
	 1 

Identification of Mechanisms of Functional Signaling Between Human 
Hippocampus Regions 

 
 
 
 
Ruben Sanchez-Romeroa,b, Joseph D. Ramseya,b, Jackson C. Liangc,*, Clark 
Glymoura,b 
 

 

a Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, USA 
b Center for Causal Discovery, University of Pittsburgh – Carnegie Mellon University, 
Pittsburgh, PA 15206, USA  
c Department of Psychology, Center for Learning and Memory, Institute for Neuroscience, 
University of Texas at Austin, Austin, TX 78712, USA 
* Present address: Department of Psychology, University of Toronto, Toronto, ON M5S 
1A1, Canada 

 
Corresponding Author: Ruben Sanchez-Romero 
Telephone: +14122688568 
Email: rubens@andrew.cmu.edu 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2017. ; https://doi.org/10.1101/099820doi: bioRxiv preprint 

https://doi.org/10.1101/099820
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 2 

 
Abstract 

 
 
Background 
Standard BOLD connectivity analyses depend on aggregating the signals of individual voxels 
within regions of interest (ROIs). In certain cases, this spatial aggregation implies a loss of 
valuable functional and anatomical information about subsets of voxels that drive the ROI level 
connectivity. 
 
New Method 
We use the FGES algorithm, a data-driven score-based graphical search method, to identify 
subsets of voxels that are chiefly responsible for exchanging signals between ROIs. We apply the 
method to high-resolution resting state functional magnetic resonance imaging (rs-fMRI) data 
from medial temporal lobe regions of interest of a single healthy individual measured repeated 
times over a year and a half. 
 
Results 
The FGES algorithm recovered subsets of voxels within larger medial temporal lobe ROIs of 
entorhinal cortex and hippocampus subfields that show spatially consistency across different 
scanning sessions, and are statistically significant under tests that validate the role of these 
subsets as main drivers of effective connectivity between hippocampal regions of interest.   
 
Comparison with Existing Methods 
In contrast to standard functional connectivity methods, the FGES algorithm is robust against 
false positive connections produced by transitive closures of adjacencies (correlation methods) 
and common effect conditioning (Markov random field methods). 
 
Conclusions 
The FGES algorithm allows for identification of communication subsets of voxels driving the 
connectivity between regions of interest, recovering valuable anatomical and functional 
information that is lost when ROIs are aggregated. The FGES algorithm is specially suited for 
voxelwise connectivity research, given its short running time and scalability to big data problems. 
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1. Introduction 
 
To improve the signal-to-noise ratios in relatively small samples yielding a few hundred 
timepoints of 50,000 or more cortical voxels, fMRI measurements, recorded at 
approximately 2x2x2 mm spatial resolution, have commonly been clustered into a few 
regions of interest each consisting of hundreds or thousands of such voxels (Nieto-
Castanon et al., 2003; Faria et al., 2012; Wong 2014).  The averaged measurements are 
then taken as an indication of activity—or its absence—engaged by some task or by the 
brain at rest, and the correlations or partial correlations of the averaged signals have been 
used as estimates of signaling connections between regions represented as an undirected 
graph (Salvador et al., 2005; Hayasaka et al., 2010; Smith et al., 2013;) Appropriate 
criteria for clustering of voxels are disputed, but in some cases, such as the medial 
temporal lobe, there are well-developed anatomical, histological and experimental 
grounds for distinguishing neural tissues among which there are signaling connections, as 
in Figure 1. 
 
 

 

 
 

 
Figure 1. One interpretation of ground truth for the medial temporal lobe effective connectivity, 
including MTL cortices (entorhinal cortex (ENT)) and hippocampal formation (dentate gyrus (DG), 
CA3, CA1 and subiculum (SUB)).  
 
