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Abstract15

A wide variety of protein and peptidomimetic design tasks require matching16

functional three-dimensional motifs to potential oligomeric scaffolds. Enzyme17

design, for example, aims to graft active-site patterns typically consisting of 3 to18

15 residues onto new protein surfaces. Identifying suitable proteins capable of19

scaffolding such active-site engraftment requires costly searches to identify protein20

folds that can provide the correct positioning of side chains to host the desired active21

site. Other examples of biodesign tasks that require simpler fast exact geometric22

searches of potential side chain positioning include mimicking binding hotspots,23

design of metal binding clusters and the design of modular hydrogen binding24

networks for specificity. In these applications the speed and scaling of geometric25

search limits downstream design to small patterns. Here we present an adaptive26

algorithm to searching for side chain take-off angles compatible with an arbitrarily27

specified functional pattern that enjoys substantive performance improvements28

over previous methods. We demonstrate this method in both genetically encoded29

(protein) and synthetic (peptidomimetic) design scenarios. Examples of using30

this method with the Rosetta framework for protein design are provided but our31

implementation is compatible with multiple protein design frameworks and is32

freely available as a set of python scripts (https://github.com/JiangTian/adaptive-33

geometric-search-for-protein-design).34
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1 Introduction36

The field of protein design has advanced tremendously in the recent decade in scale,37

accuracy and the number of types of design tasks carried out by practitioners. Early38

successes in protein design focused on protein fold design (including novel folds)[1]39

and hyper-stabilisation of proteins[2]. The redesign of protein-protein[3] and protein-40

DNA[4] interfaces allows for functional rewiring of key biological networks. More41

recently, protein engineers have turned towards the redesign of protein active sites and42

smaller functional patterns that demand sub-angstrom accuracy in the positioning of key43

side chains. Recent works include both the engraftment of known active sites onto new44

scaffolds[5] as well as the engraftment of novel active sites (derived from quantum me-45

chanical modeling of desired reactions and corresponding transition states)[6] onto new46

scaffold proteins. In these enzyme design applications, active site patterns can become47

quite large as substrate binding, reaction mechanism, and surrounding environment48

are considered. Methods for matching known and predicted functional sites onto large49

libraries of potential scaffolds (proteins, nucleic acids and synthetic peptidomimetics for50

example) are needed to enable enzyme design (and other related design tasks involving51

functional site or hotspot transplantation).52

The earliest geometric matching applications in bioinformatics were aimed at match-53

ing whole sub-structures to find substructures that indicated a likelihood of shared54

function or distant homology[7]. In many cases these algorithms searched for con-55

tiguous regions and were the structural analog of sequence alignment algorithms (both56

gapped and ungapped). Early uses included protein function prediction, analysis of57

structure prediction and evaluation of new algorithms[8–10]. Early works also included58

innovative uses of geometric hashing to extract 3D functional motifs from protein struc-59

tures[11]. Here we focus on the use of geometric search for the purpose of biodesign,60

rather than prospecting or annotation.61

Geometric searches in biodesign and bioinformatics contexts having similar moti-62

vation to the work described here have used combinations of geometric hashing, side63

chain conformation libraries and other heuristics that have typically limited the number64

of elements in any given pattern. Fleishman et al. computationally designed a protein65

to bind hemaglutinin (HA) targeting a conserved region on the stem[12]. They first66

identified residues that were likely to be hotspot residues by docking the single amino67

acid onto the HA stem region and calculating a binding energy. Next, they built inverse68

rotamer libraries for residues with good binding energies, then used the residues as69

anchor sites on which to dock protein scaffolds. The protein scaffolds were selected70

from known proteins not known to bind HA and were filtered for high shape comple-71

mentarity with the HA target region. A low resolution docking procedure was used to72

simultaneously optimize the HA-scaffold binding energy as well as the scaffold’s ability73

to accommodate anchor residues. Scaffolds that showed good binding energies with the74

satisfied hotspot residues were used as the starting point for a second round of docking75

and designing to optimize residues outside of the hotspot residues.76

In addition to these examples of geometric search-driven enzyme design, there are77

several examples in the field of biomimicry with synthetic oligomeric foldamers and78

short peptidomimetic scaffolds. Here the objectives vary considerably: in active-site79

mimicry, interface binding, metal binding and surface adhesion[13] are a few of the80

diverse pepdiomimetic design tasks. The set of oligomeric scaffolds that have protein-81

like side chain take-off angles is quite diverse; examples include linear peptoids[14],82

oligooxipiperizines (OOPs)[15], HBS helices[16], cyclic peptides[17] and peptoids[18],83

b-peptides[19] and hybrids thereof. A key application here is the mimicry of interfacial84
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hotspots where a small number of side chains scafolded by a single secondary structure85

element comprise a significant fraction of the binding energy[20]. In these cases moving86

these groups of side chains to a new, non-protein, scaffold with synthetically restricted87

backbone degrees of freedom and reduced atomic mass is a viable route to inhibiting88

protein interactions. Drew et al. show that by grafting 4 side chains from a restricted89

segment of sequence onto a four subunit OOP scaffold resulted in low nanomolar90

inhibitors of two key protein-protein interactions (p53-MDM2 and p300-Hif1a)[21].91

