrium theory of island biogeography (ETIB) emphasizes the roles of area 9 

affecting extinction and of isolation affecting colonization (MacArthur & Wilson, 1963), and 10 

the importance of these factors has received ample support by many macroecological studies 11 

(e.g. Kreft et al., 2008; Triantis et al., 2012; Weigelt & Kreft, 2013). Climate and 12 

environmental heterogeneity also exert strong influence on insular biodiversity (Kreft et al., 13 

2008; Hortal et al., 2009; Cabral et al., 2014). Recently, the importance of geo-climatic 14 

processes and time has been highlighted (Whittaker & Fernández-Palacios, 2007; Losos & 15 

Ricklefs, 2010; Lomolino et al., 2010; Weigelt et al., 2016). In particular, species richness 16 

and endemism depend on island age, geological ontogeny, and Pleistocene sea-level changes 17 

(Whittaker et al., 2008; Borregaard et al., 2016, Weigelt et al., 2016). Speciation is influenced 18 

by speciation mode as well as island area, isolation, and environmental heterogeneity 19 

(Whittaker et al., 2008; Kisel & Barraclough, 2010; Rosindell & Phillimore, 2011). These 20 

factors and associated processes are summarized by the General Dynamic Model of Island 21 

Biogeography (GDM), which assumes a humped trajectory of area, elevation, and 22 

environmental heterogeneity over a simplified life span and ontogeny typical of many oceanic 23 

islands (Whittaker et al., 2008). The GDM predicts humped temporal trends of species 24 

richness, endemic richness, colonization, extinction, and speciation rates (predictions recently 25 
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updated by Borregaard et al., 2016). Therefore, a mechanistic model focusing on insular 1 

biodiversity dynamics should generate those patterns alongside patterns at lower ecological 2 

levels, such as species-abundance distributions (Ulrich et al., 2010) and species-area 3 

relationships (e.g. Triantis et al., 2012).  4 

This study aims to investigate the relative roles of ecological, evolutionary, and 5 

environmental processes for biodiversity dynamics using a process-based BioGeographical 6 

Eco-Evolutionary Model (BioGEEM). Our main hypothesis is that the integration of these 7 

three main process types is needed to accurately model biodiversity patterns. Oceanic islands 8 

served as our model systems. In our model, we extended niche models with low-level 9 

ecological processes (e.g. dispersal, population dynamics, competition, and metabolic 10 

constraints) and added evolutionary (mutation and speciation) and environmental (changes in 11 

area and environmental heterogeneity) processes. We first used the full model to evaluate 12 

emergent patterns against theoretical predictions and empirical patterns. We then assessed the 13 

relative importance of the simulated processes by switching off submodels (environmental 14 

dynamics, speciation, competition, metabolic constraints) and re-evaluating emergent 15 

patterns. We hypothesized that 1) competition is necessary to mediate population and range 16 

dynamics of competing species via competitive exclusion (Cabral & Kreft, 2012); 2) 17 

metabolic constraints are necessary to generate realistic patterns of endemism and community 18 

composition along environmental gradients and via life-history trade-offs (Brown et al., 19 

2004); 3) environmental dynamics and 4) speciation are necessary to generate 20 

biogeographical patterns as predicted by island biogeography theory (Whittaker et al., 2008; 21 

Borregaard et al., 2016). 22 

23 
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MATERIALS AND METHODS 1 

General model description 2 

We extended a spatially-explicit multi-species model for range dynamics of plants (Cabral & 3 

Kreft, 2012) with relevant evolutionary and environmental processes. We implemented 4 

environmental dynamics that reflect the growth and erosion phases of oceanic islands (Fig. 5 

1b; Whittaker & Fernández-Palacios, 2007; Whittaker et al., 2008). Ecological and 6 

evolutionary processes were controlled by metabolic constraints in a hierarchical structure 7 

(Fig. 1a). Specifically, processes were linked to environmental variables (local temperature) 8 

and species properties (body mass, Brown et al., 2004). Metabolic constraints generated 9 

spatial (via local temperature) and interspecific (via body mass) variation in eco-evolutionary 10 

processes and accounted for life-history trade-offs, and thus precluded super-organisms (e.g. 11 

minimal resource requirement and maximum reproduction). We focused on terrestrial seed 12 

plants, but these metabolic constraints are ubiquitous (Brown et al., 2004). Below, we 13 

summarize the model. A detailed description following the Overview, Design concepts, and 14 

Details protocol (ODD, Grimm et al., 2010) is provided in Appendix S1 in Supporting 15 

Information. 16 

State variables and scales 17 

The model was grid-based (Fig. 1c) with a cell size of 1 km2, which was large enough to 18 

sustain viable tree populations yet small enough to distinguish between short-distance (<< 1 19 

km) and long-distance dispersal (Cabral & Kreft, 2012). Each island cell was assigned to an 20 

elevational level with an associated mean temperature. The model agents were populations, 21 

which were stage-structured (seeds, juveniles, adults) and measured in number of individuals. 22 

Populations belonged to species, which were conceptualized as specific combinations of 23 

autecological attributes, such as environmental requirements, dispersal ability parameters, and 24 
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demographic traits (hereafter: species properties). Body mass and local temperature 1 

determined demographic transitions, mutation rates, the space exploited by an individual, 2 

carrying capacity, and time for speciation (see Appendix S1). These metabolic constraints 3 

accounted for the increase of metabolic rates with temperatures and their decrease with body 4 

mass (Brown et al., 2004). The application of metabolic theory accounts for metabolic trade-5 

offs related to energy allocation (e.g. survival vs. growth). Demographic transitions were 6 

germination, sexual maturation, reproduction, and density-independent mortality.  7 

