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Summary

Uncovering the interaction between genomes and the environment is a princi-

pal challenge of modern genomics and preventive medicine. While theoretical

models are well defined, little is known of the GxE interactions in humans.

We used a system biology approach to comprehensively assess the interactions
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between 1.6 million environmental exposure data, health, and expression phe-

notypes, together with whole genome genetic variation, for ∼1000 individu-

als from a founder-population in Quebec. We reveal a substantial impact of

the urbanization gradient on the transcriptome and clinical endophenotypes,

overpowering that of genetic ancestry. In detail, air pollution impacts gene ex-

pression and pathways affecting cardio-metabolic and respiratory traits when

controlling for genetic ancestry. Finally, we capture 34 clinically associated

expression quantitative trait loci that interact with the environment (air pol-

lution). Our findings demonstrate how the local environment directly affects

chronic disease development, and that genetic variation, including rare vari-

ants, can modulate individual’s response to environmental challenges.
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Highlights

- Fine scale environmental effects overpower those of ancestry on gene expression

- Air pollution (geographic and temporal) is associated with transcriptional response

- Gene-by-environment interactions with air pollution include asthma associated loci

- Inflammatory pathways and cardio-respiratory clinical traits are among those affected
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Introduction

Environmental exposures, together with genetic variation, influence disease susceptibility and

elucidating their respective contributions remains one of the principal challenges of understand-

ing complex diseases (1–7). Individuals with different genotypes may respond differently to

environmental variation and generate different phenotypes (8–11). Such gene-by-environment

interactions are thought to be pervasive and may be responsible for a large fraction of the un-

explained variance in heritability and disease risk (9, 12, 13). Yet, disease risk, owing to either

environmental exposures and/or their interactions with the genotype, remains poorly under-

stood (1, 2, 14).

Canada’s precision medicine initiative, the Canadian Partnership for Tomorrow Project

(CPTP (http://www.partnershipfortomorrow.ca)) is a cohort of over 300,000 Canadians, and

capturing over 700 variables of longitudinal health information and environmental exposures

to determine genetic and environmental factors contributing to chronic diseases. The program

includes the Quebec regional cohort, CARTaGENE, having enrolled over 40,000, predomi-

nantly French-Canadian individuals between 40 to 70 years of age (15–17). Using individuals

from this founding population, we selected 1007 individuals to determine how the genomes,

the environment, and their interactions contribute to phenotypic variation. After attributing a

regional and/or continental ancestry to each individual using genome-wide polymorphism data,

we first captured the effect of different environmental exposures on gene expression and health

related traits, while controlling for genetic relatedness and migration. Furthermore, to capture

gene-by-environment interactions through eQTL analyses, we combined whole-transcriptome

RNA-Sequencing profiles with whole-genome genotyping and rich fine-scale environmental

exposure data.

Individuals living across a North-South urbanization cline in Quebec were selected for
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analyses, including: Montreal, the largest urban center in the Quebec province (MTL, 4500

individuals/km2); Quebec City, a smaller urban center (QUE, 1140 ind/km2); and Saguenay-

Lac-Saint-Jean, a less urbanized region (SAG, 800 ind/km2). Differences in the regional envi-

ronment within and across these cities, including ambient pollutant concentrations, have been

associated with various health outcomes (18, 19). The majority of the Quebec population is

of French-Canadian (FC) descent; a group of individuals descending from the French settlers

that colonized the Saint-Lawrence Valley from 1608 to the British conquest of 1759 (20, 21).

Despite considerable expansion, the population remained linguistically and religiously isolated

while remote regions were colonized by small numbers of settlers, such as SAG (22, 23) and

contributed to the establishment of subpopulations. These sequential population bottlenecks

impacted the genome of FCs by increasing the relative deleterious mutations load (24), while

reducing overall genetic diversity in the population relative to the European population (25).

Using high-density whole-genome genotyping assays (Illumina Omni 2.5), and a combina-

tion of a haplotype-based methods powerful enough to detect fine-scale genetic structure (26)

and data for country of birth for grand-parents, French-Canadians form a distinct genetic clus-

ter relative to those of European descent (Fig. 1A, Fig SS1A to C), as has been previously

observed (24). Within this FC group, we captured fine-scale regional genetic variation that

traces a North-South cline across Quebec (Fig. 1B,C and Fig SS1D), consistent with Quebec

settlement history and local ancestry. In addition to FCs, we identified 136 and 172 individuals

of European and other ancestries respectively, reflecting recent immigration and admixture in

Quebec (Fig SS1A to C).

High-coverage RNA-sequencing (approximately 60 million reads per individual) of all in-

dividuals reveals a similar geographic cline in transcriptional profiling (Fig. 1C). Geography

(region of residence) and neutrophil counts each explain a significant proportion of the genome-

wide transcriptional variation (Table S1). Using a test dataset of 708 individuals, we quantified
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the proportion of the variance in expression attributable to cell counts, age, sex, region, and

arterial stiffness (See Supplemental material) by using principal variance component analysis

(PVCA), and found that the region of residence explains ∼16% of the variance in gene expres-

sion, while the effects of age, sex, and cell counts were much lower (Fig. 1E). These analyses

were repeated on an additional 289 participants and both of these effects were found to be repli-

cated on expression profiles (Table S1). Similarly, when combining transcriptional profiles for

all individuals, we found that the region of residence explains ∼15% of the variance in gene

expression both in FCs and in Europeans (Fig. S2). Gene expression variation is not associ-

ated with the sampling clinic within a region (Fig. S3), and we applied stringent corrections

that effectively remove batch effects (Fig. S4 and Table S1) therefore controlling for possible

unwanted technical or biological variation in the differential expression analyses (see Supple-

mental materials for methodological details).