The first step in this work was using a geometric search to dock the OOP scaffold into92

the binding site such that side chain takeoff angles were compatible with those observed93

for three hotspot residues observed in the structure (predicted to comprise the majority94

of the binding energy). After this geometric search was used to instantiate a starting95

pose, the Rosetta design procedure (with modifications for both NCAA side chains and96

the OOP backbone) was used to optimise binding and inhibition of the endogenous97

protein-protein interaction, resulting in low nanomolar inhibitors of both complexes. In98

both of these cases, the geometric match steps were based on inverse rotamers and were99

prohibitively expensive, limiting the search to only small peptidomimetics.100

Drew and Renfrew et al. previously demonstrated the incorporation of several non-101

peptidic backbone chemistries in the the macromolecular modeling suite, Rosetta[22].102

There are many additional abiotic foldamer and peptidomimetic backbone bones[23]103

that are amenable to such treatment. Determining which foldamer backbone (or hybrid)104

chemistry) is the most compatible with a given interface will become a bottleneck as the105

number of synthetically accessible scaffolds for biomimicry continue to increase.106

Here we describe a new method combining octrees (a data structure that maps regions107

of 3-dimensional space to nodes in a tree) and a novel adaptive search that results in108

a significant performance gain for the applications described above. Key innovations109

include the ability to weight interaction/pattern components by energy and the adaptive110

nature of the search, which both increase efficiency and allow for specification of111

allowable error (per component of the template pattern) and number of mismatches. We112

pose the problem by describing a typical problem setup. We then describe our core113

algorithm. Lastly, we describe applications to protein and peptidomimetic design tasks114

like those described above.115

2 Methods116

2.1 Problem Setup117

Here we describe a method that, given a set of side chain functional groups that are118

fixed in space, will find a molecular scaffold among a library of scaffolds that will119

accommodate those fixed functional groups. Here, we use the term functional group120

to describe the terminal atoms of a side chain, i.e. those atoms whose position will121

remain fixed relative to one another during the rotation of the q angles of the side chain.122

These would include the phenyl, imidozol, and guanadinium groups of phenylalanine,123

histidine and arginine respectively, but also the four terminal carbons of leucine (Cb, Cg,124

Cd1, Cd2) and the hydrogens that branch from them. A molecular scaffold is defined125

generally as any molecule from which designable side groups could branch.126

A given scaffold will typically have varying degrees of freedom and these degrees127

of freedom will therefore define the scaffold’s ability to accommodate fixed functional128

groups. Practically, different scaffolds will have different degrees of flexibility at129

different positions and this will drive our definition of allowable error of matching. For130
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a peptide the degrees of freedom are the f and y angles on the backbone and q angles131

in the side chains. Peptidomimetic scaffolds will have different/additional degrees of132

freedom. For example, for a peptoid we must also consider the preceding-w angle which133

potentially allows for greater diversity of side chain Ca-Cb bond vectors for a given134

sequence. Alternatively, an oligooxopiperazine (OOP), which has cyclic constraints135

between neighboring residues, is theoretically much more restricted in its ability to136

accommodate fixed functional groups but also has a reduced entropic cost upon binding137

a target.138

Our approach to interface design is be part of a two-step process. In the first139

step, we consider the most influential energies and conduct an efficient geometric140

search to eliminate all the impossible designs. In a second step, designs that passed141

the quick initial screening are further refined using Rosetta, potentially introducing142

additional mutations. This two-step process efficiently saves all the time that the143

majority impossible designs would take to be evaluated by Rosetta. The second step in144

this process145

2.2 Current Hotspot Matching Algorithm146

For comparison we adapted the approach of Flieshmann et al. Our implementation of147

scaffold matching for proteins is quite similar to the above described approach. This148

approach is broken into three stages as follows:149

A. Identify hotspot residues at the interface of a protein interaction subject to the150

constraint that the residues are not part of the target protein. Hotspot residues are151

generally chosen based on high DDG values in their alanine scans. Such residues are152

often responsible for the protein interaction’s binding affinity.153

B. For each hotspot residue, generate an inverse rotamer library which specifies high154

probability orientations of backbone atoms and other atoms not included in the residue’s155

fixed function group. The inverse rotamer library defines possible connection points to156

the molecular scaffold of interest.157

C. For every designable residue position on a given molecular scaffold a. identify a158

primary hotspot residue generally chosen as the residue with the highest DDG value159

from the alanine scanning results b. Align the designable residue position on the scaffold160

with an inverse rotamer in the library of primary hotspot residue inverse rotamers c.161