 
1.1. Communication Subsets Model 
 
It seems unlikely that neurons in different voxels within such anatomical regions of 
interest all act homogeneously in sending and receiving signals to and from neurons in 
voxels in other anatomical regions of interest. An alternative, more mechanical model 
postulates that for each pair of regions that signal one another directly--via a channel 
without any intermediate third region--some subsets of “communicating” voxels in the 
two respective regions are principally involved in sending and/or receiving. Two (or 
more) sets of voxels within a region that communicate respectively with two (or more) 
other regions should have different, but possibly overlapping, communicating subsets as 
suggested in Figure 2. Voxels within a region that are in none of its communication sets 
may serve as transmitters between them.   
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Figure 2. Mechanical model postulating the presence of communication subsets of voxels subR, 
within larger regions of interest R, driving the connectivity between regions. Communications 
subsets subR are distinct but can overlap. 
 
 
This model suggests more specific hypotheses: (H1) for any two directly connected 
regions there should be respective proper communication subsets of voxels that, when 
averaged, remain strongly correlated when all other voxels in the two regions are 
removed from the data; (H2) comparably sized and compact alternative subsets (not 
including voxels in the relevant estimated communication subsets) within the respective 
regions should not show strong correlations of average BOLD signals, when all other 
voxels in the two regions are removed from the data; (H3) the removal from the data of 
the pairwise communication subsets should leave the averaged signals of the remaining 
voxels uncorrelated or nearly so; (H4) removal of comparably sized and compact 
alternative subsets (not including voxels in the relevant estimated communication 
subsets) within the respective regions should not produce very much reduced correlations 
of average BOLD signals; (H5) the subsets of voxels with which one region 
communicates with two (or more) others should be distinct (in the set theoretic sense) but 
correlated. 
 
The recent availability of a long sequence of resting state fMRI scans of the same 
individual makes it possible to use appended scans over multiple scanning sessions in 
place of voxel averaging across individual sessions. The availability of repeated resting 
state scans for the same individual permits multiplying the sample size by appending 
scans, while reducing concerns about co-alignment of scans and false positive 
associations due to mixing of distributions from scans of different individuals. High-
resolution voxel level measurements in turn make it possible to test these hypotheses on 
the medial temporal lobe using machine learning methods.  
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2. Materials and Methods 
 
2.1. Data 
 
The data used here were acquired, preprocessed, and provided to us by Russell Poldrack 
as part of the MyConnectome Project (myconnectome.org). We provide general 
information about the acquisition and preprocessing. Full details are available in 
Laumann et al. (2015) and Poldrack et al. (2015). MRI data were obtained repeatedly 
from one healthy individual over the course of 18 months.  Scanning was performed in a 
fixed schedule, subject to availability of the participant. Scans were performed at fixed 
times of day; Mondays at 5 pm, and Tuesdays and Thursdays were performed at 7:30 am. 
Imaging was performed on a Siemens Skyra 3T MRI scanner using a 32- channel head 
coil. T1- and T2-weighted anatomical images were acquired using a protocol patterned 
after the Human Connectome Project (Van Essen et al., 2012). Anatomical data were 
collected on 14 sessions through 4/30/2013, with a one-year follow up collected on 
11/4/2013. T1-weighted data were collected using an MP-RAGE sequence (sagittal, 256 
slices, 0.8 mm isotropic resolution, TE=2.14 ms, TR=2400 ms, TI=1000 ms, flip angle = 
8 degrees, PAT=2, 7:40 min scan time). T2-weighted data were collected using a T2-
SPACE sequence (sagittal, 256 slices, 0.8 mm isotropic resolution, TE=565 ms, 
TR=3200 ms, PAT=2, 8:24 min scan time). Resting state fMRI was performed using a 
multi-band EPI (MBEPI) sequence (Moeller et al., 2010) (TE = 30 ms, TR=1160 ms, flip 
angle = 63 degrees, voxel size = 2.4 mm x 2.4 mm x 2 mm, distance factor=20%, 68 
slices, oriented 30 degrees back from AC/PC, 96 x 96 matrix, 230 mm FOV, MB 
factor=4, 10 min scan length). Starting with session 27 (12/3/2012), the number of slices 
was changed to 64 because of an update to the multiband sequence that increased the 
minimum TR beyond 1160 ms for 68 slices.  A total of 104 resting state fMRI scanning 
sessions were acquired; 12 were pilot sessions using a different protocol, and additional 8 
were excluded based on poor signal, leaving a total of 84 usable sessions.  Functional 
data were preprocessed including intensity normalization, motion correction, atlas 
transformation, distortion correction using a mean field map, and resampling to 2mm 
atlas space. No spatial smoothing was applied. For all sessions, the last 37 volumes were 
removed due to a preprocessing artifact that produced unusually high measures of the 
BOLD signal, leaving a total of 480 volumes per scanning session. 
 
