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ABSTRACT  

Introduction 

An estimated 17% of cancers worldwide are associated with infectious causes. The extent and 

biological significance of viral presence/infection in actual tumor samples is generally unknown 

but could be measured using human transcriptome (RNA-seq) data from tumor samples. 

We present an open source bioinformatics pipeline viGEN that combines existing well-known and 

novel RNA-seq tools for not only detection and quantification of viral RNA, but also variants in the 

viral transcripts. 

Methods 

The pipeline includes 4 major modules: The first module allows to align and filter out human RNA 

sequences; second module maps and count (remaining un-aligned) reads against reference 

genomes of all known and sequenced human viruses; the third module quantifies read counts at 

the individual viral genes level thus allowing for downstream differential expression analysis of 

viral genes between experimental and controls groups. The fourth module calls variants in these 

viruses. To the best of our knowledge, there are no publicly available pipelines or packages that 

would provide this type of complete analysis in one open source package. 
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Results 

In this paper, we use this pipeline in a case study to examine viruses present in RNA-seq data 

from 75 TCGA liver cancer patients. We were able to quantify viral transcriptomes at a viral-

gene/CDS level, find differentially expressed viral transcripts between the groups of patients, 

extract variants, and connect them to clinical outcome. The results presented corresponded with 

published literature in terms of rate of detection, viral gene expression patterns and impact of 

several known variants of HBV genome. Results also show novel information about distinct 

patterns of expression and co-expression in Hepatitis B, Hepatitis C, Human Endogenous 

Retrovirus (HERV) K113 viruses. 

Conclusion 

This pipeline is generalizable, and can be used to provide novel biological insights into the 

significance of viral and other microbial infections in complex diseases, tumorigeneses and 

cancer immunology. The source code, with example data and tutorial is available at: 

https://github.com/ICBI/viGEN/. 

Keywords – RNA-seq, viral detection, liver cancer, TCGA, variant analysis, next-generation 

sequencing, cancer immunology 

BACKGROUND 

Hepatocellular carcinoma (HCC, the primary malignancy of the liver) is now the third most 

common cancer in the world affecting more than half a million people. The incidence of liver 

cancer varies greatly by race and ethnicity; and about 3 times more common in men than women 

[1]. The most common type of HCC - caused by Hepatitis B and C viruses (HBV and HCV) are 

most prevalent in Asia and Africa, as the presence of virus predisposes people to liver disease 

and subsequently HCC [2]. In such high prevalence areas of the world, HBV infection is often 

acquired at birth or in early childhood. In the US, Asian American, Native Hawaiian and Pacific 

Islanders (AANHPI) account for more than 50% of people infected with HBV, although many of 
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them are unaware that they harbor the virus [1]. Infection can also occur in high risk groups like 

injection drug users and health care workers [1, 3].  

Apart from HBV and HCV infections, other risk factors for liver cancer include heavy alcohol 

consumption, obesity, diabetes, tobacco smoking, certain rare genetic conditions, or cirrhosis 

(scarring of the liver) [1]. Liver disease triggered by obesity and diabetes is called nonalcoholic 

fatty liver disease (NAFLD) [2]. Even though these risk factors are known, it’s not clearly 

understood how these normal liver cells become cancerous [4]. 

Existing methods of screening and treatments 

 

For patients who are at high risk of liver cancer, screening using ultrasound, and also a blood test 

for alpha-fetoprotein (AFP, protein made by the liver and yolk sac of the developing fetus and 

normally found in fetal blood) is done every 6-12 months [5]. Currently, detection of Hepatitis B is 

done using serology tests and involves measurement of HBV specific antigen and antibody 

markers that identify different phases of infection or immunity. Presence of Hepatitis (Hep) B 

surface antigen (HBsAg) or Hepatitis B type e antigen (HBeAg) indicates chronic and infectious 

hepatitis B infection; antibody HBsAg (Anti-HBs) presence indicates immunity through vaccine or 

a past Hep B infection; presence of antibody to hepatitis B core antigen (Anti-HBc) indicates an 

ongoing or past Hep B infection; presence of IgM antibody to Hep B core antigen (IgM anti-HBc) 

indicates recent acute infection with hepatitis B [6, 7].  

Detection of Hepatitis C virus is typically done using Enzyme immunoassay (EIA) to detect 

hepatitis C antibody; or Hepatitis C RNA assays are used to determine the viral load. Genetic 

testing is then done to check for the type of Hep C infection, which can be of six types (genotypes 

1 through 6). In the US, baby boomers (born 1945-1965) are encouraged to get tested, as they 

may be treated with antiviral drugs to prevent progression to cancer [8]. 

Vaccine is available to protect against HBV infection, but not for HCV. Even though vaccines 

exist, it can only protect against infections if they are administered before the person is exposed 

to the cancer-promoting virus [9]. Recent advances in screening have helped in early detection of 
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cirrhosis. In recent times, quantitative assays for HBsAg and HBeAg are also being used in 

identifying patients likely to respond to anti-HBV treatments, although more work is needed to 

standardize these new assays [10]. When early detection is successful, treatments include 

surgery to remove part of the liver  (partial hepatectomy) or liver transplant [1]. Other treatments 

include cryosurgery and radiation therapy for cases where cancer has not metastasized. For 

patients where cancer has metastasized, targeted therapy, chemotherapy or clinical trials are 

tried. So early detection of liver disease is crucial, but has been challenging since the symptoms 

may not appear until the cancer has advanced [4]. 

Viral mechanisms of action 

HBV is an enveloped partially double-strand DNA virus in the hepadnavirus family, and is a 

known oncogenic virus. In a HBV infection, the virus enters the bloodstream and infects the liver 

cells by active viral replication. During this time, the HBV genome integrates into the host 

chromosome and becomes the basis for chronic infection. HBV DNA integration may offer a 

selective growth advantage on infected cells and promote tumor progression. The integration 

sites of HBV DNA usually occur in genes involving growth control or cell signaling. When HBV 

DNA integrates into the host, chromosomal instability is also increased (e.g., large deletions, 

amplification, and translocations). Integrated HBV DNA sequences are found in about 80% of 

human Hep B induced liver cancer [11]. 