Sample the scaffold’s degrees of freedom to minimize an energy function as well as162

the distance between remaining designable residue positions on the scaffold and the163

remaining hotspot residues. In practice, a distance constraint is placed between the164

atoms at the designable residue positions on the scaffold and the corresponding atoms in165

the inverse rotamers of hotspot residues and is incorporated into the energy function to166

evaluate the entire system. d. Save lowest energy conformations and filter for scaffolds167

that accommodate multiple hotspot residues.168

2.3 Overview of Adaptive Geometric Search Algorithm169

Here we employ octrees as the core data-structure for our algorithm[24]. A cubic170

volume, with sides of length l, centered on a point, p, can be subdivided in to eight171

cubes with sides of length l/2, that share p as a vertex. Each of these eight cubes can172

be further subdivided in to eight more cubes each with side of length l/4, and so on.173

This decomposition of 3D space lends it itself toward a tree like representation called174

an octree. Octrees are tree structures whose nodes correspond to 3D cubes embedded175

in a hierarchically subdivided overall 3D space and each deepening level of the tree176
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describes an increasingly smaller volume of space. Each node has eight children by177

subdividing each side of the cube by the middle in the x, y and z dimensions. All the178

3D objects are stored in the leaf nodes in the octrees. Octrees have various stopping179

criteria to stop the tree from splitting including thresholding based on the number of180

objects in a node, i.e. the octree splits only the nodes containing more than a certain181

number of objects. For our problem the 3D objects are points in 3D space and the182

stopping criterion is the minimum cube length `s. That is, the octree splits a node only183

if its corresponding cube has sides of length at least 2`s. Moreover, all empty nodes, i.e.184

nodes whose corresponding cubes contain no points, in the octrees are discarded.185

To search for desirable configurations, the algorithm first samples points from each186

manifold (corresponding to a take-off point) and then builds an octree for each manifold187

based on these sample points with the stopping criterion of the minimum cube length `s.188

Then the algorithm compares two octrees at a time by searching adaptively in the cubic189

regions that pass the necessary condition A (see below). We call a pair of cubes that190

pass the necessary condition A a “possible pair”. The algorithm finds all the possible191

cube pairs at each level until it ends up with the set of all possible pairs of leaf cubes.192

Then the sufficient condition A (see below) is tested on all these pairs of leaf cubes to193

determine whether to accept or reject all the pairs of points inside them. At the end all194

the pairwise desirable cubes are combined through a matrix product.195

2.4 Establishing Necessary and Sufficient Conditions for matching196

Our overall strategy is to enumerate all possible residue positions (when there is a197

choice) and amino acid assignments to these residues and then to use the adaptive198

geometric algorithm to determine whether the resulting rotamers at those positions have199

the proper geometry. Thus the adaptive geometric algorithm is the “inner loop” of the200

computation. For this inner loop to be efficient, it must swiftly filter away impossible201

geometries (theorem 1 below) and identify promising ones (theorem 2 below).202

Mathematically, the adaptive geometric algorithm efficiently searches for a certain203

n-polygon among n sets of points in 3D space given an error tolerance and an approxi-204

mation margin. This general scheme is required for all the applications introduced above205

and evaluated in the Results section. Given a target polygon P = {P
1

, P
2

, . . . , Pn}, a206

tolerance ✏T � 0 and one edge (Pi, Pj), let Ci, Cj be two nonempty cubes with size207

` and the distance between their centers d, where i, j 2 [1, 2, . . . , n], i 6= j. Then we208

have the following theorems that help us determine which cubes could possibly match209

that edge. That is, the theorems provide acceptance and rejection criteria for pairs of210

cubes from different manifolds (where each manifold corresponds to, for example, a211

take-off residue from a backbone). The first theorem provides a rejection criterion.212

Theorem 1. If d < PiPj � ✏T � p
3 ` or d > PiPj + ✏T +

p
3 `, then there are no213

pairs of points (G,H) 2 Ci ⇥ Cj such that |GH � PiPj |  ✏T .214

Proof. See Appendix A.215

Theorem 1 suggests a “necessary condition” for any two cubic regions on the same216

level of the trees to contain any desirable pairs of points. We are going to call it the217

“necessary condition 1” in the future to refer to the condition defined in Theorem 1. If218

two cubes do not satisfy the conditions of this theorem, they are not going to match the219

edge, and will be rejected. That’s why we consider this to be a rejection condition. By220

contrast, we have the following “sufficient condition 2” for all pairs of points from two221

leaf cubes to be desirable (an acceptance condition).222
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Theorem 2. If PiPj � ✏T +

p
3 `  d  PiPj + ✏T �p

3 `, then all pairs of points223

(G,H) 2 Ci ⇥ Cj satisfy |GH � PiPj |  ✏T .224

Proof. See Appendix A.225

Notice that the condition of Theorem 2 can hold only when PiPj � ✏T +

p
3 ` 226

PiPj + ✏T � p
3 `, or when `  ✏T /

p
3. Because the leaf cubes of the octrees must227

have length `T  2ls, we require `s  ✏T /(2
p
3).228

Let ti be the octree generated from manifold Ai for i = 1, 2, . . . , n. Algorithm 1229

gives the pseudo code of the adaptive geometric search algorithm.