2.2. Regions of Interest 
 
Regions of interest in the medial temporal lobe were defined manually according to 
procedures established by the Preston Laboratory at The University of Texas at Austin 
(Liang et al., 2013). ROIs were defined bilaterally for subiculum, CA1, CA32DG and 
entorhinal cortex. The high-resolution T2 anatomical images of the MyConnectome 
Project allowed a more reliable delineation of hippocampal subfields in the body, head 
and tail of the hippocampus; Insausti and Amaral (2004) and Duvernoy et al., (2013) 
were used as anatomical guidelines. Regions for the left hemisphere are illustrated in 
figure 3. Regions for the right hemisphere are shown in supplementary figure S1. 
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Figure 3. Lateral view (left) and medial view (right) of 3D rendered left hemisphere medial temporal 
lobe showing ROIs for entorhinal cortex and hippocampus subfields. 
 
 
The dentate gyrus (DG) is hardly separable in functional MRI from CA3 and CA2, 
resulting in the comprehensive ROI labeled CA32DG (Zeineh et al., 2000; Ekstrom et al., 
2009; Preston et al., 2010). The entorhinal cortex is also a complex structure for which 
several subregions have been distinguished in the literature but are not distinguished in 
our data (Kerr et al., 2007; Canto et al., 2012). Simulation results (Smith et al., 2011) 
suggest that effective connections involving such confounded regions may be difficult to 
identify. 
 
2.3. Replication 
 
For statistical and replication analysis, four datasets were created for each hemisphere by 
appending: one subset of the first five consecutive sessions; two subsets of ten 
consecutive sessions, the first ten and the last ten; and one subset of ten random sessions. 
 
2.4. Methods for Identification of Communication Subsets 
 
Several kinds of procedures are available to estimate voxel to voxel connections, 
including simple correlation, penalized inverse covariance—which is effectively 
penalized partial correlation controlling for all variables—vector or structural 
autoregression, PC, a constraint-based graphical search method (Spirtes and Glymour, 
1991; Spirtes et al., 2000), and the score-based graphical search method we used here, 
FGES (described in Ramsey, 2015). 
 
FGES is a fast implementation of the quasi-Bayesian GES algorithm (Meek, 1997; 
Chickering, 2002; Chickering and Meek, 2002; Ramsey et al., 2010; Mumford and 
Ramsey, 2014), with altered caching and parallelization, known to return asymptotically 
the correct adjacencies from i.i.d. data generated from a directed acyclic graph with a 
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Gaussian distribution of its variables, represented as graph vertices. Two temporally close 
BOLD measurements of a voxel are of course not independent, but the great majority of 
measurements from a voxel will be widely separated from one another in time and can be 
regarded as independent. In simulations, FGES tolerates small deviations from Gaussian 
distributions and i.i.d sampling.  We use only the adjacencies estimated by FGES, not the 
estimates of directions of influence, which are less reliable. The FGES algorithm is 
publicly available as part of the TETRAD causal discovery freeware suite 
(www.phil.cmu.edu/tetrad/), and Java code is available in the TETRAD open source 
project, which can be cloned at (github.com/cmu-phil/tetrad). 
 