Unoccupied cell area was used as the interaction currency (Kissling et al., 2012), for which 8 

populations competed. A cell could hold one population per species, but as many populations, 9 

and thus species, as there was area available. Consequently, species coexistence in a cell and 10 

on the island, and thus meta-communities and species assemblages, directly emerged from 11 

local resource competition (Cabral & Kreft, 2012). The state variables comprised the spatial 12 

distribution of seed, juvenile, and adult abundances of each species and the unoccupied area. 13 

Each time step was one year and a complete simulation ran over millions of years (Fig. 1d and 14 

'Study design'). Eco-evolutionary processes took place every time step, whereas 15 

environmental events happened at longer intervals (Fig. 1e).  16 

Initialization 17 

The model was initialized by reading in the simulation grid (Fig. 1c) and run specifications: 18 

mean annual air temperature at sea level (298 K, or 25 ˚C), size of the species pool (1000 19 

species), and intervals for randomly drawing the species properties from a uniform 20 

distribution (see Appendix S1 for the list of parameters, interval values, and the justification 21 

of the values). 22 

For each species, we randomly assigned the following properties: maximum cell 23 

suitability, optimum temperature, temperature amplitude, optimum island side, island side 24 
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amplitude (environmental requirements), life form, mean dispersal distance, dispersal kernel 1 

thinness, strength of Allee effects, stage-specific body masses, and phenological ordering 2 

related to other species. Environmental requirements determined the distribution and quality 3 

of suitable habitat for each species. Optimum island side and island side amplitude 4 

represented requirements other than temperature affecting species distributions on islands, 5 

such as sunlight exposure or windward/leeward differences in precipitation (Whittaker & 6 

Fernández-Palacios, 2007). Temporal variation of island side and local temperature 7 

combinations accounted for changes in environmental heterogeneity, with maximum 8 

heterogeneity occurring at maximum island size. Depending on these environmental 9 

requirements, each species received a habitat suitability matrix, H (see Appendix S1). Seeds 10 

could only germinate in suitable cells.  11 

A dispersal kernel D was initialized for each species by generating a two-dimensional, 12 

grid-based Clark’s 2Dt kernel, with two parameters (mean dispersal distance and dispersal 13 

kernel shape parameter) that described short- and long-distance dispersal, respectively (Clark 14 

et al., 1999). The explicit consideration of long-distance dispersal is an advantage of Clark’s 15 

2Dt (Clark et al., 1999; Nathan & Muller-Landau, 2000) because it allows the simulation of 16 

both within-island and mainland–island dispersal processes.  17 

On the island, the abundance matrices for adults, Na, juveniles, Ny, and seeds, Ns, of each 18 

species as well as the matrix with the area occupied by all individuals, At, were initialized 19 

empty. 20 

Dispersal from mainland 21 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2017. ; https://doi.org/10.1101/099978doi: bioRxiv preprint 

https://doi.org/10.1101/099978
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

At each time step, ten random species from each mainland cell f dispersed to the island. The 1 

seed bank for each species at island cell i was incremented by Poisson(∑
f

D(i,f) 2 

Uniform(1,10000)), where D(i,f) gives the dispersal probability per seed from cell f to cell i.  3 

Population update 1 4 

Following the phenological ordering, we first calculated the area used by all individuals. 5 

Subsequently, abundances were sequentially updated by: i) turning juveniles to adults, ii) 6 

applying density-independent mortality to remaining juveniles, iii) germinating seeds, and iv) 7 

applying seed mortality (see Appendix S1 for equations). If germinating and maturing 8 

individuals in a cell surpassed the space available, excess individuals died. This accounted for 9 

density-dependent mortality through self-thinning, which is a difficult process to model 10 

(Reynolds & Ford, 2005; Wiegand et al., 2008) but emerged in our simulations from space 11 

competition. 12 

Reproduction 13 

The number of seeds produced by species j in cell i (Sp(i,j)) was given by Na(i,j) R(Na(i,j)), where 14 

Na(i,j) is the number of adults of species j in cell i and R a function describing per-capita 15 

density-dependent reproduction.  16 

Intra-island dispersal 17 

Seeds of species j received in cell z and from source cell i, (Sd(z,j)), were given by ∑
z

18 

D(z,i)Sp(i,j). 19 

Mutation 20 
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We implemented a point-mutation process, which is a simple but efficient way to model 1 

cladogenesis (i.e. in situ speciation where two or more species evolve from a common 2 

ancestor, Rosindell & Phillimore, 2011). The number of mutated seeds was a Poisson random 3 

variate, whose probability was given by multiplying Sd(z,j) with a metabolic mutation rate 4 

(Appendix S1). These genetically diverging individuals were initialized with random 5 

maximum cell suitability, optimum temperature, temperature amplitude, optimum island side, 6 

and island side amplitude (see 'Initialization'). The remaining species properties were 7 

randomly drawn within the ± 50% intervals around the values of the ancestral species to 8 

account for phylogenetic constraints. These evolving species properties allowed spatial and 9 

attribute divergence, which is commonly observed on islands.  10 

Speciation 11 

We checked whether the time for genetically diverging individuals becoming a distinct 12 

species was reached (i.e. 'protracted speciation', Rosindell & Phillimore, 2011). We also 13 

included anagenesis (i.e. colonizers becoming distinct from the mainland form without in situ 14 

cladogenesis occurring). Both speciation modes depended on metabolic constraints to account 15 

for longer generations for larger body mass (Brown et al., 2004). For anagenesis, the 16 

speciation time was counted from the island colonization event (no mutation required). 17 