Algorithm 1 Adaptive Geometric Search ({A
1

,A
2

, . . . ,An},P, ✏T )
1: trees = [t

1

, t
2

, . . . , tn]
2: h = depth of the octrees ti for i = 1, 2, . . . , n
3: for i, j 2 [1, 2, . . . , n], i 6= j do
4: pairs = []
5: l⇤ = PiPj

6: combos = [[] for x in range(h+ 1)]
7: combos[0] = [(ti, tj)]
8: for k 2 [1, 2, . . . , h] do
9: for (b

0

, b
1

) in combos[k] do
10: combos[k + 1] += Compare1(b

0

, b
1

, l⇤, ✏T )
11: end for
12: end for
13: for (b

0

, b
1

) in combos[h] do
14: pairs += Compare2(b

0

, b
1

, l⇤, ✏T )
15: end for
16: Append all (p, q) 2 pairs as edges to the graph G
17: end for
18: Search G for the desirable polygon

19: # Check the necessary condition 1
20: function COMPARE1(b

0

, b
1

, l⇤, ✏T )
21: return [(ci, cj) for (ci, cj) in b

0

.children ⇥ b
1

.children if
|(ci.center, cj .center)� l⇤|  ✏T +

p
3 ci.length]

22: end function

23: # Check the sufficient condition 2
24: function COMPARE2(b

0

, b
1

, l⇤, ✏T )
25: if |(b

0

.center, b
1

.center)� l⇤|  ✏T �p
3 b

0

.length then
26: return [(b

0

, b
1

)]

27: else
28: return []

29: end if
30: end function

230

2.5 Algorithmic Complexity231

The adaptive geometric search algorithm has three parts, building the octrees, adaptively232

searching every two octrees and the graph search. Let N be the number of sample points233
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from each manifold. For convenience we build all octrees with the same initial cube234

length `
0

. The time complexity of building an octree with initial cube length `
0

and235

minimum cube length `s is O(log

2

(`
0

/`s)N).236

Next we compute the time complexity of the adaptive search between any two237

octrees (without loss of generality) called t
1

, t
2

. Let the corresponding polygon edge238

length be l⇤.239

Theorem 3. If we set `s = ⌘ ✏T
4

p
3

for any 0 < ⌘ < 1, then the adaptive geometric240

search algorithm 1 returns all the pairs of points whose distances are within the set241

[`⇤� (1�⌘)✏T , `⇤+(1�⌘)✏T ], and some but possibly not all the pairs of points whose242

distances are within the set [`⇤ � ✏T , `
⇤ � (1� ⌘)✏T ) [ (`⇤ + (1� ⌘)✏T , `

⇤
+ ✏T ].243

Proof. See Appendix A.244

Lemma 4. Set `s = ⌘ ✏T
4

p
3

for some 0 < ⌘ < 1. Then for any cube C
1

in an octree t
1

,245

there are at most 4⇡
3

(3

p
3 + 2

4

p
3

⌘ )

⇣
3(

`⇤

`s
)

2

+ (

3

p
3

2

+

4

p
3

⌘ )

2

⌘
cubes C

2

on the same246

level from another octree t
2

such that (C
1

, C
2

) are possible pairs, that is, they satisfy the247

necessary condition 1.248

Proof. See Appendix A.249

Theorem 5. Recall that `
0

denotes the initial cube length and the minimum cube length250

`s = ⌘ ✏T
4

p
3

. Let nm be defined as in Lemma A. Then the time complexity of the adaptive251

search part of Algorithm 1 is O
⇣

1

⌘6✏5T

⌘
.252

Proof. See Appendix A.253

Now we consider the last part of the algorithm, the graph search. Let sij be the254

number of possible leaf cube pairs between octrees ti, tj for i, j 2 [1, 2, . . . , n], i < j.255

We view the leaf cubes as vertices and possible pairs of them as undirected edges in the256

graph. If we want to produce all the desirable n-tuple cubes, then by induction it’s easy257

to see that the upper bound on the time complexity is O(

Q
1i<jn sij).258

In practice we can do much better. Consider building a directed graph by giving259

directions to the edges to form a n-cycle of groups of cubes from t
1

, t
2

, . . . , tn. Finding260

strongly connected components in this directed graph first would in most cases greatly261

reduce the search space with only a linear cost O(

P
1i<jn sij).262

In summary we state the total time complexity of the algorithm.

O
0

@n log

2

(

`
0

`s
)N +

n2

⌘6✏5T
+

Y

1i<jn

sij

1

A

= O
0

@n log

2

(

4

p
3 `

0

⌘ ✏T
)N +

n2

⌘6✏5T
+

Y

1i<jn

sij

1

A

= O
0

@n log

2

✓
`
0

⌘✏T

◆
N +

n2

⌘6✏5T
+

Y

1i<jn

sij

1

A . (1)

(2)

In practice we usually search for a triangle or a 4-sided polygon as the target polygon,263

i.e. n = 3 or 4. When n = 3, depending on the parameters ⌘, ✏ and N the computation264

