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ABSTRACT (250 words):  

 

Background: The cancer immunoediting hypothesis postulates a dual role of the immune system: 
protecting the host by eliminating tumor cells, and shaping the developing tumor by editing the cancer 
genome. However, to what extent immunoediting is shaping the cancer genome in common malignancies 
is still a matter of debate. Moreover, the impact of cancer immunotherapy with checkpoint blockers on 
modulating immunoediting remains largely unexplored. 

Results: Here we employed a mouse model of colorectal cancer (CRC), next-generation sequencing, and 
computational analyses to elucidate the impact of evolutionary and immune-related forces on editing the 
tumor. We first carried out genomic and transcriptomic analyses of a widely-used model, MC38 cell line 
and show that this is a valid model for hypermutated and microsatellite-unstable CRC. Analyses of the 
data from longitudinal samples of wild type and immunodeficient RAG1 knockout mice transplanted with 
MC38 cells revealed that upregulation of checkpoint molecules and infiltration of Tregs are the major 
tumor escape mechanisms. Strikingly, the impact of neutral evolution on sculpting the tumor outweighed 
immunoediting by T cell dependent and T cell independent mechanisms in the progressing tumors. We 
also show that targeting the PD-1/PD-L1 pathway potentiated immunoediting and rendered tumors more 
homogeneous. 

Conclusions:  

In summary, our study demonstrates that neutral evolution is the major force that sculpts the tumor during 
progression, and that checkpoint blockade effectively enforces T cell dependent immunoselective pressure 
in this model. The results have important implication for basic research studies on the mechanisms of 
resistance to checkpoint blockade and for clinical translation.  

 

Keywords: neutral evolution, immunoediting, checkpoint blocker 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2017. ; https://doi.org/10.1101/099747doi: bioRxiv preprint 

https://doi.org/10.1101/099747
http://creativecommons.org/licenses/by/4.0/


 3

BACKGROUND 

 

The concept of cancer immunosurveillance, i.e. that the lymphocytes can recognize and eliminate tumor 
cells was proposed almost 50 years ago [1], but the definitive work supporting the existence of this 
process was published 30 years later by the Schreiber lab [2]. In this seminal work an elegant experiment 
was carried out using a mouse model lacking recombination activating gene 2 (RAG2), i.e. a gene that 
encodes a protein that is involved in the initiation of V(D)J recombination during B and T cell 
development. RAG2 deficient mice are viable but fail to produce mature B or T lymphocytes [3]. RAG2 
deficient mice developed sarcomas more rapidly and with greater frequency than genetically matched wild 
type controls and tumors derived from those mice were more immunogenic than those from wild type 
mice [2]. These findings led to the development of the refined cancer immunosurveillance concept: the 
cancer immunoediting hypothesis [4]. The cancer immunoediting postulates a dual role of the immunity in 
the complex interactions of the tumor and the host: the immune system, by recognizing tumor-specific 
antigens, can not only protect the host by eliminating tumor cells, but can also sculpt the developing tumor 
by editing the cancer genome and producing variants with reduced immunogenicity.  

Cancer immunoediting is more difficult to study in humans, but clinical data from patients with severe 
immunodeficiencies is supporting the notion that this process exists also in humans [5]. Indirect evidence 
for the existence of immunoediting for some cancers was provided by calculating the ratio of observed 
and predicted neoantigens, i.e. tumor antigens derived from mutated proteins [6]. Using similar approach, 
we recently provided additional data that support the existence of immunoediting in microsatellite instable 
(MSI) colorectal cancer (CRC) [7]. However, as we recently showed in a pan-cancer genomic analyses, 
the composition of the intratumoral immune infiltrates is highly heterogeneous and changing during tumor 
progression [8], making it difficult to distinguish between genetic, immune, and other evasion 
mechanisms. Over and above these mechanistic questions on tumor progression, there is an urgent need to 
investigate cancer immunoediting also in the context of cancer immunotherapy. Cancer immunotherapy 
with checkpoint inhibitors like anti-CTLA-4 or anti-PD-1/-PD-L1 are showing remarkable clinical 
responses [9]. However, one of the biggest challenges is intrinsic resistance to immunotherapy and the 
development of resistant disease after therapy, i.e. acquired resistance to immunotherapy. As many 
patients with advanced cancers are now receiving immunotherapy, elucidating the role of cancer 
immunoediting as a potential mechanism of acquired resistance to immunotherapy [10] is of utmost 
importance. 

Surprisingly, despite the recognition of the cancer immunoediting process and the widespread use of both, 
mouse models and next-generation sequencing (NGS) technologies, the impact of immunoediting on the 
cancer genome has not been well characterized. Cancer immunoediting was investigated in a mouse model 
of sarcoma using next-generation sequencing (NGS) of the tumor exome and algorithms for predicting 
neoantigens [11]. This sarcoma model showed that immunoediting can produce tumor cells that lack 
tumor-specific rejection antigens, but how this finding translates into common malignancies remained 
unclear. Later, two widely used tumor models, a CRC cell line MC38 and a prostate cancer cell line 
TRAMP-C1 were used to identify immunogenic tumor mutations by combining NGS and mass 
spectrometry [12]. However, since neither longitudinal samples of wild type and/or immunodefficient 
mice nor checkpoint blockade was applied, two major questions remained unanswered: 1) To what extent 
is T cell dependent immunoselection sculpting the cancer genome?, and 2) How is immunotherapy with 
checkpoint blockers modulating immunoediting? Quantitative evaluation of immunoediting during tumor 
progression and as well as following therapeutic intervention using checkpoint blockers could not only 
provide novel mechanistic insights, but might also inform immunotherapeutic strategies that could 
potentially be translated into the clinic. 