However, every time mainland immigrants became adults, completion of anagenesis was 18 

delayed due to gene flow. The delay was arbitrary but varied metabolically and could re-start 19 

the speciation countdown (see Appendix S1). For cladogenesis, the speciation time was 20 

counted from the time step of the mutation event. Mutants surviving until their speciation 21 

time was completed were updated as cladogenetic endemics. The colonizer species giving 22 

origin to cladogenetic endemics remain either non-endemic under continuous gene flow or 23 

become anagenetic endemic.  24 
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Population update 2 1 

Abundance matrices were updated sequentially by applying density-independent mortality to 2 

adults and updating the seed bank after dispersal and mutation. These stochastic transitions 3 

followed respective metabolic transition rates (Appendix S1).  4 

Environmental dynamics 5 

We considered the geo-climatic changes assumed on oceanic hotspot islands (Fig. 1b;  6 

Whittaker & Fernández-Palacios, 2007). To mimic volcanic island growth, each simulation 7 

started with a single cell that grew regularly by adding concentric belts of cells around the 8 

margins and by uplifting the interior belts. Thereafter, island size remained temporarily stable, 9 

followed by an erosion phase. At each erosion step, one belt of cells disappeared from the 10 

island margin, and the elevation of remaining cells decreased (Fig. 1b). Temperature 11 

decreased by 1 K for each elevational belt following uplift and increased by 1 K following 12 

erosion. We assumed an arbitrary length for each growth time step of 0.13 Myr (based on 13 

estimates for Madeira, see Appendix S1). We doubled this time length for the stable phase 14 

and erosion time steps to account for a slower erosion phase compared to the volcanic growth 15 

phase (Whittaker & Fernández-Palacios, 2007). Each simulation spanned 2.21 Myr. After 16 

every environmental event, H was recalculated for every species.  17 

Output 18 

Output variables were Na, Ny, and Ns. Additionally, we recorded for every time step and cell 19 

species richness (total, non-endemics, and anagenetic as well as cladogenetic endemics), 20 

radiating lineages (species showing cladogenesis on the island) and species per radiating 21 

lineage. For the entire island, we counted colonization, speciation, and extinction events per 22 

time step.  23 
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Study design 1 

We designed two simulation experiments. First, we simulated the full model including all key 2 

processes. For each ecological level, we assessed multiple patterns and compared them to 3 

empirical data and theoretical predictions whenever possible. At maximum size, the simulated 4 

islands were 300 cells away from the mainland. The maximum island size was 11×11 cells 5 

and the mainland species pool comprised 1000 species. For this experiment, we simulated 20 6 

replicate runs, each with a different mainland source pool.   7 

The second experiment simulated exploratory scenarios in which we switched off 8 

processes to assess their relative role. Three replicate model runs were performed for each 9 

exploratory scenario. This replicate number allowed us to explore all scenarios, while still 10 

producing variability in the resulting time series. We simulated four scenarios: 1) without 11 

competition; 2) without metabolic constraints; 3) without environmental dynamics; 4) without 12 

speciation. Except for the scenario without metabolic constraints, replicate runs were based on 13 

the same source pool, thereby controlling for source pool-related variability. For the scenario 14 

without competition, we excluded competition with other source pool species by simulating 15 

each of 500 random species from the source pool in separate. However, competition was kept 16 

between evolving species. Otherwise, endemic richness would have increase exponentially. 17 

For the scenario without metabolic constraints, we switched off the body mass and local 18 

temperature control on demographic and evolutionary rates, which were then drawn 19 

independently (e.g. no trade-offs between reproduction and survival rates; Appendix S1). For 20 

the scenario without environmental dynamics, the island had a constant size of 7×7 cells. For 21 

the scenario without speciation, we switched off anagenesis, mutation, and cladogenesis. 22 

Given our focus on general trends and causal effects, we depicted variability of model 23 

simulations (e.g. 95% confidence envelopes) but we did not perform statistical tests when 24 
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comparing scenarios because significance for minor differences emerges simply by increasing 1 

replicates (White et al., 2014).  2 

3 
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RESULTS 1 

The first simulation experiment generated temporally and spatially-explicit patterns spanning 2 

four different ecological levels. At the population level, the dynamics of population structure 3 

and species abundance at local scale and for the entire island emerged from the simulations 4 

(Fig. 2 a-f). Population structure (proportion of seeds, juveniles, and adults within the 5 

population) varied from mostly stable (Fig. 2d) to episodically changing due to island growth 6 

or erosion events (Fig. 2e-f) to ever changing (mostly due to declining adult abundances, Fig. 7 

2c). Native non-endemics (from now simply non-endemics) tended to decrease in mean 8 

abundance (Fig. 2g), whereas anagenetic (Fig. 2h) and cladogenetic (Fig. 2i) endemics had 9 

more stable abundances over time.  10 

At the species level, the spatial distribution of abundance and realized range changed over 11 

time and could strongly deviate from the distribution of potential habitat, with some species 12 

being able to survive only in sub-optimal environments (Fig. 3a). The species tended to have 13 

lower levels of range filling at intermediate to advanced island age, with cladogenetic 14 

endemics retaining higher range filling than anagenetic endemics and non-endemics (Fig. 3b).  15 