HCV is an enveloped single-strand RNA virus in the flavivirus family. Unlike HBV, HCV does 

not have a reverse transcriptase, so is not able to integrate into the genome of hepatocytes. HCV 

causes liver cancer by an indirect pathway when it produces chronic inflammation, cell death, 

proliferation and cirrhosis in the liver. Acute HCV infection patients that have large CD4+ and 

CD8+ T cell response in their blood are known to have a better chance of recovery. In contrast, 

patients who lack T cell response seems to indicate that the patient will develop chronic HCV 

disease [11]. 
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Opportunities with Next generation sequencing 

The popularity of next-generation sequencing (NGS) technology has exploded in the last decade. 

NGS technologies are able to perform rapid sequencing, and in a massively parallel fashion [12]. 

In recent years, applications of NGS technologies in clinical diagnostics have been on the rise [13, 

14]. Amongst the various NGS technologies, whole-transcriptome sequencing, also called RNA-

seq has been very popular with methods and tools being actively developed. Exploring the 

genome using RNA-seq gives a different insight than looking at the DNA since the RNA-seq 

would have captured actively transcribed regions. Every aspect of data output from this 

technology is now being used for research, including detection of viruses and bacteria [15-17]. 

They are also independent of prior sequence information, and require less starting material 

compared to conventional cloning based methods, making it a powerful and exciting new 

technology in virology [12].  

Our pipeline viGEN combines existing and novel RNA-seq tools to not only detect and quantify 

read counts at the individual viral genes level, but also detect viral variants from human RNA-seq 

data. The input file to our pipeline is a fastq [18] file, so our viGEN pipeline can be extended to 

work with genomic data from any NGS technology. Our pipeline can also be used to detect and 

explore other types of microbes as long as the sequence information is available in NCBI [19]. 

There are a number of existing pipelines that detect viruses from human transcriptome data. 

Of these, very few pipelines offer quantification at the gene/CDS level. A comprehensive 

comparison of these pipelines is provided in Table 1.  

Table1: Comparison of existing pipelines that detect viruses from human transcriptome data 

Tool Name Detect 
viruses 
from 
Human 
RNA-seq 
data 

Perform 
quantification 
at viral-
gene/CDS 
level 

Works on 
DNAseq, 
RNAseq or 
Both 

Variant 
calling at 
viral-variant 
level 

Discover 
viral 
integrati
on sites 

Other comments 

Virana [20] Yes Identifies 
microbial 
transcripts, 
does not 
quantify 

Both No Yes Also offers analysis of 
homologs 
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VirusSeq [21] Yes No Both No Yes Pre-designed to work on 
a select set of 18 viruses 

Viral Fusion Seq 
[22] 

Yes No Both No Yes Can also detect fusion 
events 

Virus Finder [23] Yes No Both No Yes Can be applied to 
samples infected with 
undiagnosed viruses 

PathSeq [24] Yes No Both No No  

RINS [25] Yes No RNA-seq No No Generates contigs with 
these non-human 
sequences 

viGEN (our 
pipeline) 

Yes Yes Both Yes No  

 

Our goal was not to compete with these other tools, but to offer a convenient and complete 

end–to-end publicly available pipeline to the bioinformatics community. To the best of our 

knowledge there are no publicly available pipelines or packages that would provide this type of 

complete analysis in one package. Customized solutions have been reported in the literature 

however were not made public.  

Our pipeline incorporates existing best practices and tools available, and we used novel tools 

only when there was no other option. The results presented in this paper are a proof of concept of 

our pipeline. In addition, we have made available an end-to-end tutorial demonstrated on a 

publicly available RNA-seq sample from NCBI SRA 

(http://www.ncbi.nlm.nih.gov/bioproject/PRJNA279878), providing step-by-step instructions on the 

analysis steps, results of analysis, along with the code at https://github.com/ICBI/viGEN/. Our 

plan is to package this pipeline and make it open source through Bioconductor [26], allowing 

users to perform analysis on either their local computer or the cloud.  

METHODS  

In this paper, we used RNA-seq data from a publicly available human liver cancer data from the 

TCGA collection [27]. The raw genomic data was downloaded after obtaining special access from 

NCBI dbGAP (http://www.ncbi.nlm.nih.gov/gap). Existing well-known and novel RNA-seq tools 

were used to detect and quantify viral RNA at the genome and gene/CDS level. Once the viral 

genomes were detected, it allowed for downstream differential expression analysis of viral genes 
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between experimental and controls groups. The viral variants detected in our pipeline can also 

give more insight into the mutations in these viruses and their impact on the tumor. 

The data used for analysis in this paper consisted of 75 liver cancer patients in the TCGA data 

collection. The cohort includes three sub-types - 25 patients infected with Hepatitis B virus 

(labelled as ‘HepB’), 25 patients infected with Hepatitis C virus (labelled as ‘HepC’) and 25 

patients that are co-infected with Hepatitis B and C viruses (labelled as ‘HepB+HepC’). These 

sub-type classifications were defined based on ‘Viral Hepatitis Serology’ attribute from the clinical 

information. 

We were interested in exploring all viruses existing in humans. So we first obtained reference 

genomes of all known and sequenced human viruses obtained from NCBI [19] (as of Sep 2015), 

and merged them into one file (referred to as the ‘viral reference file’) in fasta file format [28]. 

The viGEN pipeline includes 4 major modules:  

Module 1: Viral genome level analysis (filtered human sample input) 

In Module 1 (labelled as ‘filtered human sample input’), the human RNA sequences were aligned 

to the human-reference genome using RSEM [29] tool using the Globus Genomics platform [30]. 