We therefore designed a study to investigate immunoediting of an epithelial cancer genome using wild 
type and immunodeficient mice, NGS, and analytical pipelines to process and analyze the data. We first 
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characterized the genomic and transcriptomic landscape of the mouse CRC cell line MC38 and show that 
this cell line is valid model for hypermutated CRC. We then carried out experiments with wild type and 
immunodeficient RAG1-/- mice with transplanted tumors and analyzed longitudinal samples with respect 
to the genomic landscape and the immunophenotypes of the tumors. The results show the extent of 
immunoediting of the cancer genome in this model in relation to other selection processes. Finally, we 
performed experiments with anti-PD-L1 antibodies and show how the targeting the PD-1/PD-L1 pathway 
modulates immunoediting. 
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RESULTS  

 

Genomic, transcriptomic, and immunogenomic characterization of MC38 cell line 

Functional studies on immunoediting require genetic tools and controls afforded by mouse studies. Since 
immunoediting has not been quantified using mouse epithelial cancers, we designed experiments with 
transplanted tumors using the murine MC38 cell line. The MC38 murine CRC cell line is a grade III 
adenocarcinoma that was chemically induced in a female C57BL/6 mouse and used since then as a 
transplantable mouse tumor model [13]. Several studies have shown that the cell line is immunogenic and 
can be used as a model for investigating anticancer immunity and immunotherapy [14], [15], [16], [17]. 
To characterize the genome and transcriptome of the MC38 cell line, we performed whole-exome 
sequencing, SNP array analysis, and RNA-sequencing (Figure 1A). We identified 7581 somatic mutations 
of which 3099 were nonsynonymous (2917 missense, 179 stop-gained, 3 stop-loss) and 240 indels (Figure 
1B). Of the 7581 SNVs, the majority (6037) were transversions, of which most (3252) were C>A/G>T. 
Human hypermutated CRC tumors containing POLE mutations show increased proportions of C>A/G>T 
and T>G/A>C transversions [18], [19]. In contrast, it has been shown that the mouse CT26 cell line shows 
predominantly C>T/G>A SNVs [20], similar to the primary human non-hypermutated  CRC tumors [21]. 

We investigated whether known CRC driver mutations are also present in MC38. We found missense 
mutations in TP53, BRAF, PTEN, and mutations in the TGF beta pathway (SMAD2, SMAD4, ACVR2A, 
TGFB2, but not TGFBR2). KRAS was not mutated and there was only one intron mutation in APC, 
however there was a truncating mutation in AXIN2 which is known to regulate ß-catenin in the Wnt 
signaling pathway. Recently discovered frequent mutations in SOX9, and ARID1A [21] were also present 
in the MC38 cell line. SOX9 is a transcription factor that inhibits Wnt signaling [22] and has a role in 
regulating cell differentiation in the intestinal stem cell niche [23], whereas ARID1A is involved in 
suppressing MYC transcription [24].  

A large-scale genomic analysis of human colorectal samples [21] identified three subtypes of colorectal 
cancer: (1) microsatellite stable tumors (MSS), (2) tumors with microsatellite instability (MSI) due to a 
DNA mismatch repair system deficiency and (3) hypermutated group tumors that harbor mutations in the 
exonuclease (proofreading) domain of the DNA polymerases Pol δ (POLD1) and Pol ε (POLE). The 
MC38 data also showed mutations in two mismatch repair genes MSH3 and MUTYH, as well as in 
POLD1, indicating that the MC38 cell line is a valid model to study human MSI and hypermutated CRC. 
Both MSI and hypermutated CRC are reported to have better prognosis, higher infiltration of CD8+ T 
cells and respond well to checkpoint blockade therapy [25], likely due to the high number of neoantigens.  

We then characterized copy number variants (CNV) of the MC38 cell line using exome sequencing and 
SNP arrays. The analysis of the copy number profiles inferred from the exome sequencing data using 
hidden Markov model algorithm (see Methods) and from the SNP array data were concordant and showed 
mostly diploid genome with some regions of amplifications and deletions (Figure 1A). We identified 
amplifications in the regions that contain the genes MYC and ERBB2. Finally, we carried out 
transcriptomic analysis of the MC38 cell line in comparison to normal skin tissues. The transcriptomic 
data was used to: 1) identify pathways that were up- or downregulated in the cell line, and 2) to identify 
expressed tumor antigens including neoantigens (identified using exome sequencing data and prediction 
algorithm as previously described [26]) and cancer-germline antigens (CGAs). The latter are tumor 
antigens that are considered to be tumor specific since these molecules are expressed only in germline 
cells and in tumor cells. Pathway enrichment analysis identified pathways related to cell cycle, DNA 
replication, DNA repair, and metabolism of nucleotides (Supplementary Figure S1). 

With respect to the tumor antigens, we identified a large number of expressed neoantigens (Figure 1C) and 
expressed CGAs (Figure 1D), which provides evidence for the immunogenicity of this model. Of the 3096 
amino acid changes (missense and stop codon) in MC38, 1529 neoantigens were predicted to strongly 
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bind to the C57BL/6 MHC class I molecules H2-Kb and H2-Db with < 500 nM, and of these, 564 were in 
expressed genes. Additionally, several CGAs were highly expressed in MC38 including ATAD2, RQCD1, 
SPAG9, PBK, CTAGE5, CASC5, CEP55, which were also found to be expressed in the CT26 cell line 
[20].  It is noteworthy that these CGAs were also expressed in the skin samples.  

Thus, the characterization of the genomic and transcriptomic landscape of the CRC MC38 cell line 
demonstrates its validity as a model for hypermutated and/or MSI colorectal cancer. 

 

Upregulation of checkpoint molecules and infiltration of Tregs are the major tumor escape 
mechanisms in MC38 model of CRC 

In our mouse model used to recapitulate the process of cancer immunoediting, MC38 cells were 
subcutaneously injected into wild type C57Bl/6 and immunodeficient RAG1-/- mice. The tumor growth 
was monitored regularly and samples were taken at predefined time points and subjected to detailed 
analysis using FACS, exome and RNA sequencing, and SNP array analysis (Figure 2A). As expected, the 
tumor growth was significantly accelerated in the RAG1-/- mice compared to the wild type mice (Figure 
2B).  