At the local community level, rank-abundance distributions followed a lognormal 16 

distribution (Fig. 4a). Local species richness, richness of cladogenetic endemics, and 17 

proportion of cladogenetic endemics increased over time (Fig. 4b-d, respectively). Species 18 

richness and cladogenetic endemic richness peaked at intermediate elevations (Fig. 4b-c, 19 

respectively), whereas the proportion of cladogenetic endemics was highest at low elevations 20 

(Fig. 4d).  21 

At the level of the island-wide meta-community (from now on termed as assemblage), 22 

species–area relationships (SARs) were steeper during the growth phase than during the 23 

erosion phase (Fig. 5a-b). Species richness showed a humped trend and peaked at 24 
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intermediate to advanced age (Fig. 5c), whereas the peaks for anagenetic and cladogenetic 1 

endemics lagged slightly behind (Fig. 5c). Colonization and extinction rates were humped and 2 

peaked at intermediate island ages (fig. 5d). This trend was also obtained for rates of 3 

anagenesis and cladogenesis, but it was two orders of magnitude lower than for immigration 4 

(Fig. 5e). Extinction of endemics was also humped, but with a very late peak (Fig. 5e). The 5 

number of radiating lineages, the number of species per radiating lineage, and trait richness all 6 

peaked at advanced island ages (Fig. 5f, g). However, species packing showed an initial steep 7 

decrease followed by a humped trend over time (Fig. 5h). For the cladogenetic endemics, the 8 

mean pairwise trait distance to their ancestral species showed a very shallow humped trend 9 

over time, whereas the distance to all species increased almost for the entire island lifespan, 10 

decreasing only at very advanced island age (Fig 5i).  11 

The second simulation experiment, namely switching off main processes, revealed patterns 12 

diverging from the first, full model experiment (Fig. 6). At the population level, population 13 

structure was generally stable in the scenario without competition (Fig. 6a vs. Fig. 2b), 14 

whereas population structure was highly oscillatory without metabolic constraints (Fig. 6b). 15 

Without environmental dynamics, species colonized earlier, but were subjected to extinction 16 

as in the full model (Fig. 6c). Without speciation, colonizers decreased in abundances over 17 

time, but survived the entire simulation (Fig. 6d). Without competition, range filling was 18 

lower at intermediate island age and for cladogenetic species (Fig. 6e vs. Fig. 3b), whereas 19 

without metabolic constraints, range filling was variable, with non-endemics going extinct at 20 

advanced island age (Fig. 6f). Without environmental dynamics, range filling was highest for 21 

cladogenetic endemics, but showed stable dynamics after the initial colonization period (Fig. 22 

6g). Without speciation, species maintained high levels of range filling (Fig. 6h). In the 23 

scenario without competition, the proportion of cladogenetic endemics was extremely high at 24 

advanced island age, particularly in the lowlands (Fig. 6i vs. Fig. 4d right panel). In the 25 
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scenario without metabolic constraints, the proportion of cladogenetic endemics was also 1 

high, but without spatial structure (Fig. 6j). Moreover, without environmental dynamics, the 2 

proportion of cladogenetic species peaked at low and high elevations (Fig. 6k), whereas 3 

endemics were understandably absent without speciation (Fig. 6l). At the assemblage level, 4 

species richness showed a humped trend over time and was dominated by endemics, with 5 

very high values without competition (Fig. 6m vs. Fig. 5c) and very low values without 6 

metabolic constraints (Fig. 6n). Without environmental dynamics, total species richness on 7 

the island tended towards equilibrium but the number of cladogenetic species continued to 8 

increase (Fig. 6o), whereas without speciation, species richness showed a humped trend 9 

similar to, but with lower values and less variation than, the full model (Fig. 6p vs. Fig. 5c).  10 

11 
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DISCUSSION 1 

Population level  2 

In the full model, population structure varied according to local environment, species 3 

evolutionary origin (non-endemic, anagenetic, or cladogenetic), and island age (Fig. 2). The 4 

high relative abundances, particularly of non-endemics (Fig. 2g), on young islands can be 5 

explained by lower competition due to low species number. Population establishment 6 

decreases with island age, a pattern which has been observed for biological invasions on 7 

islands worldwide (Kueffer et al., 2010). Interestingly, endemics were better able to sustain 8 

stable or increasing populations compared to non-endemics (Fig. 2g-i). Empirical data 9 

comparing abundances of endemic and non-endemic plant species are rare, but evidence from 10 

pollination networks on oceanic islands suggests that endemics tend to be generalists and to 11 

have higher relative abundances than non-endemics (Olesen et al., 2002). Moreover, endemic 12 

arthropods in the Azores also tended to show higher densities and occupancy than native non-13 

endemic species (Gaston et al., 2006). Strikingly, without competition, species could sustain 14 

high and stable abundances (Fig. 6a), whereas without speciation, populations decreased over 15 

time, but could survive longer than in the full model (Fig. 6d). These results confirm our first 16 

hypothesis that competition regulates populations, particularly considering the colonization 17 

and evolution of competitors.  18 

Species level  19 

Under the full model experiment, the sharp decrease in normalized abundances after the initial 20 

island growth phase (Fig. 2g - i) translated into a general decrease in range filling at the 21 

species level at intermediate to advanced island ages (Fig. 3). Even if species could fill their 22 

entire potential range, the realized abundance distribution could diverge from the distribution 23 

of habitat suitability, particularly at intermediate island age (Fig. 3a). Such divergence can be 24 
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explained by interspecific competition, which decreases abundances and may shift abundance 1 

peaks to sub-optimal environmental conditions, as reported for plants and animals (McGill, 2 