The RSEM tool filters out all the sequences the aligned to the human genome, and outputs all 

sequences that did not align to the human genome (hence the name ‘filtered human sample 

input’). These un-aligned sequences were taken and aligned to the ‘viral reference file’ using 

popular alignment tools BWA [31] and Bowtie2 [32]. Figure 1 shows an image of our viGEN 

pipeline.   

Figure 1: viGEN pipeline. Each module has a color, shown in the legend 
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Module 2: Viral genome level analysis (unfiltered human sample input) 

In Module 2 (labelled as ‘unfiltered human sample input’), the human RNA seq sequences were 

directly aligned to the ‘viral reference’ using BWA and Bowtie2 using the Globus genomics 

platform without any filtering.  

The reason for using two methods to obtain the viral genomes in human RNA-seq data 

(Module 1 and Module 2) was to allow us to be as comprehensive as possible in viral detection. 

The aligned reads from Module 1 and 2 were in the form of BAM files [33], from which read 

counts were obtained for each viral genome species (referred to as ‘genome level counts’) using 

Samtools idxstats [34] and Picard BAMIndexStats [35] tools. Only those virus species that had 

average genome count more than a minimum threshold (set to 100 reads) across samples in 

each sub-group (Hep B, Hep C, HepB+HepC) were selected for the next step of the pipeline.  

Once the viral genomes were detected, it allowed us to examine them through a genome 

browser. We also checked the genome level counts to see if the Hepatitis B and C viruses were 

detected from this output, and compared it with the information from viral serology tests.   
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Module 3: Viral gene/CDS level analysis 

The BAM files from Module 1 and 2 (from Bowtie2 and BWA) were input into the Module 3 

(referred to as ‘viral gene/CDS level analysis’), which calculated quantitate read counts at the 

individual viral genes level. We found existing RNA-seq quantification tools to be not sensitive 

enough for viruses, and hence developed our own algorithm for this module. Our in-house 

algorithm used region-based information from the general-feature-format (GFF) files [36] of each 

viral genome, and the reads from the BAM file. It created a summary file, which had a total count 

of reads within or on the boundary of each region in the GFF file.  This is repeated for each 

sample and for each viral GFF file. At the end, a matrix is obtained where the features (rows) are 

regions from the GFF file, and the columns are samples. 

The read count output from Module 3 (viral gene/CDS module) allowed for downstream 

differential expression analysis of viral genes between experimental and controls groups. In this 

pilot study, we examined the differences between “Dead” and “Alive” samples at the viral-

transcript level for each sub-group using Bioconductor tool EdgeR [37] in R (http://www.R-

project.org). Cox proportional hazards (Cox PH) regression model [38] was also applied to look at 

overall survival time and event in the Hepatitis B sub-group.   

Module 4: Viral variant calling module 

The BAM files from Module 1 and 2 (from Bowtie2) were also input to Module 4 to detect 

mutations in these viruses (referred to as ‘viral-variant calling module’). The BAM files were first 

sorted coordinate-wise using Samtools [34]; PCR duplicates were removed using tool Picard [35], 

then the chromosomes in the BAM file were ordered in the same way as the reference file using 

Picard. The Viral reference file was created from combining all known and sequenced human 

viruses obtained from NCBI [19] (as of Sep 2015). Popular variant calling tool GATK’s 

HaplotypeCaller and UnifiedGenotypeCaller [39] functions were used to detect variants. Another 

variant calling tool, Varscan2 [40] known for detecting low-frequency variants [41], was also used. 

The current version of our pipeline uses Varscan2. Low quality and low depth variants were 

flagged, but not filtered out, in case these low values were attributed to low viral load. Once the 
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variants were obtained, they were merged to form a multi-sample VCF file. Only variants that had 

a variant in at-least one sample were retained. PLINK [42] was used to perform case-control 

association test (Fishers Exact Test) to compare ‘alive’ and ‘dead’ samples in the HepB and 

HepC groups.  

Tutorial in Github  

Since access to TCGA raw data is controlled access, we could not use this dataset to create a 

publicly available tutorial. So we looked for publicly available RNA-seq dataset to demonstrate 

our pipeline with an end-to-end workflow. We chose one sample (SRR1946637) from publicly 

available liver cancer RNA-seq dataset from NCBI SRA 

(http://www.ncbi.nlm.nih.gov/bioproject/PRJNA279878). This dataset is also available through 

EBI SRA (http://www.ebi.ac.uk/ena/data/view/SRR1946637). The dataset consists of 50 Liver 

cancer patients in China, and 5 adjacent normal liver tissues. We downloaded the raw reads for 

one sample, and applied our viGEN pipeline to it. A step-by-step workflow that includes – 

description of tools, code, intermediate and final analysis results are provided in Github: 

https://github.com/ICBI/viGEN/. This tutorial has also been provided as Additional File 1. 

RESULTS 

Detection of Hepatitis B and C viruses at the genome level 

We used our viGEN pipeline to get genome-level read counts obtained from viruses detected in 

the RNA of human liver tissue. We then checked to see if Hepatitis B and C viruses were 

detected from this output, and how it compared with the information from viral serology tests. We 

know from the serology test (obtained from the clinical data) that of the 75 samples in this pilot 

study, 25 have Hepatitis B; another 25 have Hepatitis C and the rest if the samples have both 

Hepatitis B and C.  

We were able to detect RNA from HepB and HepC at the genome level in corresponding 

samples of HCC patients. Table 2A and 2B shows a comparison of the viral detection from 
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serology (blood) with viral detection from RNA-seq data (tumor tissue) for Hepatitis B and C 

respectively.  