Given our ability to define FC individuals’ regional ancestry using whole-genome genotyp-

ing, we were able to ask whether population ancestry or regional environmental explains more

of the transcriptional variation in the population. We first distinguished between “FC-locals”

and “FC-internal migrants”; locals are FCs who have a regional genetic ancestry that is identical

to the region where they currently reside, and internal migrants are FCs who have a regional

genetic ancestry that differs from the region where they currently reside (Fig. 1B, Fig. S1D, Ta-

ble S2). First, among FC-locals living along the North-South cline, we identified an increasing

number of differentially expressed genes (DEG) and found that 505 significant DEGs (p-value

< 0.05/15632, log-fold change (LFC) > 0.5) between Mtl-locals and Que-locals, 2167 between

Que-locals and Sag-locals, and 6649 between Mtl-locals and Sag-locals (Fig. 2A). Addition-

ally, we identified large numbers of DEGs between individuals with the same regional ancestry

but who reside in different regions (FC-locals vs FC-internal migrants with the same genetic

ancestry, but residing in different regions), and we find this pattern in nearly all pairwise com-
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parisons of this nature (Fig. 2B). On the other hand, when we performed comparisons between

FC-locals and FC-internal migrants individuals who reside in the same region, but whose ances-

try is from different parts of Quebec, we found very few DEGs in nearly all such comparisons

(Fig. 2C).

We replicated these findings through comparison of Europeans and FC-locals residing in the

same region and found very few DEGs between them (Fig. 2D, Fig. S5). The lack of DEG is

not due to differences in statistical power as we are able to identify up to 75% of our DEGs using

only 30% of our FC individuals (Fig. S6). DEGs between regions are enriched for genes im-

plicated in oxygen and gas exchange, G-protein coupled receptors, and inflammatory response

(Fig. S7, Table S3). Although we initially captured both genotypic and transcriptional variation

correlated with geographic clines among the French-Canadian population, these results indicate

that shared regional environmental exposures influence peripheral blood expression profiles to

a greater extent than regional or local (and continental) ancestry, and point to potential critical

exposures contributing to pathways, phenotypic variation, and possibly disease development.

To test whether environmental exposures contribute to the geographic variation associated

with transcriptional profiles and clinically relevant phenotypes across Quebec, we collated fine-

scale environmental data (Fig. S8 and Fig. S9), including socio-economic indices, annual

ambient air pollutant levels, vegetation indices (greenness), and “built environment” at the indi-

vidual level for a total of 12 environmental exposures, at the scale of mail sortation area (these

areas include several houses or a neighborhood, and their sizes are inversely proportional to

population density - see Supplemental material). Indeed, these environmental exposures cap-

ture broad environmental correlates and variance across the Quebec province (Fig. S9), while

allowing us to analytically treat individual specific exposures and ignore broad geographic sam-

pling categories.

We found that the expression profiles of DEGs between regions, and the genes that regulate
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them (RDEGs), are largely associated with gradients of annual ambient air composition across

Quebec (Fig. 3, Fig. S9). The North-South urbanization cline is indeed reflected by higher con-

centrations of particulate matter 2.5 (PM2.5) and nitrogen dioxide (NO2) in downtown MTL,

however, higher concentrations of sulfur dioxide (SO2) and ozone (O3) are observed in SAG

(Fig. S9). The higher concentrations of SO2 and O3 in SAG, which is a smaller urban center,

are related to the presence of several large industrial complexes (18,27). Coinertia analyses (28),

revealed covariation between 57 clinical endophenotypes (Table S4), environmental exposures

(Fig. S12), and expression levels of DEGs and RDEGs (Fig. S10). Consistent with documented

effects of air pollution on cardiac and respiratory traits (29, 30), we found that arterial stiffness

measures, asthma and stroke prevalence, monocytes counts, low-density lipoprotein (LDL),

respiratory function (FEV1), as well as liver enzyme levels (Alanine aminotransferase level

(ALT), Aspartate aminotransferase level (AST), Gamma-glutamyl transferase (GGT)) show the

strongest associations with SO2 and O3 ambient levels (Fig. S10).

We increased our resolution for pollution exposures by using daily exposure to SO2 pollu-

tion averaged over a 14-day window preceding each individual sampling day (Fig. S14). The

large temporal fluctuations in SO2 ambient concentrations over time scales of a few weeks al-

lowed us to include individuals from SAG that were exposed to low levels of SO2 (despite SAG

having high annual averages), and MTL individuals exposed to high levels of SO2 (despite

MTL having lower annual averages), or vice-versa. In that way, we reveal the effects of the

local environment specifically due to recent SO2 exposure and uncorrelated to broad regional

sampling. Using a robust resampling design to balance the number of individuals in each cate-

gory (See Supplementary materials), we identified 170 DEGs between high- and low-exposure

individuals, which were also found as DEGs between regions (Fig. 2A), supporting their asso-

ciation with air pollution (Fig. S10). Furthermore, while multivariate models show that gene

expression variation for those 170 genes is significantly associated with SO2, they do not show
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an association with smoking or socio-demographic status, or with most built environment char-

acteristics (Table S6). We performed a sensitivity analysis using MTL-only samples, thereby

removing the potential influences of geographic region and regional ancestry. We replicated

these associations with pollution, and the lack of thereof for smoking and socio-demographic

status (Table S6). Those 170 DEGs are again enriched in oxygen-transport activities, and in sev-

eral pathways involved in leukocyte migration during chronic inflammation, including CXCR

chemokine activity and G-protein coupled receptors (Table S5). Circulating blood leukocytes

migrate to sites of tissue injury by responding to proinflammatory cues (31), and are known to

migrate through the blood flow to lung epithelial cells during inflammatory response (31).

Using the endophenotypes identified with CoIA as being associated with air pollution (Fig.

S10), multivariate models also show that gene expression of the 170 DEGs is significantly and

strongly associated with several of these traits (FEV1, lung disease, liver enzymes, arterial

stiffness), across Quebec, and also within Montreal. Furthermore, when the effects of these

significant endophenotypes are regressed out from gene expression, SO2 remains significantly

associated with gene expression (Table S6), suggesting that exposure itself is primarily mod-

ulating gene expression, and not underlying health status. Most of the endophenotypes that

we found to be associated with DEG expression, such as pulmonary function and arterial stiff-

ness, are consistently reported as influenced by air pollution (32–35). GGT, which we found

to be associated with the expression of genes enriched in blood coagulation and platelet reg-

ulation (Fig. S12), has been found in atherosclerotic plaques (36) and is elevated following

pollution exposure (37, 38), and is predictive in a dose-dependent manner of cardiovascular

risk (39). Collectively, these results reveal associations between environmental pollutants, en-

dophenotypic traits, as well as transcript levels, and that the type and direction of associations

are consistent with detrimental effects of air pollution, or a correlated variable, on health status.