2012; Wisz et al., 2013). With decreasing island size, extinction of poorer competitors 3 

increased range filling of surviving species (Fig. 3b). Remarkably, cladogenetic endemics 4 

were better able to fill their potential range compared to non-endemics and anagenetic 5 

endemics, which indicates high selective pressure on species to cope with competition. 6 

Because anagenetic endemics did not change their niche upon speciation, their range filling 7 

dynamics were coherently comparable to non-endemics.  8 

The scenario without competition revealed similar trends, but with higher range filling 9 

compared to the full model, with cladogenetic endemics showing the lowest values (compare 10 

Fig. 6e with Fig. 3b). The lowest values for cladogenetic endemics reflected the persistence of 11 

competition between endemics in this scenario (see Materials and Methods) and that the 12 

number of endemics was very high (Fig. 6m). Hence, the lower range filling of cladogenetic 13 

endemics can be explained by an almost unconstrained diversification. Accordingly, in the 14 

scenario without speciation, and thus without competition with endemics, non-endemics 15 

achieved high range filling throughout the simulation (Fig. 6h). In contrast, without metabolic 16 

constraits, super-dominant species evolved, leading to low range filling followed by 17 

extinction of non-endemics (Fig. 6f). Together, these results confirmed our first hypothesis 18 

that competition is necessary to regulate range dynamics (see also Singer et al., 2016; Urban 19 

et al., 2016), mostly via competition between non-endemic and endemic species.  20 

Community level  21 

The full model produced realistic rank abundance distributions with only few dominant 22 

species (Fig. 4a). The general lognormal shape of the rank abundance plots were consistent 23 

with a recent meta-analysis (Ulrich et al., 2010). Moreover, species abundance distributions 24 
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could be described by the recently introduced gambin distribution (Appendix S2; Matthews et 1 

al., 2014). When assessing the spatial distribution of local species richness, the mid-elevation 2 

peaks (Fig. 4b-c) reflected the random distribution of temperature niches of the source pool, 3 

with most ranges overlapping in mid-elevations due to mid-domain effects (Colwell & Lees, 4 

2000; Cabral & Kreft, 2012). Accordingly, cells between island sides had higher richness 5 

reflecting ecotones caused by overlapping of ranges of island side specialists. Remarkably, 6 

the percentage of cladogenetic endemics was highest at lower elevations (Fig. 4d). On real 7 

islands, species richness often peaks at low or mid-elevations (Sanders & Rahbek, 2012; 8 

Seipel et al., 2012). The percentage of single-island endemics, in contrast, tends to peak at 9 

high elevations (Steinbauer et al., 2012), which might be due to higher isolation, lower 10 

competition, and lower gene flow in high-elevation environments (Steinbauer et al., 2012). In 11 

our simulations, intermediate elevations were the least isolated environments due to the 12 

random assignment of temperature niches, which resulted in more species overlapping their 13 

ranges at these elevations. Therefore, the higher proportion of cladogenetic endemics in the 14 

lowlands in the full model supports the isolation effects because these elevations were 15 

suitable for a lower number of species compared to intermediate elevations. The low 16 

endemism at high elevations can then be explained by time and area effects, considering that 17 

high elevations had the smallest area and had less time to accumulate species. In fact, the 18 

scenario without environmental dynamics showed a high proportion of cladogenetic endemics 19 

at both low and high elevations (Fig. 6k). 20 

Beyond area, time, and isolation, environmental variables also affected endemism via 21 

increasing mutation and speciation rates with temperature (Allen et al., 2006). Very high 22 

values and no evident spatial structure of cladogenetic endemism in the scenario without 23 

metabolic constraints (Fig. 6j) confirmed that these constraints influence the spatial structure 24 

of speciation and local communities, supporting our second hypothesis. These constraints 25 
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prevent super-dominant species (e.g. species with high reproductive and survival rates 1 

combined with low resource requirements  �  Brown et al., 2004). Moreover, metabolic 2 

constraints interact with competition to regulate optimal environments for speciation, 3 

indicated by the mid-elevation peaks in endemic richness in the full model. This happens 4 

because higher speciation rates in the lowlands can be prevented by higher resource 5 

requirements (Brown et al., 2004) and thus stronger interspecific competition, despite higher 6 

mutation rates (Allen et al., 2006) as well as higher resource availability (i.e. larger area). 7 

Consequently, mid-elevations represent the best balance between higher mutation rates and 8 

resource availability in the lowlands vs. lower competition pressure in the highlands.  9 

Assemblage level  10 

Species richness of entire islands closely tracked environmental dynamics (Fig. 5a-b). Slope 11 

values of power-law SARs considering the entire island life-span matched remarkably well 12 

with real-world SARs of oceanic islands (mean z = 0.39 in Fig. 5b compared to z = 0.38 in 13 

Triantis et al., 2012). Moreover, the SAR intercepts reflecting the average species density 14 

(mean c = 1.4, Fig. 5b) were also comparable to intercepts reported for plants (c = 1.6 in 15 