Table 2A (top) and 2B (bottom):  Comparison of viral detection from serology (blood) with viral 
detection from RNA-seq data (tumor tissue) for Hepatitis B and Hepatitis C respectively. The results 

shown are from Module 1 (‘Filtered human sample input’) performed using Bowtie2 alignment tool 

 Serology from blood TOTAL 
RNA-seq from tumor 

tissue 
HepB Negative HepB Positive  

HepB Negative 25 40 65 
HepB Positive 0 10 10 

Total 25 50 75 
 

 Serology from blood TOTAL 
RNA-seq from tumor 

tissue 
HepC Negative HepC Positive  

HepC Negative 7 12 19 
HepC Positive 18 38 56 

Total 25 50 75 
 

For Hepatitis B detection, we used a cut off read count of 1000 to define a ‘HepB positive’ 

state. Using this cut-off, the Hep B virus was correctly detected in only 10 of the 50 samples (i.e. 

only 10 samples had read counts more than 1000). The rest of the 40 patients in our cohort had 

read counts between 0-1000 and were grouped as ‘HepB negative’. The 25 HepC patients were 

correctly identified as ‘HepB negative’ (Table 2A).  

The RNA-serology comparison for Hepatitis C detection was more complicated - the serology 

test only tests for presence of any Hep C antibody; on the other hand, Hepatitis C genomes can 

be of 6 types – Genotype 1 to 6. So we looked at the read counts in any of these 6 Hepatitis C 

genotypes. We used the first quartile as the threshold for a positive detection (i.e. ‘Hep C 

Positive’). Using this cut-off, the Hep C virus was correctly detected in 38 of 50 samples, and out 

of the 25 patients that did not have Hep C, 7 samples were correctly identified as having Hep C 

(Table 2B). 

Only those virus species that had average genome count more than a minimum threshold (set 

to 100 reads) across samples in each sub-group (Hep B, Hep C, HepB+HepC) were selected for 

the next step of the pipeline (Modules 3 and 4). In addition to Hepatitis B and C, several other 
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viruses came up in this short list including Human endogenous retrovirus K113 (HERV K113), 

sub-types of Human herpes virus, Human papillomavirus, Human adenovirus and others. A 

complete list is provided in Additional File 2. 

Landscape of viruses at the genome level 

We explored the genome level BAM files (from Module 1) through the IGV genome browser to 

see if we could find any interesting patterns. We looked at the landscape of HBV genome, HCV 

genomes and HERV K113 genome across all the samples.  

In the landscape of HBV, we found the samples could be grouped under one of three patterns 

(Figure 2):  

(a) Pileups seen throughout the HepB genome (labelled as ‘full’)  

(b) Pileups seen only on the left half of the HepB genome (labelled as ‘truncated’) and  

(c) Very few or no pileups seen (labelled as ‘empty’).  

 
Figure 2: Landscape of HBV genome across the 25 HepB samples. The BAM files used were from Module 

1 generated using Bowtie2. The image shows the three types of patterns of pileup distribution namely full 

(red dot), truncated (blue dot), and empty (black dot). 
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We also explored these patterns w.r.t clinical variable Dead/Alive status (Table 3). In general, 

patients who are ‘Alive’ seem to have more pileups that those who ‘Died’ although this conclusion 

cannot be strongly made since there are only a small number of samples in each pattern. 

Table 3: Summary of genome browser pattern for Hepatitis B genome with Dead/Alive status 
 

 HepB samples (25 samples total) 
Pattern 
Name 

Meaning Alive Dead 

Empty Very few or no pileups seen 12 6 
Full Pileups seen throughout the HepB genome 3 1 
Truncated Pileups seen only on the left half of the HepB genome 1 2 
 Total 16 9 
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In the landscape of HCV (NC_004102.1), we found two types of patterns (a) terminal repeats 

seen on the right end of the genome (labelled as ‘terminal repeats’) and (b) terminal repeats seen 

on the right end of the genome along with pileups seen in other parts of the genome (labelled as 

‘Terminal repeats + some pileup’). For other HCV types (Hepatitis C virus genotype 2, 3 and 6) 

the pattern consisted of only the ‘terminal repeats’. HCV is an RNA virus belonging to the 

Flaviviridae family. The high error rate of RNA-dependent RNA polymerase and other factors 

have driven the evolution of HCV into 7 different genotypes and more than 67 subtypes. The 

quasispecies variations of the HCV genome and high rate of recombination causes large 

variability and diversity [43]. Also its unusual pattern of terminal repeats might be partially due to 

the fact that those regions are highly evolutionary conserved [44, 45] and do not show much 

variability as opposed to coding regions. This shows the general difficulty and complexity in the 

detection of this virus using standard RNA-seq. Transcription in these viruses is very transient 

and hard to capture [46]. 

In the landscape of HERV K113 virus, we found three types of patterns (a) Pileups seen 

throughout the genome (labelled as ‘full’), Terminal repeats seen at both ends of the genome, 

sparse pileup in other regions (labelled as ‘medium’) and Terminal repeats at both ends of the 

genome (labelled as ‘terminal repeats’).  

The figures in Additional File 3 shows these above mentioned pattern types. We also matched 

these patterns to Dead/Alive status and summarized our findings in the tables in Additional File 3. 

The range patterns in these viral landscapes indicate that information can be extracted in a 

meaningful way from the read information, and it adds to the validity of our approach. 

Comparing ‘dead’ and ‘alive’ samples in the HepB subgroup using viral gene/CDS data 
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To get a more detailed overview of the viral landscape, we examined the human RNA-seq 

data to detect and quantify viral gene/CDS regions. We then examined the differences between 

‘Dead’ and ‘Alive’ samples at the viral-transcript level on the Hepatitis B sub-group.  

Out of 25 patients, 16 were alive (baseline group), and 9 dead (comparison group) as per the 

clinical data. The significant results are shown in Table 4.  

Table 4: Differential expression analysis of transcript level read counts on Hep B sub-group 
comparing Dead and Alive samples. These results shown used the viral-gene/CDS data obtained from 

Module 1 (using alignment tool Bowtie2) + Module 3. The table shows results with q value < 0.06 and sorted 
based on LogFC in the descending order. 