Environmental factors not only directly affect phenotypic variation, but can also modu-
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late associations between segregating genetic variants and phenotypes (1, 40, 41). To discover

gene-by-environment interactions in both FCs and Europeans, we identified eQTLs for which

the effect size is modulated by exposure with one of four ambient air pollutants (env-eQTLs):

PM2.5, NO2, O3, and SO2. First, we identified canonical eQTLs using 5,313,384 genotypes

(genotyped or imputed - see Supplemental material) and show a high replication for proximal

canonical eQTLs (cis-eQTLs) with previously discovered cis-eQTLs (Table S7).

We identified 34 environmentally responsive genes (env-eQTLs eGenes) in FCs, that are

modulated by pollution exposure, and replicated in Europeans. We identified these environ-

mentally responsive genes by using gene-specific bonferonni corrected p-values (Fig. 4A, Ta-

ble S8). The expression of those 34 eGenes are modulated by cis-SNPs, and exhibit significant

interactions with a pollutant level. Significance was assessed with gene-specific bonferonni cor-

rected p-values and associations were not driven by outlier individuals (Fig. 4, Fig. S15, Table

S8). The correlations of env-eQTLs effect sizes between FCs and Europeans are positive, large,

and significant (Fig. S17). Among our most significant env-eQTLs (Fig. S16), we identified

an interaction with NO2 and the SNP-gene pair rs10814466-PAX5 (Fig. 4). PAX5 gene is a

transcription factor expressed in leukocytes and has been associated with asthma in a popu-

lation cohort from Saguenay-Lac-Saint-Jean (42). Together, these results document a number

of environmentally responsive loci for which individual genetic variation modulates expression

levels and may be associated with clinical conditions, such as asthma, which have different

prevalences across Quebec (Fig. S10) (43).

We reveal a signature suggesting that rare genetic variation has a disproportionate effect

on phenotypic variation, and in particular on rare variant eQTLs susceptible to modification

through environmental stimuli. First, we document that large effect sizes on transcript abun-

dances in env-eQTLs are predominantly mediated by rare eSNPs (Fig. S18). This pattern is con-

sistent with natural selection acting to stabilize gene expression (44–46), and that rare variants
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mediate larger changes in phenotypic trait variance particularly when influenced by environ-

mental perturbations (46,47). Second, we performed a CoIA analysis between endophenotypes

showing differences across environments (Fig. S10) and env-eQTL eSNPs genotypes. Rare

variants (MAF < 0.1) are overrepresented for strong associations between eSNPs genotypes

and endophenotypic traits (Fig SS19), suggesting that rare variants responding to an environ-

mental stimuli may mediate larger phenotypic changes than common variants.

Lastly, we find evidence that suggests that personal disease risk can be modulated by rare

genetic variants influencing expression levels of genes implicated in chronic diseases, together

with environmental exposures. For example, we identified that PAX5 and CTSG, two genes that

have been associated with asthma etiology (42, 48), exhibit gene-by-air pollution interactions.

Individuals carrying homozygous derived genotypes show larger changes in expression level in

response to a high pollution exposure than when exposed to a lower level (Fig. S15). Such per-

sonal genetic sensitivity profiles to environmental exposures may help develop individualized

care for the prevention and treatment of chronic diseases (49).

Our findings illustrate that the impact of the geographic region of residence on the blood

transcriptome overrides that of ancestry. Moreover, ambient air pollution exposures are likely

contributing to this regional effect in Quebec and may explain the differences in some clinical

traits among regions such as asthma prevalence. Fortunately, in Quebec and in many parts

of the developed world, air quality has improved since the 1980s (27, 50). However, there

has been a sharp increase in anthropogenic pollution levels in many parts of Asia caused by

the rapid industrialization and increased use of fossil fuel energies. In the context of global

climate change, air pollution and hazardous air quality events are predicted to become more

frequent and cause additional morbidity and mortality (19). More broadly, our work shows how

environmental exposures modulate gene expression directly and can drastically affect clinically

relevant phenotypes in humans.
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STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to the Biobank CARTaGENE

which regulates the access to the data and biological materials.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study population

The study protocol was approved by the Ethical Review Board Committee of Sainte-Justine

Research Center and all participants provided informed consent. CARTaGENE biobank com-

prises of more than 40,000 participants aged between 40-60 years old, recruited at random

among three urban centers in the province of Quebec. CARTaGENE is a regional cohort within

the Canadian Partnership for Tomorrow Project, including over 315,000 participants, with var-

ious measures obtained from blood parameters, biological function, disease history, lifestyle,

and environmental factors (15).

Sample selection

For set 1, we selected 708 individuals from the CARTaGENE’s biobank samples with available

Tempus Blood RNA Tubes (ThermoFisher Scientific) and Framingham risk scores, ensuring an

equal representation of ages and gender. Two-hundred-and-ninety-two additional samples were

subsequently selected in CARTaGENE’s biobank based on their RNA and complete arterial

stiffness (AIx) measures availability. These samples were selected for having high AIx values

as well as average AIx values to complete the first set of samples in the intention of achieving a

range of arterial stiffness values across the study cohort.

METHOD DETAILS

Genotyping, ethnicity, and regional origin of French-Canadians

928 samples with RNA-Seq profiles that passed quality control (QC) thresholds were genotyped

on the Illumina Omni2.5 array to obtain high density SNP genotyping data. A total of 1,213,103

SNP were retained after filtering and QC (Hardy-Weinberg p-value > 0.001, MAF > 5% and
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percent of missing data < 1%).

RNA sequencing

Whole blood samples were collected from participants in 2010. Total RNA was isolated using

the Tempus Spin RNA isolation kit (ThermoFisher Scientific) and a globin mRNA-depletion

was performed using the GLOBINclear-Human kit (ThermoFisher Scientific). The quality and

integrity of the RNA samples were verified using an Agilent Bioanalyzer 2100 and all samples

had an RNA Integrity Number (RIN) > 7.5. A RIN above 7.5 is indicative of high quality RNA

in the sample and for which RNA degradation is minimal, indicating optimal transport and

preservation conditions. Our RIN threshold is more stringent than other large scale consortium

studying gene expression in tissues (44, 51). TruSeq RNA Sample Prep kit v2 (Illumina) was

used to construct paired-end RNA-Seq libraries with 500ng of globin-depleted total RNA. Rec-

ommended Illumina protocols were followed for quantification and quality control of RNASeq

libraries prior to sequencing. Paired-end RNA sequencing was performed on a HiSeq 2000 plat-

form at the Genome Quebec Innovation Center (Montreal, Canada). Sequencing was performed

for set 1 (708 samples) using 3 samples per lane, and for set 2 (292 samples) using 6 samples

per lane.