FACS analysis revealed infiltration of both innate and adaptive immune cells including CD8+ T cells, NK 
cells, and M1 macrophages in the wild type mice, that increased with time, although not significantly 
(Figure 2C). RNA expression profiles revealed higher expression of chemoattractant molecules such as 
CXCL9 and CCL5 in the wild type mice in comparison to the immunodeficient mice (Supplementary 
Figure S2). However, despite the presence of tumor infiltrating lymphocytes and the slower growth of the 
tumors, the adaptive immune system failed to eliminate the tumors. Tumors may utilize several 
mechanisms of escape such as antigen loss, upregulation of inhibitory molecules, downregulation of major 
histocompatibility molecules (MHC), or by creating an immunosuppressive environment. The CD8/Tregs 
ratio, which is a surrogate marker for suppressive tumor microenvironment, was higher in the skin 
samples compared to the tumor samples at day 23 (Figure 2C) suggesting that one escape mechanism in 
this model is the presence of immunosuppressive cells. The numbers of MDSCs and Tregs were 
comparable in both time points in the wild type mice, whereas the M2 macrophages were significantly 
reduced. The tumor progression in the wild type samples was associated with upregulation of 
immunoinhibitory genes, including PD-1, CTLA-4, TIM3, and LAG3 (Supplementary Figure S3). MC38 
expressed low levels of PD-L1, whereas PD-L1 was slightly upregulated in RAG1-/- and more in the wild 
type mice. Analysis of the differentially expressed genes with respect to overrepresented pathways in the 
wild type vs RAG1-/- tumors showed upregulation of several immune processes related to activation of 
adaptive immune system response such as costimulation by the CD28, PD-1 signaling, antigen processing 
and presentation, NK cell mediated cytotoxicity, TCR signaling and interferon gamma signaling (Figure 
2D and Supplementary Figure S4A). Downregulated pathways and GO terms included processes related 
to cell cycle, DNA replication and TNF signaling (Supplementary Figure S4B). 

These data indicate that two tumor escape mechanisms are activated in this model: infiltration of 
immunosuppressive Treg cells and upregulation of inhibitory genes.  

 

Neutral evolution outweighs T cell dependent and T cell independent immunoselection during 
tumor progression 

Tumor progression is an evolutionary process under Darwinian selection [27], a characteristic that has 
been attributed as the primary reason of therapeutic failure, but also as a feature that holds the key to more 
effective control. At the time of detection, a tumor has acquired novel somatic mutations of which only a 
small subset (drivers) has an evolutionary advantage. The immune system exerts also an evolutionary 
pressure through a T cell dependent immunoselection process by acting on a tumor cell population that 
displays strong rejection antigens [11], and to some extent by T cell independent immunoselection through 
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M1 macrophages, IFNγ, and NK cells [28]. In addition to the ongoing evolutionary and immune-related 
clonal selection, recent study using a theoretical model demonstrated the occurrence of neutral evolution 
during tumor development [29]. According to this model, tumor heterogeneity in some cancers including 
CRC can be explained by neutral expansion and the accumulation of passenger mutations without 
selective sweeps. 

To elucidate the impact of immunoselection on the progressing tumor, we used NGS to identify 
nonsynonymous mutations and MHC class I binding algorithm to predict the corresponding 
neoantigens. Analysis of exome sequencing data showed high number of mutations that were shared 
between the MC38 cell line and the two consecutive time points in both, wild type (2919) and RAG1-/- 
(2942) samples (Figure 3A). The number of newly generated mutations was about eight- to ten-fold higher 
than the number of potentially targeted mutations in both wild type and RAG1-/- mice (Figure 3A). For 
example, in the wild type sample at day 23 there were 386 newly generated mutations compared to 50 
mutations shared only with MC38 cell line, which are potentially targeted in the wild type samples at day 
46.  

According to the cancer immunediting hypothesis, the immune system can sculpt the developing tumor by 
editing the cancer genome and thereby modifying the heterogeneity of the tumor: strong immunoediting 
would render tumors more homogeneous by eradicating immunogenic clones. In order to analyze the 
heterogeneity of the tumor during progression, exome sequencing data and SNP array data was used to 
estimate cancer cell fractions (CCF) of all point mutations and subsequently tumor heterogeneity. 
Analyses of the tumor heterogeneity did not reveal large differences during progression in both, wild type 
and RAG1-/- samples (Figure 3B). Strikingly, the analyses showed that the variant allele frequencies 
(VAF) of the majority of the mutations did not change with time in both the wild type and in the RAG1-/- 
mouse. On average, 95% of the mutations in the wild type and in the RAG1-/- samples did not change their 
VAF (Supplementary Table 1), suggesting that neutral evolution rather than Darwinian evolution is 
driving the tumor growth in this model.  

We then characterized the neoantigens using exome sequencings data (to derive somatic mutations), 
RNA-sequencing data (for filtering expressed mutations) and an algorithm for predicting MHC binding 
(see Methods). In order to identify immunogenic mutations, we filtered the expressed neoantigens with the 
highest binding affinity (IC50<500 nM). In a previous study with MC38 cell line seven mutant peptides 
were identified using mass spectrometry, of which two elicited a T cell response [12]. In our analysis six 
out the seven peptides were predicted and four of them were detectable from the RNA-expression data 
(Figure 3C). The large impact of neutral evolution was evident also in the Venn diagrams for the 
neoantigens (Figure 3D). The number of newly generated neoantigens was comparable in all the samples 
(126 and 129 for the wild type samples at day 23 and 46) and was much higher than the potentially lost or 
targeted neoantigens (17 in both wild type samples).  