FGES uses the Bayes Information Criterion (BIC) to assess models (Schwarz, 1978). The 
score is the difference between a penalty that depends on number of parameters and 
sample size, and the log-likelihood of the model, with lower scores preferred. The penalty 
can be adjusted. The high penalty, 30, we have used in the BIC score filters out 
comparatively weak partial correlations. At a much lower penalty, 4, for example, little or 
no separation of voxel subsets is discovered by FGES. Weak partial correlations can be 
expected between voxels that have no direct influence on one another because 
statistically controlling for the BOLD signal of voxels physically intermediate on a 
channel between two voxels cannot fully control for propagated influences, as illustrated 
in Figure 4, where X, Y and Z denote neuronal physiological activity in a voxel region, 
BOLD denotes the corresponding recorded BOLD signals, S denotes exogenous inputs 
and E denotes measurement errors. Were X, Y, and Z measured precisely, X and Z would 
be independent controlling for Y, but BOLDX and BOLDZ will not be strictly independent 
controlling for BOLDY. 
 

 

 
 
 
Figure 4.  Indirectly measured causal structure relating physiological activity and BOLD recordings.  
 
 
Correlation methods produce transitive closures of adjacencies rather than adjacencies.  
Thus in figure 4, correlation would always find an adjacency between BOLDX and 
BOLDZ, and were there multiple pathways between X and Z, the correlation of BOLDX 
with BOLDZ could be larger than the correlation of BOLDX with BOLDY or BOLDY with 
BOLDZ. 
 
Markov random field methods, such as partial correlation and penalized inverse 
covariance, explicitly or implicitly condition on all variables, reducing power. These 
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methods do not return asymptotically the adjacencies in a true graphical causal 
representation of the data generating process; instead, even if the variables are perfectly 
measured, they introduce a false adjacency between variables that are not directly 
connected (not adjacent) but that are both direct causes of any third variable, as in figure 
5. 
 

 
 
Figure 5. Graphical structure where variable X and variable Z are both direct causes of variable Y 
(left). Under this causal structure, Markov random field methods will estimate a false adjacency (red 
dotted line) between X and Z. 
 
 
While they have worked well in simulations of fMRI data from small, sparse structures 
(Smith et al., 2011), in real biological and physical applications Markov random field 
methods have shown poor separation of regions (e.g., of regulatory versus non-regulatory 
genes or surfaces of different mineral composition) known to have distinct causal roles in 
generating the data (in the examples, respectively, phenotype and reflectance spectrum).  
In our data, penalized inverse covariance with a very high sparsity requirement (using the 
QUIC implementation (Hsieh et al., 2013)) produces dense communication subsets that 
are not in areas in which the hippocampal regions are in physical contact, and fails to find 
associations between averaged BOLD signals of the communication subsets it estimates. 
 
Vector and structural vector autoregression methods (often called “Granger causal” 
methods) have shown poor adjacency detection in fMRI simulations (Smith et al., 2011). 
PC has generally, but not always, produced less accurate results than GES, and in current 
implementations is much more slower than FGES for big data problems. 
 
In view of these considerations, we have used the FGES algorithm, which constructs a 
model stepwise using piecewise posterior probabilities as scores for assessing alternative 
steps, uses no time order information, and thanks to its altered caching and parallelization 
is extremely fast and can be scaled to datasets up to a million variables (Ramsey, 2015). 
It is of course quite possible that alternative machine learning methods, for example, 
methods identifying feedback relations, or functional causal methods using a time proxy 
as a variable would serve as well or better.  We have not used them because the former 
are not as yet computationally feasible for problems of the size considered here, and the 
latter are still under development. 
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3. Results 
 