7
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time varies but all three terms in the complexity formula (4.1) are typically of the same265

order. When there are large numbers of possible pairs si’s and/or n = 4, the term C(S)266

in the last term of the complexity formula (4.1) becomes the dominating term. The267

number of results sij’s can be further reduced when we take optimal dihedral angles268

instead of uniform sampling from [0, 2⇡].269

3 Results270

Our algorithm can be applied to many different problems in macromolecular modeling271

and design. In essence, it efficiently solves the problem of searching for a certain272

n-polygon among n sets of points in 3D with error tolerance ✏ and an approximation273

margin ⌘. We present three use cases where our algorithm’s improved efficiency (run274

times that are in some cases many thousands of times faster than previous approaches)275

improves the scaling of the overall task, enabling the use of larger template/target276

structural patters.277

3.1 Scaffold Matching: designing OOPs to inhibit MDM2-p53 in-278

terface279

Protein-protein interactions (PPI) mediate many cellular functions and a small number280

residues that make significant contributions to the the binding affinity of the PPI (deemed281

“hotspot” residues) in turn underlay these protein interfaces. Design tasks aimed at282

protein interfaces abound, for example Fleishman et al. previously designed a influenza283

hemaglutinin binder. Interest in using smaller, easy to synthesize, non-proteolyizable284

macromolecules (called foldamers) as potential therapeutic candidates continues to rise285

as these systems continue to become more computationally and synthetically accessible286

to a broader community. Foldamer backbone chemistries abound and finding a foldamer287

backbone type that is well matched to a particular set of interface hotspot residues288

interface will prove to be a future challenge. Here we describe the recapitulation of289

a OOP foldamer scaffold designed by Drew and coworkers that mimics P53 and can290

disrupt the P53/MDM2 interaction (Fig. 1D). Three hotspot residues on P53 contribute291

the majority of the binding affinity for MDM2 (Fig. 1A).292

There are two parts of the algorithm. In step 1, we search through all possible293

backbones for a matching triangle to the target triangle. In step 2, for every match result294

from step 1 the connecting atom’s bond angles are checked against the optimal bond295

angle. If a match passes step 2, it’s returned as a final result. Otherwise we continue the296

iteration in step 1.297

The target triangle is made up of Cb’s of the hotspot residues (Fig. 1C). The298

algorithm simply searches through the possible take-off position combinations, four299

triangles in this example (Fig. 1B), from every backbone for a match in shape within the300

error bound. Notice that in this case all Cb’s are fixed due to the short lengths of hotspot301

residues. With longer hotspot residues, there will be a manifold of all the possible Cb’s302

for each hotspot residue. For every possible triplet of take-off positions, there are eight303

possible D and L entantiomers. So, for each of these 32 possibilities, we apply adaptive304

geometric search to find all the matches.305

Once we have the matching shapes, we calculate the corresponding matrices R’s of306

rotation and translation such that after applying these transformations R’s backbones307

are connected onto the hotspot residues at atoms Cb’s. Finally we just check if the bond308

8
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Fig. 1: (A) The P53 (yellow) and MDM2 (blue) interface showing phenylalanine,
tryptophan, and leucine hotspot residues. (B) Fifteen of the sixteen OOP backbone
scaffolds fit to hotspot residue stubs. Scaffolds combinatorially sample the L or D
enantiomers of the four residues that comprise the OOP scaffold. Each backbone has
four Cb atoms (black spheres) and thus four possibly matching triangles indicated by
dashed lines. (C) The P53 hotspot residue stubs (orange). In this work, each hotspot
residue has two q dihedral angles resulting in a single fixed Cb (orange spheres) triangle
(dashed lines). Hotspot residues with additional q angles would produce multiple
triangles. Colored spheres show potential Cb atoms from the OOP scaffolds for the
first (green), second (cyan), third (magenta), fourth (yellow) residues in the scaffold.
(D) The LLLL-OOP scaffold (orange) designed by Drew and coworkers and correctly
identified by the algorithm bound to MDM2 (blue).
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angles at the connecting atoms (eg. N, Ca, and Cb for leucine) are within some error309

bound to the optimal bond angles.310

Algorithm 2 Scaffold Match ({A
1

, A
2

, . . . , An}, {P1

, P
2

, . . . , Pm}, �, �A)
results = []

2: for i = 1, . . . ,m do
{ ˜P

1

, ˜P
2

, . . . , ˜Pk} = AdaptiveGeometricSearch({A
1

, A
2

, . . . , An}, Pi, �)
4: for j = 1, . . . , k do

Rj = CalculateTranformation( ˜Pj , Pi) # calculates the transformation
matrix from Pi to ˜Pj

6: if CheckAngle(RjBPi , S1

, S
2

, S
3

) then
results = results+ [RjBPi ]

8: end if
end for

10: end for

In this example let Ai be the manifold of possible positions of the connecting atom311

on the i-th hotspot residue. For example, in Fig. 4B points in colors are sampled from312

manifolds A
1

, A
2

and A
3

respectively. Let Pj be the j-th polygon of the backbone313

take-off position combination and for example, there are 4⇥ 17 of them in Fig. 4C. Let314

BP denote the atoms positions matrix corresponding to the backbone where the target315

polygon P comes from. Let Si denote the atoms positions matrix for the i-th residue.316