We then focused our analysis on the tumor samples taken at the same time point, day 23 for the wild type 
and RAG1-/- samples and considered neoantigens found both in the MC38 cell line and in at least one of 
the RAG1-/- tumors (Figure 3E). There were 530 neoantigens that were shared in the wild type, RAG1-/-, 
and the MC38 cell line samples. About 3% of the neoantigens (17 out of 530) were detectable only in 
RAG1-/- tumors (Supplementary Table 2), out of which 16 were derived from mutations not detected or 
eliminated in the wild type tumors. Only one out of the 17 neoantigens was lost because of low 
expression. The small number of lost neoantigens imply that the impact of the T cell dependent 
immunoediting in this model is rather modest. Additionally, similar number of neoantigens (19) was 
detectable only in wild type tumors, suggesting that these neoantigens were edited by T cell independent 
mechanisms. Upregulation of genes related to NK cell mediated toxicity and IFN signaling further 
supports this observation (Supplementary Figure S5A). Analysis of the downregulated transcripts revealed 
genes related to DNA replication and cell cycle (Supplementary Figure S5B). 
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Heterogeneity analysis showed that all samples including the MC38 cell line were similarly heterogeneous 
(Figure 3F and 3G). To infer how the clonal composition changes between samples, we used a Bayesian 
Dirichlet process to cluster clonal and subclonal mutations. The results showed that the clonal and 
subclonal clusters were on the leading diagonal of the plots indicating there was no change in the 
mutational profile and the clonal and subclonal composition between any two samples (Figure 3F). As 
expected, there was a large percentage of subclonal mutations both in the MC38 and in the individual 
tumor samples (Figure 3H).  

Overall, the results suggest that neutral evolution outweighs both, T cell dependent and T cell independent 
immunoselection. Moreover, the temporal variation in subclonal architecture is largely determined by 
neutral evolution and to a small extent by Darwinian selection pressure. 

 

Targeting the PD-1/PD-L1 pathway potentiates immunoediting and renders the tumors more 
homogeneous 

We next investigated the impact of the strong immunological pressure induced by targeting the PD-1/PD-
L1 axis on the cancer genome, on the neoantigen landscape, and on the tumor heterogeneity. It has been 
previously shown that MC38 responds to different immunotherapies [15, 17, 30, 31]. In order to identify 
neoantigens that would be potential targets of T cells activated by checkpoint blockade therapy, wild type 
C57Bl/6 mice were treated with antiPD-L1 antibodies or IgG2b antibodies as control. Treatment was 
started one day after tumor inoculation and then every three to four days. Samples from six tumors treated 
with anti-PD-L1 and six tumors treated with IgG2b were taken on day 14. Three samples of each group 
were used for exome sequencing, and three for RNA-sequencing.  

Treatment with anti-PD-L1 antibodies reduced tumor growth in the treated mice by 65% compared to the 
controls (Figure 4A), which is in line with previous studies showing that MC38 responds well to PD-
1/PD-L1 blockade therapy [32, 33]. This was reflected also from the RNA-sequencing data by a strong 
upregulation of IFNγ, perforin (PRF1), and granzyme A and B (GZMA and GZMB), as well as a number 
of immunomodulators and MHC molecules (Supplementary Figure S6). GO and pathway analysis showed 
upregulation of immune related processes such as PD-1 signaling, chemokine signaling, cytokine-cytokine 
receptor interaction, and NK cell mediated cytotoxicity (Figure 4B). Hence, blocking of the PD-1/PD-L1 
pathway induces very strong adaptive and to a lesser extent innate mediated anti-tumor activity in this 
mouse model. 

Analysis of the exome sequencing data showed a large fraction of mutations that were shared in all 
samples (2555) and 305 mutations that were detectable in the control sample and in the MC38 cell line, 
but absent from the anti-PD-L1 treated samples (Figure 4C). These mutations are potentially targeted by 
the immune system following blockade of the PD-1/PD-L1 pathway. A smaller number of mutations were 
detectable only in the anti-PD-L1 treated samples and the MC38 cell line (52). Overall, in the anti-PD-L1 
treated samples the fraction of mutations resulting in expressed antigens was similar to the control sample 
(about 25%). Analysis of the peptides did not show any obvious patterns that could pinpoint rules defining 
immunogenicity of the mutations (Supplementary Table 3).  

A major shift was observed in the fraction of expressed neoantigens from clonal origin in the anti-PD-L1 
treated samples (Figure 4D). The fraction of clonal neoantigens was 8.8, 26.8, and 10.8 in the MC38, anti-
PD-L1 treated, and the control tumors, respectively. Tumor heterogeneity analysis revealed more 
homogenous tumors undergoing treatment with checkpoint blockers compared to the control tumors and 
the MC38 cell line (Figure 4E). The same pattern can be observed in the 2-d density plots which show a 
shift of subclonal mutations in MC38 towards clonality in the anti-PD-L1 samples (Figure 4F), suggesting 
clonal expansion because of a selective advantage of subclones. 

The analyses of this experimental data suggest that targeting the PD-1/PD-L1 pathway potentiates 
immunoediting and counterbalances neutral evolution in this mouse model. Moreover, this 
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immunotherapeutic intervention renders the tumors more homogeneous, which could possibly explain the 
development of resistance to checkpoint blockers. 

 

Immunoediting and acquired resistance to PD-1 blockade in melanoma 

In order to test the relevance of our findings in human cancer, we analyzed genomic data from a recent 
study on acquired resistance to PD-1 blockade in melanoma [34]. In this work pretreatment and relapse 
samples from four patients with metastatic melanoma, which were subjected to anti PD-1 blockade 
therapy, were analyzed by exome sequencing. Sequencing data showed that two of the tumors developed 
loss-of-function mutations in JAK1 and JAK2, respectively, which resulted into lack of response to IFNγ. 
The third tumor had a mutation in the antigen-presenting protein ß2M which prevented the immune 
system to recognize the tumor, whereas the fourth tumor had no defined mutations which could be 
associated with the relapse [34]. 