 
Name of region  
(Name of virus_region_start 
position of region_end position of 
region) 

Log 
Fold 
change 
(logFC) 

Log 
counts 
per 
million 
(logCP
M) 

P Value Q Value  
(FDR) 

Name of virus Region annotation 

NC_001405.1_intron_9724_12307 2.527 6.463 4.02E-08 1.22E-05 Human 
mastadenovirus C 

Gene=L1, 
locus_tag=HAdVC_gp10, 
note=precedes capsid protein 
precursor pIIIa CDS 

NC_001405.1_intron_9724_11039 2.5 6.451 6.65E-08 1.28E-05 Human 
mastadenovirus C 

Gene=L1, 
locus_tag=HAdVC_gp10, 
note=precedes encapsidation 
protein 52K CDS 

NC_001405.1_gene_10866_11023 2.5 6.451 6.65E-08 1.28E-05 Human 
mastadenovirus C 

Gene=VAII, 
locus_tag=HAdVC_gs02, 
GeneID:2653002 

NC_001405.1_transcript_10866_1102
3 

2.5 6.451 6.65E-08 1.28E-05 Human 
mastadenovirus C 

Gene=VAII, 
locus_tag=HAdVC_gs02, 
GeneID:2653002 

NC_001405.1_exon_10866_11023 2.5 6.451 6.65E-08 1.28E-05 Human 
mastadenovirus C 

Gene=VAII, 
locus_tag=HAdVC_gs02, 
GeneID:2653002 

NC_001405.1_intron_10580_14015 2.428 6.475 9.24E-08 1.64E-05 Human 
mastadenovirus C 

Gene=E2B, 
locus_tag=HAdVC_gp04 

NC_003977.1_gene_1814_2452 1.128 13.449 1.71E-06 0.00024
3 

Hepatitis B virus Contains Gene C that produces 
pre-code protein external core 
antigen; HBeAg. HBeAg is 
produced by proteolytic processing 
of the pre-core protein 

NC_003977.1_CDS_1814_2452 1.128 13.449 1.71E-06 0.00024
3 

Hepatitis B virus Contains Gene C that produces 
pre-code protein external core 
antigen; HBeAg.  

NC_003977.1_CDS_1901_2452  0.828 12.42 0.000507 0.05392
8 

Hepatitis B virus Contains Gene C, encodes core 
antigen HBcAg 

NC_022518.1_STS_7174_7323 -0.992 9.122 0.000309 0.03452
7 

Human 
endogenous 
retrovirus K113 

Sequence-tagged site (STS), 
locus_tag 
=Q779_gp1, 
standard_name=D6S2277, 
UniSTS:59918 

NC_022518.1_STS_5100_5381 -1.051 9.532 0.000118 0.0139 Human 
endogenous 
retrovirus K113 

Sequence-tagged site (STS), 
standard_name= D22S1651, 
UniSTS: 474031 

NC_022518.1_region_1112_6746 -1.186 13.022 3.49E-06 0.00046
3 

Human 
endogenous 
retrovirus K113 

gag-pro-pol; two -1 frameshifts 
predicted to occur  to produce a 
fusion protein; the location of 
frameshifts  has not been 
determined 
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NC_018464.1_region_1_927 -1.288 12.784 5.78E-07 9.45E-05 Shamonda virus mol_type=genomic RNA, 
isolate=Ib An 5550, taxon:159150, 
segment=S 

NC_003977.1_CDS_155_835 -2.121 16.335 1.67E-15 1.11E-12 Hepatitis B virus Encodes Gene S that produces 
small envelope protein, S protein; 
S glycoprotein; S-HBsAg,  

NC_003977.1_gene_2307_4838 -2.133 12.655 2.61E-15 1.11E-12 Hepatitis B virus Gene P, encodes protein P 

NC_003977.1_CDS_2307_4838 -2.133 12.655 2.61E-15 1.11E-12 Hepatitis B virus Gene P, encodes protein P 

NC_003977.1_CDS_3205_4050 -2.352 8.67 1.93E-12 6.84E-10 Hepatitis B virus Gene S, encodes middle envelope 
protein pre-S2/S 

NC_002645.1_gene_293_20568 -2.598 6.126 3.93E-05 0.00491
1 

Human 
coronavirus 229E 

locus_tag=HCoV229Egp1, 
GeneID: 918764, replicase 
polyprotein 1ab 

NC_003977.1_gene_2848_4050 -2.75 11.741 5.84E-22 6.20E-19 Hepatitis B virus Encodes Gene S that produces a 
large surface protein/L 
glycoprotein/L-HBsAG 

NC_003977.1_CDS_2848_4050 -2.75 11.741 5.84E-22 6.20E-19 Hepatitis B virus Encodes Gene S that produces a 
large surface protein/L 
glycoprotein/L-HBsAG 

 
 

From the differential expression analyses, the two most informative results were (1) a region 

of the Hepatitis B genome that produced the HBeAg and HBcAg proteins were overexpressed in 

the ‘dead’ patients and (2) another region of the Hepatitis B genome that produced HBsAg protein 

was overexpressed in the ‘alive patients. 

In detail, we saw several important findings as described below:  

(a) Region NC_003977.1_CDS_1814_2452 of the Hepatitis B genome was 2.18 times 

overexpressed (log fold change = +1.128) in ‘dead’ patients. This region contains Gene C that 

produces pre-code protein external core antigen; HBeAg. HBeAg is produced by proteolytic 

processing of the pre-core protein  

(b) Region NC_003977.1_CDS_1901_2452 which was 1.74 times overexpressed (log fold 

change = +0.8, FDR = 0.053) in ‘dead’ patients contains Gene C as above, but encodes a 

different core antigen HBcAg  

(c) Region NC_003977.1_CDS_2848_4050 of the Hepatitis B genome was 6.73 times over 

expressed (log fold change = -2.7) in the ‘alive’ patients of compared to the ‘dead’ patients. This 

region encodes Gene S that produces a large surface protein/L glycoprotein/L-HBsAG  

(d) We also found several regions of the Human endogenous retrovirus K113 (HERV K113) viral 

genome (NC_022518.1_region_1112_6746, NC_022518.1_STS_5100_5381 and 
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NC_022518.1_STS_7174_7323) to be about 2 times overexpressed on average in ‘alive’ patients 

(log fold change = -1.186, -1.051, -0.992).  