Reads were trimmed for adapters and bad quality bases first using Trim Galore and were

then assembled to a reference genome (hg19, European Hapmap (CEU) Major Allele release)

using STAR (v2.3.1z15) (52) using the 2-pass protocol, as recommended by the Broad Insti-

tute. The 2-pass protocol consists in two consecutive mappings steps having the same set of

parameters with only the reference that is optimized in the second mapping procedure. The

first mapping is done using the reference gene definition coming from ENSEMBL (release 75).

Then, using the splicing junction database files formed by the first pass mapping step for all the

samples combined together and the same gene definition file, a second reference is indexed and
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optimized and is used for the second mapping step. The number of mismatches allowed across

pair is five and a soft-clipping step that optimizes alignment scores is also done automatically

by STAR. The PCR duplicates were conserved as it was shown that quantification of highly ex-

pressed genes were disproportionately affected by pcr duplicates removal (53). Only properly

paired reads were kept (using samtools (54) ) for the analysis, according to STAR parameters.

After these steps, HTseq (v.0.6.1p1) (55) was launched separately on each alignment file using

the same gene reference file that was used for the alignments.

All analyses downstream were conducted using R 3.1.2 and R 3.2.2 and Bioconductor R

packages.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fine scale population genetic structure within French-Canadian popula-
tion

To unveil finer scale patterns of population structure, i.e. differences between individuals with

European ancestry versus individuals having a French Canadian ancestry, we also used Chro-

moPainter (v0.04) (26), a haplotype-based method powerful enough to detect fine-scale genetic

structure. Original genotyping data was used apart from singletons, yielding to 1,908,336 SNPs.

Singletons were removed as they are non-informative for phasing and contribute to computation

burden for the step of haplotypes sharing inference performed with ChromoPainter. Genotypic

data was phased with SHAPEIT (v2.r644) (56) using the HapMap genetic maps. Coancestry

matrices were obtained from ChromoPainter with parameters estimation step done with 10 it-

erations on four chromosomes only. ChromoPainter method performs a reconstruction of every

individual genome using chunks of DNA donated by the other individuals and report matrices of

the number and length of those chunks. We used the chunk count matrix to (1) run FineSTRUC-

TURE algorithm to build a tree (as recommended for large dataset, we performed 10,000,000
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burn-in and runtime MCMC iterations) (Fig. S1D) and to (2) perform a PCA (Fig. 1A, Fig.

S1C). Regional ancestry for each FC was determined based on the three clusters obtained from

the fineSTRUCTURE tree, (Fig. S1D, Fig. 1B).

In agreement with Quebec settlement history, previous studies of the Quebec population

(21, 25), and the fineSTRUCTURE tree, a PCA of French-Canadian (FC) individuals reveals

groupings of sub-populations of individuals that follow a North-South cline (Fig 1B and C). The

founding event from French settlers followed by the subsequent colonization of remote regions

has led to population differentiation among regions in Quebec (21,25). By further restricting the

group of individuals to be analyzed to only FC (n=726) and considering their region of residence

(either Quebec City, Montreal and Saguenay) a PCA on the chunk count matrix reveals three

groups corresponding to region of residence, with the Montreal and Quebec groups overlapping

to a greater extent, in line with their greater geographic proximity (Fig. 1B and C). Those three

groups were also recovered by the fineSTRUCTURE tree (Fig. S1D). Considering all SNPs

and the whole haplotypic structure is the key in seeing differences for those two metropolitan

regions that have low differentiation. We further identified several participants with a regional

ancestry discordant with their region of residence: an indication of recent internal migration of

these participants across Quebec regions (Table S2).

Imputation

To increase the power for the association study with gene expression levels, variant imputation

was conducted on 968 individuals for which the genotyping was available from the Illumina

Omni2.5 array. We pre-phased the genotypes with SHAPEIT (v2.r64410) (56) using the default

parameters, on both the autosomes and the chromosome X. We filtered variants for MAF >

1% and Hardy-Weinberg p-value > 0.0001 and passed the haplotypes to IMPUTE2 (v2.2.2)

(57) to perform the imputation using the 1000 Genomes Phase I integrated haplotypes (Dec
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2013). We used the parameters Ne = 11418 and call thresh = 0.9. We removed variants with

a call rate less than 90%, MAF > 1% and Hardy-Weinberg p-value > 0.0001. A total of

9,157,622 variants passed the filters. Of these, 8,877,297 variants were found on the autosomes

and included 779,579 insertion-deletion polymorphisms (indels) (8.78%) and 8,097,718 SNPs

(91.22%). 280,325 variants were found on the chromosome X, which included 28,504 indels

(10,16%) and 251,821 SNPs (89.84%).

To determine the ancestry of each individual from genotyping data, we carried out a prin-

cipal component analysis (PCA) with SNPs pruned for LD (pairwise r2 > 0.2 and 50 SNPs

window shifting every five SNPs) (Fig. S1A), yielding 146,689 SNPs. The continental ances-

try (African / European / Asian / Canadian / American / Middle-Eastern) of each individual

was determined based on the PCA plot (Fig. S1A) and verified as to whether it corresponds to

self-reported ancestry based on the country of origin of four grand-parents. If the country of

origin of three out of four grand-parents and the PCA continental grouping were concordant,

the individual was assigned to a continental origin.

RNA-sequencing filtering

Genes with counts-per-million below 0.5 in more than half of the cohort (505 individuals) were

removed from the analysis for a total of 15632 genes retained for all downstream analyses.

Individuals that showed obvious outlier after visual inspection of principal component plots

were removed (3 individuals). Pre-processing and normalization of the raw gene counts matrix

for the remaining 708 (or 289 in set 2) samples was done using Bioconductor’s library EDASeq

(v 2.0.0). Gene counts were corrected for GC-content bias and gene length using full-quantile

normalization between feature strata as described in (58). The resulting expression matrix was

quantile normalized across samples to account for library size variation among samples.
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Exploration of variables contributing to transcriptomic variation

The deep phenotyping of the CARTaGENE cohort allow for a thorough exploration of the bi-

ological and environmental factors that may influence genome-wide gene expression patterns.