Using exome sequencing data, we analyzed the samples taken before therapy and after relapse with 
respect to the changes of the mutational landscape, the tumor heterogeneity and the clonal architecture. As 
can be seen in Figure 5A, large fraction of the mutations was detectable in baseline samples and in the 
relapse samples in all four cases, implicating that the bulk of the mutations were not efficiently targeted. 
Newly generated mutations ranged between 5% (case 1) and 33% (case 2). Mutations that were potentially 
immunoedited following PD-1 blockade, i.e. mutation detectable only in the baseline samples ranged 
between 4% (case 2) and 58% (case 3). Specifically, case 3 appeared to have strong immunoediting 
effects on the cancer genome. 

With respect to the tumor heterogeneity, targeting the PD-1/PD-L1 pathway showed similar trend: 
relapsed tumors that acquired larger number of mutations became more heterogeneous (case 2 and case 4), 
whereas the tumor with lower number of acquired mutations became more homogeneous (case 3) (Figure 
5B). The analysis for case 1 did not reveal changes in the tumor heterogeneity likely due to the high 
number of mutations in both, baseline and relapse sample (1045). Thus, in this case the impact of newly 
generated mutations on the tumor heterogeneity is rather small. The analyses of the clonal architecture 
revealed that in all tumors there was a loss of clonal mutations in the relapsed samples compared to the 
baseline, ranging from 1% (Case 2) to 24% (Case 3) (Figure 5C). Tumors that became more 
heterogeneous had increased number of subclonal mutations compared to the baseline (case 2 and case 4). 
In accordance with the immunoediting hypothesis, the relapsed sample showing strong immunoediting 
effect (case 3) had the largest decrease of both, clonal and subclonal mutations, and hence, was more 
homogeneous. 

Overall, these results indicate that immunoediting can be associated with acquired resistance to PD-1 
blockade in melanoma in specific mutational phenotypes. Targeting the PD-1 pathways in these 
phenotypes seems to broaden the T cell repertoire in a way that both, clonal and subclonal mutations are 
targeted and subsequently render the tumor more homogeneous. Hence, a clone which is resistant to 
immune attack will ultimately dominate the population. 
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DISCUSSION  

 

With the development of immunotherapies with checkpoint blockers as well as other immunotherapeutic 
strategies including therapeutic vaccines and engineered T cells [35], the interaction of the tumor and the 
immune system, and the question how the cancer genome is edited came into focus. Our understanding of 
the process of cancer immunoediting and its relevance for therapeutic intervention is still incomplete and 
requires comprehensive genomic analyses of longitudinal samples. Here we characterized for the first time 
the extent of immunoediting that tumors undergo during progression or as a consequence of the targeting 
the PD-1/PD-L1 axis. The quantification of cancer immunoediting using a mouse model of common 
cancer suggests several biological conclusions and has also important implications for clinical translation.  

First, neutral evolution outweighs the effects of T cell dependent and T cell independent immunoselection 
on the cancer genome during tumor progression in this model. Neutral tumor evolution was only recently 
identified using a theoretical model that determines the expected distribution of subclonal mutations, and 
implies that a large number of new mutations are generated in ever smaller subclones, resulting in many 
passenger mutations that are responsible for intratumor heterogeneity, but have minimal or no impact on 
tumor expansion [29]. In this neutral evolution model all the mutations responsible for expansion are 
present in the founding cell and subsequent mutations are neutral. Analysis of the TCGA data showed that 
CRC and other cancers were dominated by neutral evolution whereas other cancers were not [29]. Hence, 
tumor adaptation in neutral cancers is driven by cancer cell plasticity rather than clonal selection. Here we 
provide an experimental evidence for the impact of neutral evolution based on the genomic and 
immunogenomic analyses of a widely-used mouse model. While the model we have used has certain 
limitations since it uses a cell line and it does not recapitulate evolution of the tumor as it occurs naturally, 
it provides further support for the neutral evolution.  

Second, targeting the PD-1/PD-L1 pathway effectively potentiates immunoediting. Currently, we can only 
speculate on the underlying mechanisms driving the strong immune response. It has been previously 
shown that immunotherapy with anti-CTLA-4 antibodies leads to a significant number of newly detected 
T cell responses [36], which can be assigned to the broadening of the T cell receptor repertoire [37]. Our 
data support this model also in therapeutic strategy that blocks the PD-1/PD-L1 axis. The broadening of 
the T cell receptor repertoire might be one of the mechanisms of action of anti-PD-1 treatment and could 
explain the success of immunotherapy in a number of malignancies. Since CTLA-4 and PD-1 have 
differing immunological effects on circulating T cells, further mouse and human studies are necessary in 
order to test the hypothesis that broadening of the T cell receptor repertoire is a mechanism that 
potentiates immunoediting also in a therapeutic strategy that blocks the PD-1/PD-L1 axis. 

And third, targeting the PD-1/PD-L1 pathway renders the tumors more homogeneous. While we did not 
carry out long-term experiments with different dosages and treatment schedules, one implication of this 
data is that the tumors might eventually become resistant to immunotherapy. We provide also additional 
data from a human study showing that in some cases tumors that relapse after PD-1 blockade are more 
homogeneous. Hence, cancer immunoediting represents one mechanism of acquired immunotherapy 
resistance.  