Survival analysis (Cox Regression) using viral gene/CDS data 

Based on the results from previous section, we selected two most informative regions from the 

Hepatitis B genome (log counts per million from NC_003977.1_CDS_2848_4050, 

NC_003977.1_CDS_1814_2452) for a Cox Proportional Hazard (Cox PH) model to look at overall 

survival event and time.  This model was applied on the 25 Hep B and 25 HepB+HepC samples 

to maximize power. The result from this model (Table 5), are consistent with the results from 

differential expression analysis: 

(a) The Cox PH model shows that assuming other covariant to be constant, unit increase in 

expression of this region NC_003977.1_CDS_1814_2452, increases the hazard of event (death) 

by 70%.  

(b) On the other hand, that assuming other covariant to be constant, unit increase in expression 

of this region NC_003977.1_CDS_2848_4050, decreases the hazard of event (death) by 43%.  

(c) The overall model is significant with p-value < 0.05 from the Log rank test (also called Score 

test). 

Table 5: Cox proportional hazard survival analysis (across 25 HepB samples and 25 HepB + HepC 
Samples). These results shown used the viral-gene/CDS data obtained from Module 1 (using alignment tool 

Bowtie2) + Module 3. Coef: coefficient (Beta) of the model; exp(coef): Hazard Ratio; se(coef) : Standard 
Error; Pr(>|z|) : P-value 

Formula:  
coxph(formula = survObject ~ NC_003977.1_CDS_2848_4050  + NC_003977.1_CDS_1814_2452) 
Results from the model:  
n= 37, number of events= 5   
(13 observations deleted due to missingness) 
      
Covariate coef exp(coef) se(coef) Z Pr(>|z|) 
NC_003977.1_CDS_2848_4050 -0.5548 0.5742 0.7434 -0.746 0.456 
NC_003977.1_CDS_1814_2452 0.5302 1.6993 0.6145 0.863 0.388 
 

Covariate 
exp(coef
) 

exp(-
coef) 

Lower 
0.95 

Upper 
0.95 

 
NC_003977.1_CDS_2848_4050 0.5742 1.7415 0.1337 2.465 
NC_003977.1_CDS_1814_2452 1.6993 0.5885 0.5096 5.667 
Concordance= 0.654  (se = 0.188 ) 
Rsquare= 0.12   (max possible= 0.329 ) 
Likelihood ratio test= 4.74  on 2 df,   p=0.09343 
Wald test            = 0.75  on 2 df,   p=0.6856 
Score (logrank) test = 10.58  on 2 df,   p=0.00503 
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Comparing ‘dead’ and ‘alive’ samples in the HepB subgroup using viral-variant data  

We performed variant calling on the viral data to see if it can add valuable information to the 

tumor landscape in humans. We then compared the ‘dead’ and ‘alive’ samples at the viral-variant 

level on the 25 patients in the Hepatitis B sub-group. For this analysis, the outputs from both from 

Module 1 and 2 were fed into Module 4.  

Most of the top variants from filtered human sample (Module 1 + Module 4) (Additional File 4: 

Table S3-A) and unfiltered human sample (Module 2 + Module 4) (Additional File 4:  Table S3-B) 

using variant caller Varscan2, were the same. We collated the significant common results (p 

value <= 0.05) in Table 6. Among these results, we saw several missense and frameshift variants 

in Gene X of the Hepatitis B genome (nucleotide 1479), Gene P (2573, 2651, 2813), and a region 

that overlaps Gene P and PreS1 (nucleotides 2990, 2997, 3105, 3156). All these variants were 

found mutated more in the cases than controls. Other significant common results included 

variants in Gene C (nucleotide 1979, 2396) and variants in PreS2 region (nucleotide positions 

115, 126 and 148).  

In addition, there were two missense variants that were common among the top results, but 

not significant (p value = 0.06). They were variants in the X gene of the Hepatitis B genome 

(nucleotides 1762 and 1764).  

Among the significant common results to both, were a few variants of the Human endogenous 

retrovirus K113 complete genome (HERV K113). These include nucleotide positions 7476, 7426 

and 8086. These map to frameshift and missense mutations in the putative envelope protein of 

this virus (Q779_gp1, also called ‘env’).  

Table 6: Results of case-control association test applied on the results from viral variant calling 
(showing only common results between two possible analysis steps). The table is sorted based on 

Annotation. Annotation includes gene name, protein name, etc., separated by commas, multiple annotations 
separated by semi-colon 

 

CHR 
(Chromosome) 

Species 
(Name of Virus) 

BP 
(Bas

e 
pair) 

A1 
(minor 
allele) 

C_A 
(Number 
of cases 
with A1) 

C_U 
(number 

of 
controls 
with A1) 

A2 
(major 
allele) 

P 
(P value) 

Annotation from GFF file 
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gi|21326584|ref|
NC_003977.1| Hepatitis B virus 1479 C 4 0 A 0.02857 

Gene=X, 
product=X protein, 

protein_id=NP_647606.1 
gi|21326584|ref|
NC_003977.1| Hepatitis B virus 2573 C 0 6 T 0.03571 

Gene=P, 
product=polymerase, 

protein_id=NP_647604.2 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 2651 T 4 0 C 0.00476 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 2813 C 2 0 T 0.03571 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 2990 T 2 0 A 0.02222 

Gene=P, product=polymerase, 
protein_id=NP_647604.2; 

 
Gene=S, product=large 

envelope protein, 
protein_id=YP_355333.1 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 2997 C 2 0 T 0.03571 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 3105 C 2 0 A 0.02222 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 3156 G 4 0 A 0.00476 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 1979 G 2 0 A 0.03571 Gene=C, product=pre-capsid 

protein, 
protein_id=YP_355335.1, 

NP_647607.1 
gi|21326584|ref|
NC_003977.1| Hepatitis B virus 2396 0 4 0 CG 0.01499 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 115 C 2 0 A 0.02222 Pre S2 region, ID=id0, 