We applied the low expression filters and normalized the counts from set 1 according to the

pipeline described above (EDASeq normalization for gene length, GC content and library size).

As most statistical procedures assume a normal distribution to the underlying data, we trans-

formed the normalized counts from set 1 to a gaussian distribution using a log2cpm transfor-

mation using edgeR. We summarize the gene expression levels by performing a PCA on the

normalized expression matrix (ePCA). To identify variables that contribute to genome-wide

gene expression variation, we performed a stepwise regression (stepwise search from both di-

rections) on ePC1 and ePC2. Results of the stepwise regression are given in Table S1, as well

as the results from the replication analyses using set 2. We included the following low level

endophenotypes in the stepwise procedure: set, region of residence, cell counts (lymphocytes,

neutrophils, monocytes), arterial stiffness, age, and sex.

Sampling site effect within region

The RNA extractions and library preparation were performed for all individuals in the same

laboratory to reduce technical bias. However, the participants were sampled across four dif-

ferent sampling sites inevitably situated within the geographical regions where the participants

lived. Our experimental design was built in such a way that sequencing run was not correlated

with region of residence (Fig. S3A). To evaluate whether the sampling site has any effect on

the RNA-Seq quantification data, we performed extensive analyses of the two sampling sites

situated within Quebec city: St-Sacrement (STS, n=136) and Enfant-Jesus (EF, n=129). QUE

individuals expression profiles from the combined dataset show that individuals from STS and

EF form a single cluster on a MDS plot (Fig. S3B). We show that the set (discovery or repli-
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cation) has a greater impact on the expression profiles than the sampling site (Fig. S3C). Fur-

thermore, a variance component analysis (PVCA) was performed on the QUE individuals only

and including sampling site as an explanatory variable shows that the sampling site explains

less than 5% of the variance within QUE region, while set explains 15%, age 5% and gender,

2.5% (Fig. S3C). In comparison, in FCs or Europeans, region of residence accounts for 15%

of variance in gene expression.

Correction for technical and biological unwanted variation

RNA-Seq data generation, and expression data in general, are prone to technical biases which

in some cases can mimic, or be confounded with biological variation. The appropriate nor-

malization pipeline in an RNA-Seq experiment will depend on the experimental design and the

hypothesis being tested. Local sequence context can bias the uniformity of read counts along

the genome, and sophisticated normalization pipeline may be necessary when comparing ex-

pression levels across genes (59). Most experimental designs of RNA-Seq studies, like the one

presented here, compares different groups of individuals to each other, therefore the normal-

ization pipeline should rather focus on removing unwanted variation across individuals. We

removed potential effects of hidden covariates potentially affecting expression levels using sur-

rogate variable analysis (SVA) (60) and probabilistic estimation of expression residual (PEER)

correction (61). We show a comparison of SVA and PEER on removing unwanted variation in

the gene expression data in Table 1. We used the SVA correction, retaining 1 surrogate variable,

for the differential expression analyses. We performed the same stepwise regression approach

as previously, but on the SVA and the PEER corrected expression level matrices and show that

we retained the variation associated with region, but removed any effects of cell counts and ar-

terial stiffness that was present in the uncorrected expression levels (Table S1). The corrections

do not fully compensate for the effect of the set (technical), we therefore include this covari-
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ate in all subsequent analyses. PEER approach has been shown to remove variation associated

with biological and technical factors and also increase the power to identify eQTLs (53, 62).

The choice of the number of PEER factors we removed (k=15) is described below in the eQTL

section. We specifically retained variation associated with region. We show that a number of

biological and technical factors do indeed correlate with each of the PEER factors (Fig. S4).

Differential expression analysis between regions and regional ancestries

Because of the large proportion of the variance in gene expression explained by region of res-

idence revealed by the stepwise regression, we then identified genes that are differentially ex-

pressed between pairwise comparisons between the FC-locals from the 3 regions (Montreal,

Quebec and Saguenay). Using edgeR (63), we performed a differential gene expression anal-

ysis using the 15632 genes that passed the QC filters established above. We performed the

differential expression modeling using the following statistical model:

Expression ∼ Regionofresidence+Regionoforigin+ set+ SV 1

The significance level of the test was estimated as a gene p-value below the bonferroni-

corrected threshold at 3.20 x 10−6 (0.05/15 632). We then performed the same stepwise re-

gression approach as previously, but on both the SVA and PEER corrected expression levels

and show that we retained the variation associated with region, but removed any effects of cell

counts and arterial stiffness that was present in the uncorrected expression levels (Table S1).

Both the SVA and PEER correction does not fully compensate for the effect of the set (tech-

nical), we therefore include this covariate in all subsequent analyses requiring covariates. We

performed a power analysis of our ability to detect differentially expressed genes with smaller

samples sizes. Several of our comparisons of local migrants or continental migrants with FC-

locals involve smaller number of individuals (Table S2). We therefore assessed our ability to

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 11, 2017. ; https://doi.org/10.1101/099770doi: bioRxiv preprint 

https://doi.org/10.1101/099770


detect DEGs by performing differential expression analyses between groups for which we found

large number of DEGs, but using a smaller subset of random individuals (without replacement)

of each of these groups. We randomly selected 15 Mtl-locals and 15 Sag-locals, and performed

the differential expression analysis using the same model as above. We also performed the

analysis using 50 Mtl-locals and 50 Sag-locals. In each case, we could identify DEGs which

largely overlap with the DEGs detected in comparisons using all individuals (Fig. S6A to C).

We observe that with an increasing number of individuals, our power to detect DEGs increases

and that the identity of the differentially expressed genes detected in each of these comparisons

largely overlap (Fig. S6A to C).