Our findings have important implications for basic research studies on mechanisms of resistance to 
checkpoint blockade and for clinical translation. Most importantly, given that neutral evolution, T cell 
dependent immunoediting, and T cell independent immunoediting are sculpting the tumor, it is of utmost 
importance to carry out comprehensive genomic and immunogenomic analyses of pre- and post-treatment 
samples. Since conventional cancer therapy as well as cancer immunotherapy are altering the genomic 
landscape, clones that are resistant to therapy might arise and outcompete other clones. Thus, it is an 
imperative to characterize the used mouse models and the evolutionary forces driving the tumor in order 
to dissect the contribution of individual components on shaping the cancer genome. 
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Finally, our results have important implications also for clinical research. Given the fact that some cancers 
including CRC, stomach, lung, and bladder are dominated by neutral evolution [29], it will be important to 
study tumors over time to dissect out the impact of the immunological selection following checkpoint 
blockade. Neutral evolution theoretically generates greater tumor heterogeneity and hence, may facilitate 
adaptation after the initiation of immunotherapy. However, investigating evolutionary dynamics within 
human cancer is challenging since longitudinal observations are unfeasible and both, the genetic and 
immune landscape of cancer are highly dynamic and interwoven [8]. Use of new technologies such as 
single cell sequencing, as well as multi-region sequencing and better sequencing depth together with 
improved computational methods will provide better understanding of the interplay between the clonal 
architecture of a tumor and the antitumor response of the immune system. In this context, advances of 
organoid technologies and gene editing will open new avenues of research and ultimately lead to the 
development of precision immune-oncology.  

 

CONCLUSIONS 

 

In summary, we demonstrated that neutral evolution is the major force that sculpts the tumor during 
progression, and that checkpoint blockade effectively enforces T cell dependent immunoselective pressure 
in mouse model of CRC. Our study adds another layer of complexity of the tumor evolution and the 
dynamic nature of clonal selection driven by immunological and non-immunological mechanisms. An 
improved understanding of how the immune system shapes the tumor progression will be fundamental to 
improving response to immunotherapies and combating resistance, and will require comprehensive 
genomic and immunogenomic analyses of both, mouse models and human samples.  
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METHODS  

 

Mouse experiments 

Wild type C57BL/6N mice RAG1-/- (B6.129S7-RAG1tm1Mom/J) mice were purchased from Charles River. 
Mice were maintained under SPF conditions. All animal experiments were performed in accordance with 
the Austrian “Tierversuchsgesetz” (BGBI. Nr.501/1989 i.d.g.F. and BMWF-66.011/0061-II/3b/2013) and 
were approved by the Bundesministerium für Wissenschaft und Forschung (bm:wf). 

5×104 MC38 colon carcinoma cells were injected subcutaneously (s.c.) into the left flank of 8- to 12-
week-old female wild type or RAG1-/- mice. Tumor growth was monitored three times per week by 
measuring tumor length and width. Tumor volume was calculated according to the following equation: 
½(length × width2). For survival analysis, mice with tumors greater than the length limit of 15 mm were 
sacrificed and counted as dead.  
 
Wild type mice were injected s.c. with 5x105 MC38 melanoma cells and administered with 0.5mg of an 
anti-mouse PD-L1 (Clone10F.9G2; BE0101) or corresponding IgG2b (LTF-2; BE0090) control antibody 
(all from BioXCell, USA) every 3 to 4 days starting from day 1 of MC38 challenge according to [38]. 
Tumor growth was monitored as described above. 
 

Immunophenotyping 

Mononuclear infiltrating cells were isolated from both subcutaneous tumors and skin tissue at the 
indicated time points [38]. Briefly, tumor and skin tissues from sacrificed mice were prepared by 
mechanical disruption followed by digestion for 45 min with collagenase D (2.5 mg/ml; Roche, 
11088858001) and DNase I (1 mg/ml; Roche, 11284932001) at 37°C. For skin tissue Liberase (5mg/ml; 
Roche, 5401020001) was added to the above described digestion mix. Digested tissues were incubated 5 
min at 37°C with EDTA (0.5 M) to prevent DC/T cell aggregates and mashed through a 100-µm filter and 
a 40-µm filter. Cells were washed, and resuspended in PBS+2% FCS. 

Tumor and skin infiltrating immune cells were incubated with FcR Block (BD Biosciences, 553142) to 
prevent nonspecific antibody binding before staining with appropriate surface antibodies for 30 min at 
4°C, washed with PBS+2% FCS, and used for FACS analysis. For intracellular cytokine staining, cells 
were stimulated with 50 ng/ml Phorbol 12,13-dibutyrate (PDBu, Sigma, P1269), 500 ng ionomycin 
(Sigma, I0634), and GolgiPlug (BD Biosciences, 555029) for 4–5h. After fixation with the FoxP3 staining 
buffer set (eBiosciences, 00-5523) for at least 30 minutes at 4°C, cells were permeabilized with the 
fixation/permeabilization buffer (eBiosciences, 00-5523) and incubated with FcR Block (BD Biosciences, 
553142) before staining with specific cell surface or intracellular marker antibodies. Data acquisition was 
performed on a LSR Fortessa cell analyzer (Becton Dickinson). Data analysis was conducted using the 
Flowlogic software (eBioscience, version 1.6.0_35). 

The following antibodies were used for flow cytometry: CD4-V500 (BD, 560783), CD45-V500 (BD, 
561487), CD8a-PerCP Cy5.5 (eBiosciences, 45-0081-82), CD3-PE (eBiosciences, 12-0031-83), CD11c-
PerCP Cy5.5 (eBiosciences, 45-0114-80), CD11b-PE (BD, 557397), CD45-APC (eBiosciences, 17-0451-
81), F4/80-PE-Cy7 (BioLegend, 123113), CD49b-FITC- (eBiosciences, 11-5971-81), Foxp3-FITC 
(eBiosciences, 11-5773-82), IFNγ-PE-Cy7 (eBiosciences, 25-7311-82), CD25-bv421 (BioLegend, 
102034), Gr-1-APC (eBiosciences, 17-5931-81), MHCII-bv421 (BD, 561105). 
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Exome- and RNA sequencing 

DNA sequencing from the tumor, skin and MC38 cell samples was performed by exome capture using 
SureSelectXT Mouse All Exon capture probes (Agilent Technologies Österreich GmbH, Vienna, Austria) 
followed by sequencing with the Ion ProtonTM System (Ion Torrent, Thermo Fisher Scientific). For RNA 
sequencing, total RNA was extracted, quality validated with the Agilent Bioanalyzer, and submitted to 
Lexogen 3’ QantSeq library preparation, following the manufacturers instructions (Lexogen, Vienna 
Biocenter, Austria). Resulting libraries were sequenced with the Ion ProtonTM System.  