Let � be the distance error bound and �A be the angle error bound. Then we describe317

in peudocode Algorithm 2. Let C denote the time complexity for adaptive geometric318

search. Recall in Algorithm 2 that m is the number of target polygons from backbone319

take-off site combinations. Then the time complexity of the scaffold matching algorithm320

is O(Cm).321

In the search process we scored all the possible matches by the root mean square322

deviation (RMSD) values for both shape match and angle match in Fig. 2. Our algo-323

rithm picked the candidate at the origin in this plot (this being identical to the correct324

conformation that led in Drew et al. to low nanomolar inhibitors of this interface). In325

Fig. 1D we show this best design for the OOP backbone of the hotspot residues. Testing326

this code as part of an Rosetta OOP-design protocol shows its energy score is a low327

4.67 with a potential energy score 4.59 after further minimization, which means this328

OOP-protein interface is likely very stable (verified experimentally in Drew et al). The329

run time for the initial geometric search (step on in this design protocol) is 0.02 ⇠ 0.12330

seconds using the algorithm described herein, whereas running the same design and331

producing the same results using the previously described Rosetta codes (the scripts332

from Drew et al.) takes ⇠ 18 minutes (a speedup of greater than 9,000 fold).333

3.2 Peptoid design: design of new metal binding sites334

Proteins and other macromolecules often coordinate metal ions to aid conformational335

stability or carry out chemical reactions. Proteins that bind Zn2+ ions often use four336

residues (most often histidine, cystine, or aspartic acid) to coordinate the zinc ion in a337

tetrahedral arrangement[25]. We next tested our algorithm by designing a peptoid design338

for capturing zinc ions. The binding sites we target in this example are three sulphur339

atoms lying on the vertices of an equilateral triangle. A “6-mer" peptoid macrocycle340

was used as a template backbone (Fig. 3A).341
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Fig. 2: RMSD (root mean square deviation) of all possible OOP backbone matches
with the hotspot residues side chain positions. The candidate at the origin is a perfect
match for both (shape and angle) to the hotspot residues we aim to minimize (use
as a template for design) and is analogous to a template used in previously reported
successful experimental designs.

A six residue cyclic peptoid composed of alternating sarcosine and 3-aminopropyl-342

1-thiol side chains. The cyclization directs alternating side chains to opposite faces of343

the cycle.344

The search space includes 6-mer, 8-mer, and 9-mer scaffolds (peptoid data bank345

codes 07AA1-6-C, 07AA2-8-C[26], and 12AC2-9-C[27] respectively) as the backbone346

and 3-aminopropyl-1-thiol groups as side chains of residues (Fig. 3). Low energy347

matches were commonly found to be comprised of alternating residue positions, or348

sequential positions on the narrow end of the macrocycle.349

We sampled 8 dihedral angles per atom with different lengths of side chains(n =350

number of carbon atoms), different error values. We recorded the run time to find the351

first valid target polygon on Intel Core 3.5 GHz. Results recorded in seconds of CPU352

run time.353

3.3 Long loop closure354

Loop closure is an increasingly researched field in protein design mainly due to impactful355

applications including antibody designs [9, 10]. The abstraction of the problem can356

be described as follows. Given two fixed points in 3D called pivots and two vectors357

(the take-off vectors), construct the loop from pivot 1 to pivot 2 with k residues with358

the type N-Ca-C such that the loop has a low energy and it fits in the designated space.359

Typically the number of residues k ranges from 9 to 17. The difficulties of the problem360

using a direct computation stem from exponential growth in the number of possible loop361

conformations as a function of loop length. As illustrated in Fig. 5.5, we divide the loop362

into two semi-loops by the midpoint or the closest point to the midpoint between two363

residues. The designated space where the loop resides within can be discretised into364

cubes of a certain size (the “lattice space” in Fig. 5.5). We precompute all conformations365

of a single residue and store the resulting angles and x,y,z coordinates after discretisation366

and encoded as a unique integer. Then we compute and store the table where two residue367

conformations can connect appropriately, that is, the end atom of one residue and the368
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Fig. 3: Experimentally determined peptoid macrocycle structures and representative
examples of low energy matches for the (A) 07AA1-6-C (B) 07AA2-8-C and (C)
12AC1-9-C peptoid macrocycle backbone scaffolds. Numbers under representative
examples indicate residue position of 3-aminopropyl-1-thiol side chain.
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Table 1: Run times for matching different geometric representations of metal binding
sites to a library of peptoid (peptidomimetic) scaffolds. Run times are shown in seconds
for runs computed on an Intel Core 5 3.5 GHz processor. Run times are shown for three
classes of binding site pattern and for various user defined settings (corresponding to
different allowable error and approximation ranges in atomic units).

err 0.05 0.1 0.5

⌘ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

General Triangle:
n = 2 2.69 2.42 2.49 2.92 2.40 2.50 7.81 6.93 6.97
n = 3 76.64 73.56 67.87 106.96 101.12 91.04 1518.47 1357.48 1178.47

Equilateral triangle:
n = 2 5.43 5.12 4.78 5.41 4.47 4.37 5.29 4.10 3.93
n = 3 181.04 161.34 139.75 175.37 151.46 124.03 272.62 223.75 176.27