Triantis et al., 2012), but larger than intercepts reported for oceanic islands (c = 0.6; Triantis 16 

et al., 2012). Such low reported intercepts are, however, closer to the intercepts obtained 17 

when considering only the growth phase (c = 0.55; Fig. 5b), when the islands start devoid of 18 

life. In real world, low intercepts (i.e. low richness per unit area) are found for area-19 

demanding taxa (e.g. vertebrates and trees) and on very small, low-lying islands, such as 20 

atolls. These islands are also subject to frequent disturbances (Morrison, 2010), which are not 21 

simulated. Nevertheless, the obtained differences in SARs indicate that future studies should 22 

account for the geological phase of the islands.     23 
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Species richness and endemic richness (Fig. 5c) followed the humped trend over time 1 

predicted by the GDM (Whittaker et al., 2008; Hortal et al., 2010; Borregaard et al., 2016). 2 

This hump was absent in the scenario without environmental dynamics (Fig. 6o), confirming 3 

our third hypothesis that the environmental processes drive the temporal dynamics of species 4 

richness. Without environment processes, the seemingly stable species richness (ca. 160 5 

species, Fig. 6o) is in line with the ETIB assumption of static islands (MacArthur & Wilson, 6 

1963). However, whereas the species richness stabilizes through a dynamic equilibrium 7 

between colonization and extinction in ETIB, our results represent a dynamic balance 8 

between colonization, speciation, and extinction with a almost constant disequilibrium caused 9 

by environental dynamics. Remarkably, without ecological and evolutionary processes the 10 

humped trend was retained but richness values were affected (Fig. 6m-n, p). In particular, 11 

species richness reached high values without competition (Fig. 6m), whereas it was very low 12 

without metabolic constraints (Fig. 6n). In both scenarios, island floras were dominated by 13 

endemics, suggesting that competition and metabolic constraints affect evolutionary processes 14 

and species assemblage composition, although their impacts are assumed to mostly affect 15 

richness locally (but see Waters et al., 2013; Pedersen et al., 2014).    16 

The humped distribution of species richness over time in the scenario without speciation 17 

rejected our forth hypothesis that speciation is necessary to generate this pattern. Our results 18 

indicate that the humped richness can emerge through colonization and extinction rates alone 19 

and without involving speciation rate. In the full model, colonization and cladogenesis rates 20 

indeed followed the theoretical predictions of decreasing colonization and humped speciation 21 

rates for a hotspot geological trajectory (Fig. 5d-e; Whittaker et al., 2008; Borregaard et al., 22 

2016). Moreover, within cladogenesis, the numbers of radiating lineages and species per 23 

radiating lineage over time (Fig. 5f) were also consistent with theoretical predictions 24 

(Whittaker et al., 2008; see also Cabral et al., submitted). This indicates that diversification 25 
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continues after volcanic activity has ceased and area has decreased (Whittaker & Fernández-1 

Palacios, 2007). Furthermore, the humped extinction (Fig. 5d) and anagenesis (Fig. 5e) rates 2 

were consistent with GDM predictions (Borregaard et al., 2016). Overall extinction rates 3 

followed the expected humped colonization trends (Fig. 5e; Borregaard et al., 2016) and 4 

reached a dynamic equilibrium only on very old islands akin to ETIB predictions (similar 5 

extinction and immigration rates in Fig. 5d; MacArthur & Wilson, 1963). Interestingly, the 6 

much delayed peak extinction of all compared to that only of endemic species (compare Figs 7 

5d-e) indicates that endemic species might be less susceptible to extinction (i.e. better adapted 8 

to in situ conditions) than non-endemic species during early stages of island erosion. 9 

Trait richness followed the humped trend of species richness, consistent with the positive 10 

relationship between trait richness and species richness (Fig. 5c,g; Petchey & Gaston, 2002; 11 

Carnicer et al., 2012). We found initially high values in species packing followed by a sharp 12 

decrease (Fig. 5h), possibly reflecting strong environmental filtering, indicating that only 13 

species with similar trait syndromes (e.g. lowland-adapted, good dispersing herbs) might be 14 

able to colonize young islands. As islands gain in environmental heterogeneity, new 15 

colonizers and evolving endemics increased the trait space, causing the sharp decrease in 16 

species packing (Fig. 5h). Thereafter, species start to fill the trait space, closely tracking 17 

island area. However, species packing was not random, as cladogenetic endemics were 18 

selected to fill the environmental space away from the co-occurring species thereby avoiding 19 

niche overlap and competitive exclusion (e.g. trait dispersion or character displacement; 20 

Mizera & Meszéna, 2003), while their trait distance to the ancestor was phylogenetically 21 

constrained (Fig. 5i). This indicates complex interactions between trait, demographic, and 22 

diversification dynamics (see Carnicer et al., 2012 for a review) and a strong influence of 23 

competition on trait selection and evolution.  24 

Model properties, limitations and potentials 25 
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The ability of the model to simultaneously generate multiple patterns across different 1 

ecological levels provides opportunities for cross-scale validation (Grimm & Railsback, 2 

2012). Other process-based island models (Kadmon & Allouche, 2007; Hortal et al., 2009; 3 

Rosindell & Phillimore, 2011; Rosindell & Harmon, 2013; Valente et al., 2014, 2015; 4 