Regional environmental effects on gene expression

We take advantage of the presence of individuals from different regional and continental origins

in our cohort to disentangle further the effects of the genetic background and environmental

influences on genome-wide gene expression. We first selected individuals of either French-

Canadian and European continental ethnicity (Fig. 1A, Fig. S1A). A total of 798 individuals

including 136 Europeans and 662 FC were selected for downstream analyses. We stratified

the individuals according to their continental origin (FC vs Europeans), and further stratified

the FCs into their assigned genetic ancestry (MTL, QUE, SAG) obtained from the fineSTRUC-

TURE analysis (Fig. 1B, Fig. S1D). We then determined their region of residence (MTL, QUE,

SAG) for a total of 12 ancestry-residence groups: we identified individuals for which their ori-

gin (Continental or regional) is discordant with the region they reside, which we refer to as

continental-migrants and regional-migrants respectively (Table S2). We also identified FC indi-

viduals for which their regional origin is concordant to the region they reside, which we refer to

as FC-locals (Mtl-FC-locals, Que-FC-locals and Sag-FC-locals). We performed the differential

gene expression analysis pipeline as described above for different pairs of continental-migrants,
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regional-migrants, and FC-locals to disentangle the effects of the genetic background and the

regional environment on genome-wide expression (Fig. 2). We selected 6649 genes that show

differential expression (p-value < 3.20 x 10−6) in the comparison between Mtl-FC-locals and

Sag-FC-locals. Using the 12 origin-living groups and the 6649 genes, we performed an unsu-

pervised clustering and visualized the groupings using a heatmap (Fig SS5).

Gene enrichment and Reactome analyses

Gene enrichment analyses were performed using the topGO package in R, with a classic fisher

test. Differentially expressed genes between MTL-locals and SAG-locals were compared against

the 15632 genes expressed in the CARTaGENE cohort that were retained after QC filters (back-

ground). Reactome enrichment analyses were conducted with R the package reactomePA, and

here again, the background set of gene was defined as the 15632 genes expressed in blood that

pass our filters (Fig. S7A and B).

Fine-scale environmental data

We obtained air quality measures in the year of sampling (2010) from either land-based sta-

tions (SO2, ozone) or national LUR models estimates (PM 2.5 and NO2) incorporating in-

formation from land use data and satellite remote sensing (50, 64–66). Built environment

variables (street network, population density, food deserts, greenness, walkability) and social

and material deprivation indicators were accessed through the Quebec government data portal

(https://www.inspq.qc.ca/environnement-bati)

Environmental data was available at the 3-digit postal code district level (i.e Forward Sor-

tation Area, FSA), or was reformatted to this geographic scale. Postal code districts in Canada

are small geographic areas which assist in delivering mail. Postal codes are a series of 6-digits

that identify a small geographic area in a municipality, usually grouping just a few houses to-
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gether or a small neighborhood. 3-level digits are larger areas that include several houses, a

small neighborhood, or a small village. The population of FSAs in Canada range from a few

hundreds to tens of thousands of individuals. 3-digit postal code districts can be of different

areas, and are smaller in densely populated areas, and larger in areas of low population density.

Maps in Fig 1C and D, and Fig SS9B to E depict 3-digit postal code districts as thin grey lines

areas, and each district is colored with the mean value of interest in each map. Each individ-

ual in the CARTaGENE cohort has a 3-digit postal code district associated to it, referring to

the location of its primary residence. We assigned fine-scale environmental measures to each

individual based on its 3-digits postal code.

Coinertia analyses (CoIA)

Coinertia analysis (CoIA) (28, 67) is a multivariate statistical part of the large family of ordi-

nation methods, such as principal component analysis (PCA), redundancy analysis (RDA), or

canonical correlation analysis (CCA). CoIA is a general approach and existing methods such as

the ones mentioned above appear as special cases of it (28). These methods have been widely

used in ecological research, including CoIA which has been more recently developed. Collec-

tively, these methods allow for detecting an underlying data structure between two data tables.

CoIA uses a combination of PCA and multivariate linear regressions to detect linear combina-

tions of variables from one data table that explain the variance in the second data table. CoIA is

more flexible than RDA or CCA, and overcomes their limitations by allowing for more variables

than the number of samples to be tested (28, 67), which is generally the case in genome-wide

scale analyses (i.e. more genes than individuals).

We first used coinertia analysis to reveal the common structure between DEGs plus the genes

that regulate them (Fig.2) and the fine-scale environmental data (Fig. S8). We produced two

separate principal component analyses (PCAs) based on continuous encoded matrices of both
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environmental and gene expression levels (normalized for library size and sequencing freeze).

We conserved components for each PCA to explain 80% of the variance in the data. We im-

puted missing data (in the fine-scale environmental data, there were no missing data in the gene

expression matrix) using the function imputePCA from the R package missMDA. In the CoIA,

the separate PCAs were rotated to a comparable alignment and normalized co-inertial loadings

were obtained for each environmental variables or gene expression. Relationships between the

two matrices were assessed by comparing the CoIA estimated from the real data set with the

CoIA distribution estimated after bootstrapping. Two sets of 500 of CoIAs were computed in-

dependently between gene expression and fine-scale environmental data. Figure SS11 depicts

the resampling scheme. For each Group 1 or Group 2 (n=497 for each) a total of 10000x re-

sampling of 200 individuals (without replacement) were performed. We performed a CoIA for

each resampling step. We report the median value of the distribution of each environment-gene

expression pair cross-tabulated values for each group. Gene enrichment were performed using

gProfiler (68), and using the 15632 expressed genes that passed our filters in whole blood as

the background gene set (Fig. 3). We evaluated the significance of the correlations between the

matrices using a permutation test (RV-test) with 10000 steps form the R package ade4.

To identify clinically relevant endophenotypes that are associated with fine-scale environ-

mental data, we performed a CoIA between 57 clinically relevant endophenotypes (Fig. 4) and

fine-scale environmental data (Fig. S8). The 57 clinically relevant endophenotypes were se-

lected to encompass physical measures (BMI, height, age, sex), most systems relevant to the

human health (cardiovascular system, pulmonary functions, hepatic system, renal system, dis-

ease history, vision, immune system) and lifestyle measures (smoking status, alcohol consump-

tion, nutrition, physical activity). All biochemical endophenotypes were measured in a single

central laboratory. We resampled 10000 times 493 individuals from the cohort, and performed

CoIA at each step between endophenotypes and fine-scale environmental variables. We report
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the median value of the distribution of each environment-endophenotype pair cross-tabulated

values (Fig. S10).