 

Exome-sequencing data analysis 

The sequence reads were aligned to the mm10 reference genome with tmap 
(https://github.com/iontorrent/TS/tree/master/Analysis/TMAP) and preprocessed using GATK. Somatic 
point mutations were identified with Mutect [39] by comparing each tumor sample with the two skin 
samples and taking the intersection of the mutations. Insertions/deletions were called with Strelka [40] in 
the same way. The somatic mutations were annotated using the Ensembl Variant Effect Predictor tool 
[41]. Somatic copy number estimations were derived from exome-sequencing data using EXCAVATOR 
[42] by calculating log2 ratios between the read depth of the tumor and two germline skin samples using 
the “pool” mode. The estimated log2 ratios were then segmented by their novel heterogeneous shifting 
level model (HSLM). The CNAs identified using exome-sequencing data were concordant to those in the 
same samples by using Affymetrix SNP Array. 

 

SNP arrays 

Genome-wide copy number profiles of two wt samples (day 23 and day 46), two RAG1-/- samples (day 13 
and day 23), all six aPD-L1 and IgG2b samples, MC38 and skin germline DNA were obtained using the 
Affymetrix Mouse Diversity Array. The genotyping analyses were carried out at Eurofins Genomics 
(Ebersberg, Germany) using the Affymetrix Mouse Diversity Array. The SNP arrays were processed, 
quantile-normalized, and median-polished using the Aroma Affymetrix CRMAv2 algorithm [43] together 
with 351 publically available Mouse Diversity Genotyping Array CEL files which were downloaded from 
the Center for Genome Dynamics at The Jackson Laboratory 
(http://cgd.jax.org/datasets/diversityarray/CELfiles.shtml). Copy number alterations (CNAs) for each 
probe were computed as log2-ratios between the probe signal intensities of each sample and the reference 
skin sample and then those ratios were segmented using the circular binary segmentation algorithm 
implemented in the R package DNAcopy [44]. 

 

Tumor heterogeneity 

Normal contamination estimates were calculated using the homozygous point mutations in the cell line 
MC38. Considering that the purity of the cell line is 1, we checked the variant allele frequency of the 
homozygous mutations in MC38 in all the samples together with the estimated copy numbers of the 
corresponding region. The expected VAF of these mutations should be 1 in all samples assuming that 
there is no normal contamination and no new mutations appearing in the mouse samples at the same 
genomic position. As an estimate of the purity of the tumor, we took the mean of the VAF of those 
mutations found in a diploid region. These estimates were used to correct the mutation VAFs or copy 
number estimates in the rest of the analyses. 

Mutations were filtered so that only mutations with at least 10 total reads and at least 5 alternative reads 
were considered. The CCF of each mutation was calculated using the approach of Yates et al [45]. Briefly, 
for each mutation the observed mutation copy number, nmut (the fraction of tumor cells carrying a given 
mutation multiplied by the number of chromosomal copies at that locus) was calculated as: 
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where VAF is the variant allele frequency of the mutation, p is the tumor purity, and CNt and CNn are the 
tumor and the normal locus specific copy number. Since mutations that are present of multiple 
chromosomal copies will have a mutation copy number higher than 1, we determined the number of 
chromosomes that the mutations is residing on. This was done so that for all mutations in amplified 
regions with a copy number of CNt, the observed fraction of mutated reads is compared to the expected 
fraction of mutated reads resulting from a mutation present on 1,2,3,…,CNt copies, considering a binomial 
distribution. The cancer-cell fraction was then calculated as the mutation copy number divided by the 
value of C with the maximum likelihood. 

Mutations were defined as clonal if the CCF was > 0.95, and subclonal otherwise. Subclonal clusters of 
mutations were identified using a previously described statistical modelling of the distribution of clonal 
and subclonal mutations by a Bayesian Dirichlet process [46-48]. 

 

RNA-seq data analysis 

The sequencing reads were first preprocessed through a quality control pipeline consisting of adapter 
removal with Cutadapt (DOI: http://dx.doi.org/10.14806/ej.17.1.200) and quality trimming with 
Trimmomatic [49] to remove bases with bad quality scores and reads shorter than 22 nucleotides. The 
quality trimmed reads were then mapped to the mm10 reference genome using a two-step alignment 
method; alignment with STAR [50] followed by alignment of the unmapped reads with Bowtie2. From the 
reads that mapped to multiple locations in the genome only the primary alignment was retained. Reads 
that mapped to ribosomal RNA locations in the genome were removed from further analysis using 
the split_bam.py script from the quality control package RSeQC [51]. Gene-specific read counts were 
calculated using HTSeq-count [52]. The R package DESeq2 [53] was used for differential expression 
analysis. The p-values were adjusted for multiple testing based on the false discovery rate (FDR) using the 
Benjamini-Hochberg approach. 

 

Neoantigens and cancer-germline antigens  

All possible 8-11 mer mutated peptides generated from all the nonsynonymous mutations (missense and 
nonsense) were used as an input to netMHCpan to predict their binding affinity to the C57BL/6 MHC 
class I alleles H-2Kb and H-2Db. Amongst the candidate antigenic peptides, only the strong binders with 
binding affinity < 500 nM, and peptides arising from expressed genes were retained for further analysis. A 
mutation was considered expressed if the normalized counts of the corresponding gene were greater than 
5. 