Dbxref=taxon: 10407, 
Is_circular=true, gbkey=Src, 

genome=genomic, 
mol_type=genomic DNA, 

strain=ayr 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 126 C 2 0 T 0.02222 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 148 G 2 0 A 0.02222 

gi|21326584|ref|
NC_003977.1| Hepatitis B virus 1762 T 0 4 A 0.06061 Gene=X, 

Name=NP_647606.1, 
product=X protein, 

protein_id=NP_647606.1 
gi|21326584|ref|
NC_003977.1| Hepatitis B virus 1764 A 0 4 G 0.06061 

gi|548558394|ref
|NC_022518.1| 

Human 
endogenous 

retrovirus K113 
7476 0 10 14 TACTG 0.00600 ID=gene0, Name=Q779_gp1; 

 
ID=cds0, 

Name=YP_008603282.1, 
product=putative env, 

protein_id=YP_008603282.1 

gi|548558394|ref
|NC_022518.1| 

Human 
endogenous 

retrovirus K113 
7426 G 3 0 A 0.00714 

gi|548558394|ref
|NC_022518.1| 

Human 
endogenous 

retrovirus K113 
8086 T 3 0 C 0.00714 

 

DISCUSSION 

Detection of Hepatitis B and C viruses at the genome level 

 

We used our viGEN pipeline to get genome-level read counts obtained from viruses detected in 

the RNA of human liver tissue. In our results, HBV was detected in 20% of the samples. This is in 

concordance with earlier analyses of TCGA liver cancer cohort study [16, 47], which detected the 

HBV virus in 23% and 32% (with typically low counts range) of cases respectively. 
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It has also been reported that the viral gene X (HBx) was the most predominately expressed 

viral gene in liver cancer samples [47] which is in concordance with our findings where the peak 

number of reads were observed for gene X region of the HBV genome (see Figure 2). 

We also compared the HBV and HCV detection from our data with the viral serology tests 

(Table 2A and 2B). We see some, but not a lot of concordance. There could be several reasons 

for the differences we see between RNA from tissue and serology: 

(a) We should remember that we are looking at viruses detected in RNA of human cancer tissue, 

and it is well known that this landscape is different from blood (which is used for the serology 

tests) or normal liver. According to [48], lab tests prove that HBV DNA replication and HBsAg are 

generally detected in different hepatocytes, while HBV DNA replication is generally, but not 

consistently seen in hepatocytes with HBcAg.  

(b) If the viral DNA is integrated into the host (seen in acute infection stages and often precedes 

tumor development), in spite of having antigen/antibody markers in blood (causing serology test 

to be positive), it will not produce any RNA particles, causing low viral load in RNA [48, 49]. 

(c) The tumor site acts like a viral reservoir, which allows the virus to accumulate and be stable, 

and allows for replication of virus. This makes the virus hard to detect through serology, and 

might be detectable when examining the tumor site [50-52].  

(d) A patient could be in a ‘HBV carrier state’, which is characterized by the presence of HBsAg in 

the serum, low or undetectable levels of HBV DNA, normal aminotransferase activity and lack of 

HBeAg [53]. That means that in this stage, low levels of HBV DNA could cause low viral load in 

RNA even through the serology test is positive. In this stage, use of immunosuppressive 

therapies can lead to reactivation of infection [53].  

(e) Serology tests are known to be un-reliable when the immune system becomes dysfunctional 

and may also explain the false positives seen in the results [54, 55]. 

These results show that even though the genome-level viral counts detected through human 

RNA-seq are not a 100% match to viral serology data, it gives a good overview of the viral 
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landscape in the tumor sample, and demonstrates the complex dynamics of infection and immune 

response. These results also indicate that a deeper look inside these viruses is warranted. 

Comparing ‘dead’ and ‘alive’ samples in the HepB subgroup using viral gene/CDS data 

 

To get a more detailed overview of the viral landscape, we examined the human RNA-seq data to 

detect and quantify viral gene/CDS regions. We then examined the differences between ‘Dead’ 

and ‘Alive’ samples at the viral-transcript level on the Hepatitis B sub-group (Table 4).  

 

From the differential expression analyses, the two most informative results were (1) a region 

of the Hepatitis B genome that produced the HBeAg protein was overexpressed in the ‘dead’ 

patients and (2) another region of the Hepatitis B genome that produced HBsAg protein was 

overexpressed in the ‘alive patients. 

Presence of HBeAg or HBcAg is an indicator of active viral replication; this means the person 

infected with Hepatitis B can likely transmit the virus on to another person. Typically, loss of 

HBeAg is an indicator of recovery from acute Hepatitis B infection. Active viral replication could 

allow the virus to persist in infected cells, and increase the risk of disease [56, 57]. So our results, 

showing that antigens HBeAg and HBcAg were overexpressed in ‘dead’ patients compared to 

‘alive patients’ makes sense, indicating that these patients never recovered from acute infection. 

The results also indicate a higher level of HBsAg in the ‘alive’ patients compared to the ‘dead’ 

patients. The highest levels of HBsAg in the virus are known to occur in the ‘immunotolerant 

phase’. This pattern is seen in patients who are inactive carriers of the virus i.e. they have the 

wild type DNA, and the virus has been in the host for so long, that the host does not see the virus 

as a foreign protein in the body, and hence there’s no immune reaction against the virus. In this 

phase, there is known to be minimal liver inflammation and low risk of disease progression [58-

60]. This could explain why we saw higher level of HBsAg in the ‘alive’ patients compared to the 

‘dead’ patients.  
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Also among the significant results were three regions from the Human endogenous retrovirus 

K113 (HERV K113) genome (with negative log fold change) that were overexpressed in the ‘alive’ 

patients. Two of these regions were Sequence-tagged sites (STS) and the third region was in the 

gag-pro-pol region that has frameshifts. HERV could protect the host from invasion from related 

viral agents through either retroviral receptor blockade or immune response to the undesirable 

agent [61]. 