To reveal possible associations between expression levels and endophenotypes, we then per-

formed CoIAs with a similar resampling scheme (SS11) between 12 selected endophenotypes

that were the most strongly associated with air pollutants (Stroke, Arterial stiffness measures,

spirometry measures, Asthma, monocyte counts, LDL, AST, ALT, GGT) and differentially ex-

pressed genes (DGEs and RDEGs) (Fig. S12).

To find associations between endophenotypes and env-eQTL eSNP genotypes, we also per-

formed CoIA between selected endophenotypes that were the most strongly associated with air

pollutants (Stroke, Arterial stiffness measures, spirometry measures, Asthma, monocyte counts,

LDL, AST, ALT, GGT), and env-eQTL eSNPs. We resampled 420 individuals 10000 times and

performed CoIAs between endophenotypes and env-eQTLs eSNPs discovered in FCs and cal-

culated the median for each eSNP-endophentoype pair. In this case, we resampled a smaller

number of individual because the total number of individual with genotyping data dos not in-

clude all individuals (n=928). To assess the possibility that rare SNPs are associated with larger

endophenotypic changes when under the influence of an environmental stimuli, we calculated

the odd ratios of rare eSNPs (MAF < 0.1) showing larger cross-tabulated values in the CoIA

(Fig. S19). Large odds ratios are indicative of an enrichment of rare SNPs for strongest associ-

ations.

Daily SO2 data: exposure windows

To increase our resolution in air pollution exposures, we used daily SO2 ambient levels mea-

sured in each mail sortation area. We calculated the average exposure during the two weeks

preceding the blood draw for each participant. This way, we reduce the effect of random

fluctuations due to technical artifacts or short-term meteorological anomalies that may affect
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measurements. Also, changes in gene expression and biomarkers in blood following a pollu-

tion exposure has been documented as a relatively fast phenomenon, occurring after just a few

days of exposure (33). We then categorized the participants into high exposure (over 2) or low

exposure (below or equal 2) categories.

Daily SO2 data: DEG between high and low exposure individuals

To find differentially expressed genes between high and low exposure individuals, we used the

same approach as described above for identifying DEG between regions, with the following

modifications: given the unbalanced number of individuals in each category (108 high expo-

sure vs 800 low exposure) of exposure, we resampled 100 times 108 individuals from the low

exposure category and performed the DEG pipeline. We performed the SVA while retaining

variation associated with SO2 exposure. We combined the results of DEG in a list of 468 DEG,

and from these candidates, 170 genes were also identified as DE between regions (2A). Those

strong 170 candidates were used for enrichment and multivariate models.

Daily SO2 data: multivariate models

In an effort to characterize the effects of confounding variables on pollution exposure, we per-

formed multivariate models on gene expression levels. First, similar as in the DEG, we per-

formed a SVA to remove unwanted variation of technical or unknown biological variables while

retaining the variation around SO2 exposure. We then built multivariate models using the SO2,

O3, and PM2.5 14-day exposures, as well as the remaining 9 non-pollution environmental ex-

posures (Fig. S9), as well as smoking status (Fig. 4). Smoking status may indeed cause similar

changes in endophenotypes as pollution exposure. We then selected the endophenotypes re-

vealed by the CoIA as being the most associated with region and pollution exposure (Lung

disease, Asthma, Stroke, monocyre counts, liver enzymes (AST, ALT, GGT), Arterial stiffness,
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spirometry tests, and lymphocyte counts, Fig. 4), and tested whether any of these would explain

variation in the 170 candidates. Furthermore, after having identified the health endophenotypes

that are associated with gene expression in Montreal and in the whole data set (FEV1, liver

enzymes, lung diseases, and arterial stiffness, see Table S6), we regressed out their effect from

the expression of the 170 candidate genes, and run the multivariate models to test for the effects

of environmental variables. We found that daily SO2 exposure still explain significant varia-

tion in gene expression after removing the effect of health endophenotypes, in both MTL and

the whole data set, suggesting that SO2 exposure itself changes expression, and not the health

endophenotypes associated with it.

Canonical QTLs and env-QTLs

As discussed above, we corrected expression levels with PEER for the eQTL analyses. To select

the appropriate number of PEER factors that maximizes our power for cis-eQTL detection,

we run the PEER correction sequentially removing 5, 10, 15, 20, 25, 30, 35 and 40 factors

and calculated the expression residuals from the inferred PEER factors excluding the region

covariate to preserve the effect of region on expression. To decide of the number of factors

to remove, we follow (62). We applied the interaction eQTL pipeline, using the non-imputed

genotyping data to reduce computational burden. We found that removing k=15 PEER factors

maximizes the number of eQTLs detected. To verify the effect of the PEER correction in our

dataset, we (1) show that PEER factors indeed correlate with many variables that were measured

in the cohort, both technical and biological (Fig. S4) and (2) performed the stepwise regression

using the PEER corrected data for which the effect of region has been retained. Indeed, after

correction, only region and sampling set remained significant (all effects of cell counts and

arterial stiffness on gene expression variation have been effectively removed by PEER) (Table

S1). We therefore use PEER corrected expression data for all subsequent eQTL analyses.
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For the detection of eQTLs (Table S7), we selected participants of FC ancestry for which

we had gene expression data and that passed QC filters for the gene expression and imputed

genotyping data (participants n=689, HW p-value > 0.001, MAF > 0.05 in each region and

percent of missing data < 1%, for a total of ∼ 5M SNPs). We used the 15632 genes that

passed our QC filters as quantitative phenotypes. To detect linear canonical eQTLs, we tested

the following model in FCs and Europeans:

Linear eqtls:

Expression ∼ SNP + set+ gPC 1 to 10 +Region

We defined a cis-eQTL as a SNP falling within 1Mb up- or downstream of a gene and

influencing its expression. cis-eQTLs were mapped using the R package MatrixEQTL using

the linear (for canonical eQTLs) or cross-linear (for air pollution interaction) models. We used

bonferroni-adjusted thresholds for significance, which were calculated as follow. Depending on

the dataset used (FC, Europeans), the thresholds changed because of the different number of

snps in each gene in each dataset.

cis-eQTLs: 0.05/(15632* N snps in gene filtered for LD)

We then added an interaction term to detect gene-by-environment interactions, with four

ambient air pollutant levels that we categorized (see below): PM 2.5 (particulate matter 2.5),