General 4-gon:
n = 2 7.63 7.06 7.15 7.75 7.33 7.47 9.67 8.67 8.82
n = 3 224.16 218.69 209.19 271.98 254.81 235.12 3262.67 2780.21 2079.59

beginning atom of the other residue lie in the same cube and the two bonds form an369

angle within the error bound from the optimal bond angle. Now using the precomputed370

residue conformations and matching table, we develop the two semi-loops. Let the371

number of residue conformations be Mr and the number of cubes in the lattice space Mc.372

After developing each residue, we collapse the end positions that fall into the same cube373

and sharing the same last bond angle, and store all intermediate results for the purpose374

of producing final results in backtracking. After the two semi-loops are developed,375

we have the end atoms of both sides and their spatial intersections. The angles are376

checked to eliminate from the intersection cubes those that deviate outside the error377

bound from the optimal bond angle there (Fig. 5.6). Starting from the matched cubes378

in the middle of the loop, now we backtrack in both sides to the pivots and produce as379

many results as desired (effectively allowing for efficient sampling of a large number of380

constraint-compliant loop designs). In the first experiment we computed a 12-residue381

loop, developing 1000 conformations for each residue and 121 by 121 by 121 cubes382

in the designated space, setting cube length to 0.1 and maximum bond angle errors to383

within 0.2 rad. On a 1.3 GHz Intel Core M with 8 GB memory, our algorithm ran a384

total of 3.6 minutes to produce the first result (see Fig. 5.7 for sample results.). The385

development of each semi-loop took 82 seconds and the matching in the middle took 20386

seconds. Keeping the number of conformations per residue, error bounds and the cube387

size, we enlarge the number of cubes to 171 by 171 by 171 to compute for 17-residue388

loops. On a 2.0 GHz Intel Xeon E5-2620 CPU with 128 GB memory, our algorithm ran389

a total of 35.5 minutes to produce the first result (see Fig. 5.8 for sample results). The390

development of each semi-loop took 11 minutes and the matching in the middle took 28391

seconds.392
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4 Discussion393

We have presented an adaptive method for finding matches between target geometric394

patterns (that represent protein and peptidomimetic design goals) and scaffolds (which395

can serve as the biosynthetic or organic synthesis method for positioning side chains396

in the desired/target geometry). In the protein, enzyme, and peptidomimeic design397

communities, these geometric search tasks are increasingly becoming limiting steps398

in design processes. This trend will increase as we scale to larger target patterns399

and as we compare to growing databases of proteins, peptidomimetic structures and400

other scaffolds. We have tested our adaptive octree method in three realistic design401

settings (each one adapted from a recent design paper using geometric target-scaffold or402

geometric matching) and in each case we were able to speed up the required calculation403

by 100 to 10,000 fold over previous methods. These speedups allow us to replace404

poorly scaling heuristics with our algorithm and thus guarantee scaling and run times405

in a wide variety of design tasks. In addition, our algorithm allows for an explicit406

specification of allowable error rates and mismatches (built into both the search and407

the initial construction of the core octree data-structure). Future work could include408

providing a better interface to the specification of error and allowable mismatches,409

resulting in a mismatch tolerant geometric search (akin to gaps in sequence alignments).410

Another area for future work would be to adapt our geometric search to a multiple-411

alignment setting, allowing us, for example, to seed a search and subsequently update412

the parameters of the search to reflect families of discovered sites on proteins. This413

would provide an algorithmic framework for iterative construction of functional sites on414

proteins that would be informed (in a data-driven manner) by geometric variation across415

discovered functional sites.416

An immediate advantage of our improvement in computational efficiency is that417

it expands, by improving scaling, the range and types of peptidomietic and protein418

scaffolds that can be explored. For example, our method dramatically increases the419

maximum pattern (active site to match to potential scaffolds) that can be engrafted420

via matching. This is important for enzyme design and catalysis design, as full sites421

that include substrate binding and catalytic sites can include large numbers of side422

chains (large numbers of component vectors in the template/starting geometric pattern423

to be matched/searched)[5, 6]. The design of protein binding sites can also involve424

large target patterns that challenge previous methods. Our work here opens the door425

to a more efficient approach to designing these larger patterns and also offers better426

algorithmic guarantees than previous heuristics. Our examples here show (presented427

above and as supplemental code) integration with the Rosetta design framework and428

thus demonstrate how one might integrate our method with a very wide variety of429

design tasks including protein interface antogonist design, protein interface engraftment,430

enzyme design, peptidomimetic design, and the engraftment of complex metal binding431

sites onto target proteins[21, 28]. The computational efficiency of our algorithm also432

enables new approaches where geometric matching is integrated more tightly with433

design protocols (for example, integrated into inner search loops instead of simply being434

performed to set up initial poses or discover starting scaffolds for a design run). The435

code is freely available as a set of python scripts (https://github.com/JiangTian/adaptive-436

geometric-search-for-protein-design).437
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A Appendix514

Fig. 4: Cubes Ci, Cj of size ` that are d distance apart.