Borregaard et al., 2016) have fewer parameters and thus lower complexity. However, these 5 

models tend to simulate biogeographical processes directly (e.g. colonization, extinction, and 6 

speciation) and are spatially-implicit. Our approach, in contrast, describes the same 7 

biogeographical patterns emerging from population-level processes in a spatially-explicit 8 

context. The unrealistic patterns we obtained when switching off core processes support the 9 

importance of these processes and justify model complexity. Additionally, the explicit 10 

representation of space and environmental heterogeneity of our approach facilitates a niche-11 

based framework, which is fundamental for testing island biogeography theory given the role 12 

of habitat heterogeneity and niche opportunities for speciation (Whittaker et al., 2008). 13 

Limited availability of empirical data generally hampers model validation, 14 

parameterization, and quantification of model uncertainty (Jeltsch et al., 2008; Dormann et 15 

al., 2012). The hierarchical structure of our model allows the use of different data types of to 16 

calibrate the model and to evaluate different emergent patterns (Wiegand et al., 2003). For 17 

example, estimates of demographic rates can be used to fit metabolic functions (Schurr et al., 18 

2012) and abundance distributions to fit demographic functions (Cabral & Schurr, 2010). 19 

Simulating large and species-rich islands might be computationally unfeasible, but within 20 

feasible computational scenarios data scarcity can be overcome with pattern-oriented 21 

modelling by using emergent patterns to calibrate unknown parameters and preventing error 22 

propagation (Wiegand et al., 2003; Grimm & Railsback, 2012).  23 

We used theoretical predictions and empirical data for evaluation of model structure and 24 

validation of the full model. A range of emergent patterns followed well-documented 25 
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empirical trends and relationships. Namely, these were rank-abundance distributions (Ulrich 1 

et al., 2010), relationship between proportions of endemic species and environmental isolation 2 

(Steinbauer et al., 2012), species–area relationships (Triantis et al., 2012), species richness 3 

and endemism over time (Whittaker et al., 2008; Cameron et al., 2013). Such cross-scale and 4 

cross-ecological level validation suggests that our model produces generalizable predictions 5 

over a wide range of systems (see Evans et al., 2013 for a review on generality of complex 6 

models). Some of the patterns generated currently lack empirical data for evaluation and thus 7 

constitute predictions to be tested in future studies (e.g. humped trait diversity over time, Fig. 8 

5g). Additionally, in all predictions (with and without available comparable empirical data), 9 

our model inherently integrates variability by considering demographic, colonization, 10 

extinction and speciation stochasticity via multiple replicate runs. Finally, parameter and 11 

model uncertainties can be addressed by varying scenarios (e.g. different isolation scenarios, 12 

Cabral et al., submitted) and model structure (Fig. 6). Therefore, data limitation should not 13 

prevent the exploration of relevant processes in simulation models (Evans et al., 2013).  14 

 15 

Model implications and conclusions 16 

Our modelling results show that understanding biodiversity dynamics requires the 17 

consideration of many different ecological, evolutionary, and environmental processes. In an 18 

island biogeography-related context, the novelty of our approach is that it simulates processes 19 

at the level of the individuals and populations in a stochastic, niche-, and metabolism-based 20 

framework. This framework leads to biogeographical dynamics emerging at large spatio-21 

temporal scales. Our approach thus unifies mechanistically multiple ecological and 22 

evolutionary theories with island biogeography theory. Besides confirming several predictions 23 

of island biogeography theory, the integration of eco-evolutionary and environmental 24 
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processes pinpointed interesting divergences and provided insights into less studied patterns 1 

and process interactions. We therefore argue that process-based models hold a great potential 2 

to serve as ‘virtual, long-term field stations’ in biogeography. 3 
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 1 

Figure 1 Model framework. (a) Hierarchical structure of simulated processes and emergent 2 

patterns. (b) Growth and erosion of hypothetical volcanic islands over geological time. 3 

Elevation and environmental heterogeneity are expected to correlate positively with island 4 

size and thus to be a humped function of island age. (c) Simulation grid at maximum island 5 

size, where s is the maximum distance between island centre and edge (s = 5 cells). Grid 6 

dimensions are described by s and distance d from the island centre to the mainland: 7 

(2s+3) (s+d+4) cells. The island is initially a single cell at s+1 cells from the left, top, and 8 

bottom borders of the grid, and the mainland is at the right grid margin with two columns of 9 

cells. (d) Island size over time (in Myr). (e) Flow chart illustrating the sequence of simulated 10 

processes. Note that ecological and evolutionary processes were performed every time step, 11 

but island dynamics took place at much greater intervals (see panel d and 'Study design'). 12 
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 1 

Figure 2 Population level temporal patterns. The top and intermediate rows show one 2 

exemplary species each, whereas the bottom row describes the abundance of adults 3 

normalized by dividing the time-series by the maximum abundance. (a-c) Seed, juvenile, and 4 

adult abundances (legend in a) in number of individuals of a non-endemic tree species 5 

adapted to lowlands and (d-f) of an endemic herb species adapted to lowlands (see Appendix 6 

S1 for detailed species properties). Panels (a) and (d) give local abundances in the central cell, 7 

(b) and (e) total island abundances, and (c) and (f) mean abundances (per occupied cell). The 8 

grey lines in (a-f) refer to the right y-axis: local temperature of the central cell (a, d), number 9 

of island grid cells (b, e), and occupied island grid cells (c, f). (g-i) Normalized mean cell 10 

abundances of (g) non-endemics, (h) anagenetic endemics (i) and cladogenetic endemics. 11 