3.1. FGES graphs 
 
To obtain pairwise communication subsets for each pair of regions of interest in the 
hippocampus dataset, the FGES algorithm with penalty 30 was run over 570 voxels 
comprising the four distinct anatomical regions of interest (CA32DG, CA1, subiculum 
and entorhinal cortex) for the left hemisphere hippocampus (or 530 voxels for the right 
hemisphere hippocampus), and 4,800 (ten sessions appended) or 2,400 (five sessions 
appended) BOLD datapoints.  
For datasets with the aforementioned dimensions, the FGES algorithm at penalty 30 in a 
MacBookPro 2.4 Ghz Intel Core i5, 8GB memory, returns an answer in an average of 15 
seconds for 4,800 datapoints; and 7 seconds for 2,400 datapoints.  
 
Four datasets were constructed for each hemisphere, appending the first ten sessions, the 
last ten sessions, ten random sessions, and the first five sessions. Four datasets and two 
hemispheres resulted in eight different runs of the FGES algorithm. The FGES graphs 
output for the left hemisphere datasets of ten sessions appended had in average, 1,466 
edges (0.9% density); and 1,253 edges (0.9% density) in average for the right hemisphere 
datasets. For the five sessions appended datasets, the number of edges decreased to 1,051 
(0.6% density) (for the left hemisphere), and 842 (0.6% density) (for the right 
hemisphere). The reduction in sample size affected the power of the FGES algorithm to 
detect functional connections. In both, left and right hemispheres, the reduction in the 
number of estimated edges had approximately the same magnitude. 
 
For the three left hemisphere ten sessions appended datasets, the average mean degree of 
the graphs was 5.13, average maximum degree, 13.6, and minimum degree zero. For the 
three right hemisphere datasets, the average mean degree was 4.7, the average maximum 
degree 11.6 and the minimum degree zero. For the five sessions appended datasets, the 
mean degree was 3.68, maximum degree, 11, and minimum degree zero (for the left 
hemisphere); and mean degree of 3.17, maximum degree, 7, and minimum degree zero 
(for the right hemisphere). Degree values were highly similar across hemispheres and 
datasets. Complete results for number of edges and degree for the FGES algorithm results 
are shown in supplementary table 1. 
 
3.2. Communication subsets 
 
From the graphs output by FGES we can obtain the pairwise functional communication 
subsets for each desired pair of regions by selecting the voxels of a region that have at 
least one edge (direct adjacency) connecting to the other region, and respectively for the 
other region. Results for the communication subsets for each pair of effectively 
connected hippocampal regions according to figure 1, are illustrated in figure 6, for left 
hemisphere regions of interest and ten first sessions appended dataset. Results for the 
datasets formed by appending the last ten sessions, ten random sessions, and five first 
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sessions, for left hemisphere hippocampus and right hemisphere hippocampus are shown 
in supplementary figures S2-S8. 
 

 
 
 
Figure 6. Exploded 3D views in voxel space of the communication subsets for each pair of left 
hemisphere hippocampal regions, estimated with voxelwise FGES algorithm for the first ten sessions 
appended, Entorhinal-CA32DG, CA32DG-CA1, CA1-Subiculum, Subiculum-Entorhinal, 
Entorhinal-CA1. 
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Supplementary figures S4 and S8 also show that for datasets of the first five sessions 
appended, the communication subsets are smaller. This was expected given the lower 
edge density and degree of the FGES graphs for these reduced sample size cases. 
Supplementary table 3 shows the size in voxels of the communication subsets for each 
pair, dataset and hemisphere. For the right hemisphere, last ten and random ten sessions 
appended datasets, the FGES algorithm with penalty 30 produced communication subsets 
with only one voxel for the pair Entorhinal-CA1. In these cases we can recover denser 
communication subsets by lowering the penalty discount of the FGES algorithm. 
Supplementary table 3 shows the size in voxels of the communication subsets for the pair 
Entorhinal-CA1 when the FGES penalty is reduced to 12. 
 