Theorem 1: If d < PiPj � ✏T �p
3 ` or d > PiPj + ✏T +

p
3 `, then there are no pairs515

of points (G,H) 2 Ci ⇥ Cj such that |GH � PiPj |  ✏T .516

Proof. For any two points G 2 Ci, H 2 Cj as shown in Figure 4, if d < PiPj � ✏T �517 p
3 `, by the triangle inequality we have,518

GH  d+
p
3 ` < PiPj � ✏T �

p
3 `+

p
3 ` = PiPj � ✏T .

If d > PiPj + ✏T +

p
3 `, again by the triangle inequality,519

GH � d�
p
3 ` > PiPj + ✏T +

p
3 `+

p
3 `�

p
3 ` = PiPj + ✏T .

520

Theorem 2 If PiPj � ✏T +

p
3 `  d  PiPj + ✏T �p

3 `, then all pairs of points521

(G,H) 2 Ci ⇥ Cj satisfy |GH � PiPj |  ✏T .522

Proof. As shown in Figure 4, for any points G 2 Ci, H 2 Cj , we have d � p
3 ` 523

GH  d+
p
3 `. If PiPj�✏T +

p
3 `  d  PiPj+✏T �p

3 `. Substituting the tighter524

bound of d on each side of the inequality we have PiPj � ✏T  GH  PiPj + ✏T .525

Theorem 3526

If we set `s = ⌘ ✏T
4

p
3

for any 0 < ⌘ < 1, then the adaptive geometric search527

algorithm 1 returns all the pairs of points whose distances are within the set [`⇤ � (1�528

⌘)✏T , `
⇤
+ (1� ⌘)✏T ], and some but possibly not all the pairs of points whose distances529

are within the set [`⇤ � ✏T , `
⇤ � (1� ⌘)✏T ) [ (`⇤ + (1� ⌘)✏T , `

⇤
+ ✏T ].530

Proof. Let `T be the length of the leaf cubes. By the definition of ls, we have `T <531

2ls = ⌘ ✏T
2

p
3

. Thus `T < ✏T /
p
3 and the sufficient condition A can be tested. If the532

sufficient condition A is rejected on a pair of cubes C
1

, C
2

, then the distance d between533

them satisfies d > `⇤ + ✏T � p
3 `T or d < `⇤ � ✏T +

p
3 `T . Let G,H be any two534

points such that G 2 C
1

, H 2 C
2

. By the triangle inequality, we have535

GH � d�
p
3 `T > `⇤ + ✏T � 2

p
3 `T > `⇤ + (1� ⌘)✏T ,

or536

GH  d+
p
3 `T < `⇤ � ✏T + 2

p
3 `T < `⇤ � (1� ⌘)✏T .
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Fig. 5: An illustration for Lemma A. The outer radius R = `⇤ +
p
3 `+ ✏T +

p
3

2

`, and
the inner radius r = `⇤ �p

3 `� ✏T �
p
3

2

`. Let S denote the spherical shell (in shade).
How many cubes C

2

can fit into S?

Therefore, in rejecting all pairs of points in C
1

⇥ C
2

we may have rejected some pairs537

of points whose distances are within the set [`⇤ � ✏T , `
⇤ � (1 � ⌘)✏T ) [ (`⇤ + (1 �538

⌘)✏T , `
⇤
+ ✏T ].539

Lemma 4 Set `s = ⌘ ✏T
4

p
3

for some 0 < ⌘ < 1. Then for any cube C
1

in an octree t
1

,540

there are at most 4⇡
3

(3

p
3 + 2

4

p
3

⌘ )

⇣
3(

`⇤

`s
)

2

+ (

3

p
3

2

+

4

p
3

⌘ )

2

⌘
cubes C

2

on the same541

level from another octree t
2

such that (C
1

, C
2

) are possible pairs, that is, they satisfy the542

necessary condition 1.543

Proof. For any cube C
1

in t
1

, let ` be the length of C
1

. For any possible cube C
2

on the
same level from t

2

, by the necessary condition A the distance between them d must
satisfy that `⇤ �p

3 ` � ✏T  d  `⇤ +
p
3 ` + ✏T . Thus all possible cubes C

2

must
be contained in the spherical shell S of inner radius `⇤ �p

3 `� ✏T �
p
3

2

` and outer
radius `⇤ +

p
3 `+ ✏T +

p
3

2

` (see Figure 5). Since there are no overlapping cubes on
the same level in t

2

, the maximum number of the possible cubes nm satisfies

nm  V ol(S)
V ol(C

2

)

 4⇡

3`3
(`⇤ +

p
3 `+ ✏T +

p
3

2

`)3

� 4⇡

3`3
(`⇤ �

p
3 `� ✏T �

p
3

2

`)3

 4⇡

3`3
(3

p
3 `+ 2✏T )

 
3(`⇤)2 + (

3

p
3

2

`+ ✏T )
2

!
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Theorem 5: Recall that `
0

denotes the initial cube length and the minimum cube545

length `s = ⌘ ✏T
4

p
3

. Let nm be defined as in Lemma A. Then the time complexity of the546

adaptive search part of Algorithm 1 is O
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