The list of cancer-germline antigens (CGA) was downloaded from the Cancer-Testis database [54]. Their 
expression level was estimated using the normalized counts from DESeq2. 

 

Human data 

Mutational data from the melanoma patients [34] were provided by Dr. Antoni Ribas. Heterogeneity 
analyses were performed as described above. 
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Data accessibility  

The mouse data sets were deposited in the GEO (GSE93018) and the Sequence Read Archive 
(SRP095725). 

 

Statistical analysis 

For comparison of two sample groups two-tailed unpaired Student’s t-test was performed. Analysis and 
visualization of Gene Ontology terms and pathways associated with differentially expressed genes was 
performed using ClueGO [56]. A p-value of <0.05 was considered statistically significant: *p<0.5; **p < 
0.01; ***p < 0.001. 

 

SUPPLEMENTAL INFORMATION 

Supplemental information includes 3 tables and 6 figures. 
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FIGURE LEGENDS:  

 

Figure 1. Genomic, transcriptomic,  and immunogenomic characterization of mouse MC38 cell line. 
A) Circos plot showing (outer to inner): cytogenetic bands in black, grey and white. Track 1: 
DNA copy number log ratio values. Dark grey: diploid; Red: amplification (log ratio > 0.25); 
Blue: deletion (log ratio < -0.25). Track 2: Point mutations, plotted based on the variant allele 
frequency. Inner is frequency 0, outer is 100. Colours are purple (0-40), green (40-60), yellow 
(60-80), and pink (80-100). Track 3: Predicted MHC binding IC50 scores for the nonsynonymous 
mutations. Mutations with the highest binding affinity are coloured orange (IC50 < 50). Track 4: 
insertions and deletions coloured according to their allele frequency. B) Number of mutations in 
MC38 classified by type. C) Number of predicted and expressed neoantigens in MC38. D) Known 
germline antigens with the highest expression in MC38. The expression values are in normalized 
counts. 

Figure 2. Tumor progression and tumor-infiltrating immune cells in wild type and RAG-/- mice. A)  
Schematic diagram of the experimental setup. B) Tumor growth curves of 5 × 104 MC38 cells 
inoculated into C57Bl/6 wild type (n=10) and RAG1-/- mice (n=4). The data are expressed as the 
mean ± SEM, statistically analyzed by a Student’s t test. C) Tumor-infiltrating lymphocytes in 
wild type and RAG1-/- mice analyzed by flow cytometry * P�>�0.01, ** P�<�0.01, 
*** P�<�0.001. D) Enriched functions and pathways of the significantly differentially expressed 
genes in tumors of the wild type vs RAG1-/- mice taken at day 23. The network is created using 
ClueGO. The pathways are functionally grouped based on the kappa score and the most 
significant term of each group is highlighted. The size of the nodes shows the term significance 
after Bonferroni correction.  

Figure 3. Genomic and immunogenomic analyses of progressing tumors in wild type and RAG-/- 
mice. A) Shared nonsynonymous mutations between MC38, and wild type and RAG1-/- samples 
during progression. Mutations found in at least one sample from the same type are considered. B) 
Two-dimensional density plots showing the clustering of the cancer cell fractions of all mutations 
shared between two samples; increasing intensity of red indicates the location of a high posterior 
probability of a cluster. C) Immunogenic neoantigens that were experimentally validated in a 
previous work [12] and detected in this study. Asterisks show epitopes that were predicted but not 
expressed. D) Shared expressed neoantigens between MC38, and wild type and RAG1-/- samples 
during progression. Neoantigens found in at least one sample from the same type are considered. 
E) Shared nonsynonymous mutations and expressed neoantigens between MC38, and wild type 
and RAG1-/- samples at day 23. Mutations/neoantigens found in at least one sample from the same 
type are considered. F) Two-dimensional density plots showing the clustering of the cancer cell 
fractions of all mutations shared between two samples. G) Violin plots showing tumor 
heterogeneity estimated from the cancer cell fractions. H) Fractions of clonal and subclonal 
expressed neoantigens in MC38 and all tumor samples. Error bars represent standard error of the 
mean. 

Figure 4. Genomic and immunogenomic impact of targeting the PD-1/PD-L1 axis. A) Tumor growth 
curve in C57Bl/6 wild type mice (n=11) inoculated with 5 × 105 MC38 cells and administered 
with 0.5 mg of an anti-mouse PD-L1 blocking antibody as immune checkpoint inhibitor is 
compared to tumor growth curve seen in mice (n = 12) injected with IgG2b control. The data are 
expressed as the mean ± SEM, statistically analyzed by Student’s t test. B) Enriched functions and 
pathways of the significantly differentially expressed genes in tumors of the aPD-L1 therapy vs 
the IgG2b control samples. The network is created using ClueGO. The pathways are functionally 
grouped based on the kappa score and the most significant term of each group is highlighted. The 
size of the nodes shows the term significance after Bonferroni correction. C) Shared 
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nonsynonymous mutations and expressed neoantigens between MC38, and anti-PD-L1 treated and 
control samples. Mutations/neoantigens found in at least one sample from the same type are 
considered. D) Fractions of clonal and subclonal expressed neoantigens in MC38 and all tumor 
samples. Error bars represent standard error of the mean. E) Violin plots showing tumor 
heterogeneity estimated from the cancer cell fractions. F) Two-dimensional density plots showing 
the clustering of the cancer cell fractions of all mutations shared between two samples; increasing 
intensity of red indicates the location of a high posterior probability of a cluster. 

Figure 5. Immunoediting and acquired resistance to PD-1 blockade in melanoma. A) Number of 
mutations at onset of therapy and after relapse from a study by Zaretsky et al. [34]. B) Violin plots 
showing tumor heterogeneity estimated from the cancer cell fractions. C) Relative variation in the 
number of nonsynonymous mutations detected in the relapse samples compared to the baseline in 
the study by Zaretsky et al [34].  
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