The communication subsets obtained using the FGES algorithm are spatially similar 
across the different datasets. To quantify the spatial similarity of a communication subset 
across different datasets we built a metric defined from 0 to 1, where larger values imply 
higher similarity (see supplementary table 4 for a definition of the metric and full list of 
results). The average of the spatial similarity metric value for all the ten communication 
subsets in each hemisphere across the four datasets is 0.66 (std.dev = 0.23; median=0.75; 
min=0; max=1; for a total of 120 similarity comparisons). Results show that bigger 
communication subsets are more similar across datasets, such as the subsets of the pairs 
CA1-Subiculum, Subiculum-Entorhinal and CA32DG-CA1, which have an average 
similarity metric value of 0.80. In contrast, smaller subsets are less similar, as for the 
pairs Entorhinal-CA1 and Entorhinal-CA32DG, which have an average similarity metric 
value of 0.44. Of all, the Entorhinal-CA32DG subsets have the lowest similarity across 
datasets, indicating the difficulty of estimating these communication subsets with the 
current data. 
 
 
3.3. Hypothesis testing for communication subsets 
 
Hypotheses H1 together with H2, and H3 together with H4, of section 1.1, are 
reformulated here to obtain statistical tests to determine the validity of the 
communication subsets obtained with the FGES algorithm. These hypotheses are based 
on the general assumption that the communication subsets support the effective 
connectivity between two larger regions of interest: 
 
(H1) The partial correlation between two communication subsets, when all other voxels 
in the two regions are removed from the data, should be stronger than the partial 
correlation between the two complete regions. 
 
(H2) The partial correlation between two alternative subsets (not including voxels in the 
communication subsets) when all other voxels in the two regions are removed from the 
data, should not be stronger than the partial correlation between the two complete 
regions. 
 
The idea behind H1 is that the signals of the voxels contained in the communication 
subsets are more relevant for the effective connectivity of the regions than the signals of 
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the rest of the voxels in the regions, and thus we expect that the average BOLD signals of 
the communication subsets are more correlated than when we include all the voxels in a 
region, for which the average BOLD signal will be a mixture of relevant and non-relevant 
voxels. Conversely, for H2, the connectivity of non-relevant sets of voxels is expected to 
be lower than the connectivity of sets that include the relevant voxels. 
 
For each pair of regions tested, a quotient q is obtained by dividing the partial correlation 
between communication subsets over the partial correlation between the complete regions 
when all the voxels are included. If q > 1 there is evidence that the partial correlation 
between subsets is higher than the partial correlation between complete regions, as 
required by H1. Across the four datasets and the five pair of regions, the average quotient 
q is 1.44 for the left hemisphere, and 2.23 for the right hemisphere data. Full results are in 
supplementary table 5. 
 
Using H2, we can define a permutation test to determine if an obtained value of the 
quotient q is statistically significant in a null-hypothesis permutation distribution. We 
build a null-hypothesis permutation distribution by first creating N permuted alternative 
communication subsets which: (i) are formed by spatially contiguous voxels; (ii) of the 
same size of the original communication subset obtained with FGES; (iii) do not contain 
voxels included in the original communication subset. We compute N permuted quotients 
r by dividing the partial correlation between the permuted communication subsets over 
the partial correlation between the complete regions when all the voxels are included. 
The N values of r form the permutation distribution of the null-hypothesis. Finally, to 
determine if the original quotient q is significantly different from the values of r in the 
null-distribution, we compute a one-tailed empirical p-value for q, as:  (# of r > q)/ N. For 
each permutation test, we set N=2000. 
 
Five pairs of regions, two hemispheres, and four different datasets imply 40 different 
permutation tests for H1: 72.5% had p-values < 0.01; 2.5% had p-values >= 0.01 and < 
0.05; 5% had p-values >= 0.05 and < 0.10; and 20% have p-values >= 0.10. In particular, 
seven permutation tests involving the pair of regions Entorhinal-CA32DG were not 
significant, which again reflects the difficulty of detecting the communication subsets 
between those two regions under the current data.  
All the results for the permutation tests for H1 are in supplementary table 5. 
 