Mean cell adult abundances were normalized by the highest value in the time-series per 12 

species. Thick lines in g-i indicated the average over replicates (n = 20) and species (n varies 13 

with replicate and time step), whereas thin lines indicate 95% CI (truncated at 0 and 1). The 14 

time-series were additionally averaged within time classes of 0.01 Myr.  15 
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 1 

Figure 3 Temporal and spatial patterns at the species level. (a) Potential (top row) and 2 

realized (bottom row) range of a shrub species adapted to lowlands (To = 24˚C, Ta= 4) at three 3 

different time steps: before (left column), during (middle column), and after (right column) 4 

the island has reached maximum size (see Appendix S1 for detailed species properties). (b) 5 

Range filling time series of range non-endemic species, anagenetic endemics, and 6 

cladogenetic endemics (n = 20; thick lines indicate means, thin dashed lines 95% CI). Time-7 

series in (b) were averaged within each geological time step.  8 
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 1 

Figure 4 Temporal and spatial patterns at the community level. (a) Rank abundance plots of 2 

the central cell, (b) spatially-explicit species richness considering all species and (c) 3 

cladogenetic endemics, as well as (d) proportion of cladogenetic endemics  at three different 4 

times steps: before (left panels), during (middle panels), and after (right panels) the island has 5 

reached maximum size. Rank abundances of each replicate are given by single lines in (a) and 6 

all of them fitted the lognormal distribution best when comparing AIC values for fitted 7 

logseries, lognormal and power law distributions to the abundance data (R package ‘sads’). 8 

Species richness and proportion of cladogenetic endemics were averaged over the 20 replicate 9 

runs. 10 
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 1 

Figure 5 Temporal patterns at the assemblage level. (a) Log-log species-area relationships 2 

(SARs) for growth and erosion phases (lines represent replicates), (b) slope z and intercept 3 

logC of estimated power-law SARs for growth and erosion phases as well as the entire island 4 

geological lifespan, (c) species richness over time, (d) colonization and extinction rates over 5 

time, (e) anagenesis, cladogenesis, and extinction rates of endemics over time, (f) number of 6 

radiating lineages and species per radiating lineage over time, (g) trait richness (volume of the 7 

convex hull of the multivariate space considering all species properties) over time, (h) species 8 

packing (number of species per trait richness unit) over time, (i) pairwise trait distance of 9 

cladogenetic endemics to their mother species and to all other species over time, averaged per 10 

trait and per species pair. Thick lines in (c-i) indicate average within each environmental time 11 

step (see ‘environmental dynamics’ in the methods) and over 20 replicates, with 95% CI (thin 12 

lines, omitted in panels d and e for visual clarity). 13 
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Figure 6 Evaluation of the model structure across patterns at different ecological levels 3 

(rows) by switching off key processes (columns). (a-d) Population dynamics of an example 4 

species, given by mean abundances (per occupied cell). (e-h) Overall range filling dynamics. 5 

(i-l) Proportion of cladogenetic endemics at advanced island age, 1.5 Myr. (m-p) Total species 6 

richness dynamics of exploratory scenarios with no competition (left column), no metabolic 7 

constraints (middle left column), no environmental dynamics (middle right column) and no 8 

speciation (right column). Colour legends differ between rows: legends in (c) for population 9 

dynamics, in (h) for range filling dynamics, and in (p) for total richness dynamics. The panels 10 

(a), (c), and (d) illustrate the population dynamics of one example non-endemic shrub species 11 

adapted to intermediate elevations that survived in these three scenarios and in the full model 12 

(inset in c). Panel (b) illustrates the population dynamics of one example cladogenetic 13 

endemic herb species adapted to lowlands (see Appendix S1 for detailed species properties). 14 

Grey lines and right y-axis in (a-d) indicate the number of occupied cells. The other panels 15 

illustrate values averaged over replicates (n = 3) and within each geological time step (95% 16 

CI given as thin lines for range filling and total species richness dynamics).   17 

0 1 20 1 2

0.0 1.0 2.0
0

8 104

(c)

6 104

1 105

No environmental dynamics

M
e
a
n
 a
b
u
n
d
a
n
c
e

Time (Myr)
0 0.5 1 1.5 2

0

5 104

(g)

1 105

1.5 105

No speciation

0

8 105

(k)

1 106

1.2 106

No competition

0

2 106

(o)

4 106

6 106

9
25
49

81

121

No metabolic constraints

8 106

78

80

82

84

0

30
40

50
60

20
10

Time  (Myr)
0.5 1 1.5 2

0

1000

1500

2000

500

0

100

150

50

R
a
n
g
e
 f
il
li
n
g
 (
%
)

S
p
e
ci
e
s 
ri
ch
n
e
ss

0

100

120

40

20

60

80

4 104

2 104

0

6 104

1.4 105

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

O
c
c
u
p
ie
d
 c
e
lls

0

91

92

90

29

27

30

31

32

28

0 0.5 1 1.5 2

Full model

1

6 105

4 105

2 105

C
la
d
o
g
e
n
e
ti
c 

e
n
d
e
m
ic
s 
(%
)

All species

Anagen.

Cladogen.

Non-endemics

Anagen.

Cladogen.

Seeds

Juveniles

Adults

(d)

(h)

(l)

(p)

(a)

(e)

(i)

(m)

(b)

(f)

(j)

(n)

0

Time (Myr)
0 0.5 1 1.5 2

Time (Myr)
0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2017. ; https://doi.org/10.1101/099978doi: bioRxiv preprint 

https://doi.org/10.1101/099978
http://creativecommons.org/licenses/by-nc-nd/4.0/