Overall, we found that our results from viral-gene/CDS level make biological sense, with much 

of the results validated through published literature. 

Comparing ‘dead’ and ‘alive’ samples in the HepB subgroup using viral-variant data  

 

We performed variant calling on the viral data to see if it can add valuable information to the 

tumor landscape in humans. We then compared the ‘dead’ and ‘alive’ samples at the viral-variant 

level on the 25 patients in the Hepatitis B sub-group. 

Among the significant results (Table 6) included variants in Gene C (nucleotide 1979, 2396) 

and variants in PreS2 region (nucleotide positions 115, 126 and 148). The Gene C region creates 

the pre-capsid protein, which plays a role in regulating genome replication [62]. The mutation in 

the 2396 position lies in a known CpG island (ranging from 2215-2490), whose methylation level 

is significantly correlated with hepatocarcinogenesis [63]. Mutations in PreS2 are associated with 

persistent HBV infection, and emerge in chronic infections. The PreS1 and PreS2 regions are 

known to play an essential role in the interaction with immune responses because they contain 

several epitopes for T or B cells [64]. 

Mutations in the 1762/1764 positions of the X gene are known to be associated with greater 

risk of HCC [64] [65], and is independent of serum HBV DNA level [65]. This mutation 

combination is also known to be associated with hepatitis B related acute-on-chronic liver failure 

[66]. It is predicted that mutations associated with HCC variants are likely generated during HBV-

induced pathogenesis. The A1762T/G1764A combined mutations was shown to be a valuable 
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biomarker in the predicting the risk of HCC [64] [65]; and are often detected about 10 years 

before the diagnosis of HCC [64]. 

Among the significant common results to both, were a few variants of the Human endogenous 

retrovirus K113 complete genome (HERV K113). These variants map to frameshift and missense 

mutations in the putative envelope protein of this virus (Q779_gp1, also called ‘env’). Studies 

have shown that this envelope protein mediates infections of cells [67].  HERV K113 is a provirus 

and is capable of producing intact viral particles [68]. Studies have shown a strong association 

between HERV-K antibodies and clinical manifestation of disease and therapeutic response [69] 

[70]. It is hypothesized that retroviral gene products can be ‘reawakened’ when genetic damage 

occurs through mutations, frameshifts and chromosome breaks. Even though the direct 

oncogenic effects of HERVs in cancer are yet to be completely understood, it has shown potential 

as diagnostic or prognostic biomarkers and for immunotherapeutic purposes including vaccines 

[70]. 

 

CONCLUSION 

With the decreasing costs of NGS analysis, our results show that it is possible to detect viral 

sequences from whole-transcriptome (RNA-seq) data in humans. Our analysis shows that it is not 

easy to detect DNA and RNA viruses from tumor tissue, but certainly possible. We were able to 

not only quantify them at a viral-gene/CDS level, but also extract variants. Our goal is to facilitate 

better understanding and gain new insights in the biology of viral presence/infection in actual 

tumor samples. The results presented in this paper using the 75-sample dataset from TCGA are 

in correspondence with published literature and are a proof of concept of our pipeline.  

This pipeline is generalizable, and can be used to examine viruses present in genomic data 

from other next generation sequencing (NGS) technologies. It can also be used to detect and 

explore other types of microbes in humans, as long as the sequence information is available from 

the National Center for Biotechnology Information (NCBI) resources. 
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This pipeline can thus be used on cancer and non-cancer human NGS data to provide 

additional insights into the biological significance of viral and other types of infection in complex 

diseases, tumorigeneses and cancer immunology. We are planning to package this pipeline and 

make it open source to the bioinformatics community through Bioconductor. 

LIST OF ABBREVIATIONS 
	
HBV- Hepatitis B virus,  
HCV – Hepatitis C Virus,  
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FIGURES, TABLES AND ADDITIONAL FILES 
	
Table 1. Comparison of existing pipelines that detect viruses from human transcriptome 

data 

Table 2A (top) and 2B (bottom):  Comparison of viral detection from serology (blood) with 

viral detection from RNA-seq data (tumor tissue) for Hepatitis B and Hepatitis C 
respectively. The results shown are from Module 1 (‘Filtered human sample input’) performed 

using Bowtie2 alignment tool 

Table 3: Summary of genome browser pattern for Hepatitis B genome with Dead/Alive 

status 

Table 4: Differential expression analysis of transcript level read counts on Hep B sub-

group comparing Dead and Alive samples. These results shown used the viral-gene/CDS data 

obtained from Module 1 (using alignment tool Bowtie2) + Module 3. The table shows results with 

q value < 0.06 and sorted based on LogFC in the descending order.  

Table 5: Cox proportional hazard survival analysis (across 25 HepB samples and 25 HepB 

+ HepC Samples). These results shown used the viral-gene/CDS data obtained from Module 1 

(using alignment tool Bowtie2) + Module 3. Coef: coefficient (Beta) of the model; exp(coef): 

Hazard Ratio; se(coef) : Standard Error; Pr(>|z|) : P-value 

Table 6: Results of case-control association test applied on the results from viral variant 

calling (showing only common results between two possible analysis steps). The table is sorted 

based on Annotation. Annotation includes gene name, protein name, etc., separated by commas, 

multiple annotations separated by semi-colon	
 

Figure 1: viGEN pipeline. Each module has a color, shown in the legend 

Figure 2: Landscape of HBV genome across the 25 HepB samples. The BAM files used were 

from Module 1 generated using Bowtie2. The image shows the three types of patterns of pileup 

distribution namely full (red dot), truncated (blue dot), and empty (black dot).  

Additional File 1: viGEN Github tutorial	

Additional File 2: List of viruses that had genome read count more than 100 and short listed for 

analysis in Module 3 and 4 

Additional File 3: Landscape of viruses at the genome level 

Additional File 4: Results of case-control association test applied on the viral variant calling 
results  
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