 (H3) The partial correlation between regions for which the voxels in the communication 
subsets were removed, should be weaker than the partial correlation between the two 
complete regions. 
 
(H4) The partial correlation between regions for which the voxels in alternative subsets 
(not including voxels in the communication subsets) were removed should not be 
considerably different than the partial correlation between the two complete regions.   
 
H3 is motivated by the assumption that communication subsets support the effective 
connectivity between regions, and their removal should necessarily decrease the 
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exchange of information. Conversely, for H4 the removal of non-relevant subsets of 
voxels should not considerably affect the exchange of information between regions. 
 
For each pair of regions tested, we obtain a quotient q by dividing the partial correlation 
between regions with the communication subsets removed over the partial correlation 
between complete regions when all the voxels are included. If q < 1 we have evidence 
that the partial correlation between regions with subsets removed is smaller than the 
partial correlation between whole regions, as required by H3. Across the four datasets 
and the five pair of regions, the average quotient q is 0.28 for the left hemisphere, and 
0.58 for the right hemisphere. Full results are in supplementary table 6. 
 
Using H4, a permutation test can be constructed for H3 following the same steps as for 
H1, with two differences: (1) the N permuted quotients r are computed by dividing the 
partial correlation between the regions with the permuted communication subsets 
removed over the partial correlation between the complete regions; (2) the one-tailed 
empirical p-value for q is defined as: (# of r < q)/ N. For each permutation test, we set 
N=2000. 
 
Five pairs of regions, two hemispheres, and four different datasets, imply 40 different 
permutation tests of H3: 50% had p-values < 0.01; 12.5% had p-values >= 0.01 and < 
0.05; 0% had p-values >= 0.05 and < 0.10; and 37.5% have p-values >= 0.10. All the 
eight permutation tests for the pair Entorhinal-CA32DG are highly non-significant, which 
confirms once more the challenge of estimating the corresponding communication 
subsets. Three out of eight permutation tests for the pair Entorhinal-CA1 are also highly 
non-significant, due to the fact mentioned in section 3.2, that the corresponding 
communication subsets for this pair are of size one. All the results for the permutation 
tests for H3 are in supplementary table 6. 
 
 
4. Discussion 
 
Our results show that the communication subsets estimated with the FGES algorithm are 
in reasonable accord with the five hypotheses advanced in section 1.1, except for 
entorhinal cortex connections and especially Entorhinal-CA32DG connections. These 
exceptions are unsurprising given the inability of fMRI recordings to distinguish the 
dentate gyrus (DG) from CA2 and CA3, and the complexity of the connectivity of the 
entorhinal cortex structure. The voxel signals were not spatially smoothed during 
preprocessing, which should mitigate concerns that spatial proximity is principally 
responsible for the associations of voxels between two estimated communication subsets. 
The method we have illustrated could be applied to other regions of interest, but both our 
results and the Smith et al. (2011) simulations offer cautions that those regions must be 
carefully selected with due regard to what regions imaging technology can and cannot 
separate.   
 
The estimated separation of communication subsets from others is not precise, because 
the estimates will vary with the penalization used in the search algorithm, just as 
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conventional correlation and partial correlation results vary with threshold and 
significance level chosen. With repeated estimates at multiple penalties, an ordering of all 
voxels in any two connected regions of interest could be obtained, giving, as a function of 
decreasing penalty, for any voxel in one region the (average) number of voxels in another 
region to which it is adjacent, providing a qualitative probability ordering of voxels in the 
two regions. We have limited ourselves, however, to showing that with adequate sample 
sizes, voxelwise effective connections can be estimated and used to explore functional 
substructure in well-established regions of interest. 
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