NO2, ozone, and SO2, using the following models:

Expression ∼ SNP + set+ gPC 1 to 10 + PM 2.5 + SNP : PM 2.5

Expression ∼ SNP + set+ gPC 1 to 10 +NO2 + SNP : NO2

Expression ∼ SNP + set+ gPC 1 to 10 + ozone+ SNP : ozone

Expression ∼ SNP + set+ gPC 1 to 10 + SO2 + SNP : SO2
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The pollution ambient concentrations were binned into categories for the env-eQTL model-

ing as follow:

Low Medium High
PM 2.5 equal or below 8 - above 8
NO2 equal or below 11 - above 11
Ozone equal or below 23.5 - above 23.5
SO2 equal or below 1 Between 1 and 2.5 above 2.5

Reporting env-eQTL significant interactions

We report in Table S8 the number of significant env-eQTL eGenes for interactions with each

pollutant. We obtain relatively large numbers of significant eGenes when we tested indepen-

dently in FCs and in Europeans (Fig. S15). To increase confidence in the reported interactions,

we identified the eGenes that replicate in both FCs and Europeans, for each pollutant, reduc-

ing significantly the number of interactions identified (Fig. 4), and strengthening confidence in

those filtered interactions. We further refined our poll of significant interactions by graphing

the genotypes, the expression level, and the environmental exposure for each individual (ex-

amples shown in Fig. S16), and visually assessing the relationships (and identifying possible

associations driven by few outliers, or for which the effect size was very small). This last set of

interactions are the ones for which we have the highest confidence in (n=34) .

DATA AND SOFTWARE AVAILABILITY

Genotyping, expression, health phenotypes, and exposure data used in this study are available

from the CARTaGENE Biobank upon request. The built environment data is publicly available

from the Quebec government data portal. The air pollution data is available upon request to Air

health Effects division, Government of Canada.

28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 11, 2017. ; https://doi.org/10.1101/099770doi: bioRxiv preprint 

https://doi.org/10.1101/099770


References and Notes

1. Gibson G (2008) The environmental contribution to gene expression profiles. Nature Re-

views Genetics 9(8):575–581.

2. Rappaport SM, Smith MT (2010) Environment and disease risks. Science 330(6003):460–

461.

3. Ye CJ, et al. (2014) Intersection of population variation and autoimmunity genetics in hu-

man t cell activation. Science 345(6202):1254665.

4. Wu S, Powers S, Zhu W, Hannun YA (2016) Substantial contribution of extrinsic risk fac-

tors to cancer development. Nature 529(7584):43–47.

5. Nelson MR, et al. (2012) An abundance of rare functional variants in 202 drug target genes

sequenced in 14,002 people. Science 337(6090):100–104.

6. Grubert F, et al. (2015) Genetic control of chromatin states in humans involves local and

distal chromosomal interactions. Cell 162(5):1051–1065.

7. Carr EJ, et al. (2016) The cellular composition of the human immune system is shaped by

age and cohabitation. Nature immunology.
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Figure 1: Genetic and transcriptomic variation within the CARTaGENE cohort sample
(A) Principal component analysis (PCA) of individuals of European descent, including FCs
(n=887). Individuals are labeled according to self-declared ancestry based on the origin of four
grand-parents.(B) PCA on the haplotype chunk (26) count matrix of French-Canadians (n=689)
reveals 3 groups corresponding the region of residence, with SAG individuals showing less
overlap with either of MTL or QUE individuals, in line with their historical isolation (22, 23).
(C) Genotypic cline for individuals by location of residence (three-digit postal code) sampled
across the province. Colour indicate the average value of the first principal component from a
PCA on genotypes in each FSA (n=157). (D) Transcriptomic cline for individuals by location of
residence (three-digit postal code) sampled across the province. Colours represent the average
value of the first principal component from a PCA on the transcriptome in each FSA (n=189).
(E) Proportion of transcriptomic variance (PVCA) in FCs explained by low-level phenotypes
and their interactions.
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Figure 2: Environmental impacts on gene expression profiles override that of genotype
Contrasting the effects of ancestry and regional environment on DGE; (A) between FC-locals
(different regional ancestry, different regional environments). (B) between FC-locals and FC
internal migrants (same regional ancestry, different regional environments). (C) between FC-
locals and FC internal migrants (different regional ancestries, same regional environment). (D)
between FC-locals and Europeans (different continental ancestries, same regional environment).
Pink dots are genes with FDR below 5% and Red dots are genes with p-value < bonferroni
corrected p-value (3.20 x 10−6)
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Figure 3: Differentially expressed genes are associated with local ambient air pollution
Coinertia (CoIA) analysis between gene expression (columns) and fine-scale environmental
variables (rows). CoIA analysis were performed on genes that were significantly differentially
expressed among regions and the regulators of those genes (RDEG). CoIAs were computed
between DEGs profiles and fine-scale environmental data (Fig. S11). We performed two sets
(Group 1 and Group 2, each composed of a random draw of half the cohort) of CoIAs: each
set included 10000x resampling of 200 individuals (without replacement), and the CoIAs were
performed between environment and gene expression for each of the 10000 iterations. Figure
SS11 depicts the resampling scheme.The above heatmap represents, for each Group 1 or Group
2, the median of each environment-gene associations from the cross-tabulated values distribu-
tion. Associations from Group 1 and Group 2 largely cluster together, indicating a strong signal
of the association between fine-scale air pollution levels and gene expression. A permutation
test (n=10000 steps) indicates the that the correlations between the matrices are significant
(p=0.00089 and p=9.9e-05 for group 1 and 2 respectively )
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Figure 4: Genome wide env-eQTLs map in CARTaGENE
(A) Circular manhattan plot displaying all significant cis-eQTLs for which an interaction be-
tween the genotype and an environmental air pollutant was identified (env-eQTLs). eGenes
shown here replicate between analyses performed with either FCs or European individuals.
Each point represent a SNP-gene pair that was significant, its position relative the center reflects
the -log10(p-value) (higher closer to the center), the colour represents eQTLS with significant
pollution interactions, and the size of the dot reflect the log10 effect size of the eQTL. Bold dots
represent genes that were also found to be differentially expressed between MTL and SAG.
Examples of interactions of the genotype and the environment on expression level of (B) PAX5,
and (C) AFAP1.
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